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Using covariant methods we calculate the neutrino electromagnetic vertex in a gas of electrons to
lowest order in a loop expansion and to the lowest order in 1/M~. The new induced terms, while
they are chirality preserving, yield additional contributions to the dipole moments in the nonrela-
tivistic limit. These are identical for particles and antiparticles and so need not vanish for Majorana
neutrinos. As applications of our formulas, the expression for the plasmon~vv decay rate is
rederived and the dispersion relation of a massless neutrino propagating in matter in the presence of
an external magnetic field is determined. The possible implications of these effects are considered.

I. INTRODUCTION

The subject of the electromagnetic properties of neutri-
nos has been widely considered in the literature. At a
fundamental level, it provides a well-defined setting for
understanding some of the deep differences between
Dirac and Majorana neutrinos. This was the subject of
works cited in Ref. 1. For the case of neutrinos in a
medium, the same issue was discussed in Ref. 2. With
the insight gained from the latter, we can summarize the
situation as follows.

In the vacuum, the electric- and magnetic-dipole-
moment operators are odd under CPT. Thus, the dipole
moments of a Dirac particle are opposite to those of its
antiparticle while the dipole moments of a Majorana neu-
trino vanish because this particle is its own antiparticle. '

In a medium the situation can be drastically different.
In general, the effect of the medium can give rise to CPT
asymmetries in the effective electromagnetic interactions.
These asymmetries manifest themselves as new terms in
the effective action which are identical for a particle and
its antiparticle —and therefore can be nonzero even for a
Majorana particle. The precise conditions under which
these effects can appear were analyzed in Ref. 2.

In the present work we complement t;he analysis of
Ref. 2 by presenting the results of detailed calculations of
the background-dependent part of the vvy vertex for the
case in which the medium consists of a gas of electrons.
As usual, the electron gas is supposed to be embedded in
a uniform positive-ion background. However, since the
background-dependent terms turn out to be proportional
to the inverse of the electron mass in the classical and
nonrelativistic limit, the effect of the ions is negligible in
most circumstances.

In Sec. II the calculation is described. To leading or-
der in 1/M~, general formulas for the form factors are
given in terms of integrals over the electron-positron en-
ergy distribution. The resulting formulas obtained in the

static limit as well as in the long-wavelength limit are also
given, some details of this calculation being given in the
Appendix. Then in Sec. III we use these results as work-
ing ground to illustrate and complement the analysis of
Ref. 2. In Sec. IV we consider two applications of our re-
sults. The first one illustrates how the formula for the
plasmon decay rate can be easily rederived with our
method. In addition, this example shows a well-defined
path to follow if we want to calculate corrections to the
classic results for such rates. In the second application,
the correction to the index of refraction of neutrinos in
matter, in the presence of an external magnetic field, is
determined. Section V presents our conclusions.

II. CALCULATION OF THE VERTEX FUNCTION

Sz(p)=(Ii+m ) +2rri 5 (p m) il(p U )—
p —m

(2.2)

where

8(x) 0( —x)
/3(x —P)+ 1

—t)(x —P)+ 1
YJ x (2.3)

Here, 8 is the unit step function, 1/f3 is the temperature,
and p is the chemical potential of the electrons.

The off'-shell vertex function I (k, k', u) is defined in
such a way that

( (k')
~j„(0)~v(k ) ) =u (k')r„(k, k', U )u (k ) . (2.1)

We have explicitly indicated the dependence of I „on the
four-velocity of the center of mass of the medium, v". In
the vacuum, the dependence on v" vanishes.

The diagrams that enter in the calculation of I „ to
lowest order are shown in Fig. 1. We assume that the
temperature is such that there are no 8' bosons in the
background. Therefore, only the electron propagator has
a background-dependent term, and it is given by
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FIG. 1. The diagrams contributing to the vertex function
I (k, k', U) at the one-1oop level.

A few observations help us to simplify the calculation
of the background-dependent part of I „, which we
denote by I „'. Since the integrals involved in the ca1cula-
tion of I „' are cut off by the electron-positron distribu-
tions, the diagram marked as ( W') gives a contribution to
I „' which is suppressed by an extra power of 1/Mw rela-
tive to the other two diagrams. Therefore, to leading or-
der in 1/M~, only the diagrams marked as ( W) and (Z)
need to be calculated. In the 't Hooft —Feynman gauge,
the diagrams in which the 8 s are replaced the unphysi-
cal Higgs fields are also suppressed by extra powers of
1/M~ and therefore do not contribute to I „' to the lead-
ing order in 1/M~.

With these preliminaries, our task is reduced to the
calculation of the following quantities:

d4p

y LAy L= —(TrAy L)y L, (2.7)

which is valid for any 4X4 matrix A. It then follows
that we can write both the expressions in Eq. (2.4) in the
form

I i( w, z) cp( w, z) vL
p p~ (2.8)

f &
Tr[(P —g+ m )y„(gf +m )

M,' (2'�)'
X y.«z+ bzys)]

&[(p —e )'—m ']n[(p —e ).~]
p —m

Finally L = )
( 1 —ys) as usual and e is the magnitude of

the electric charge of the electron. Also, notice that the
coupling of the electron neutrino to the photon is given
by I „' '+I „' ', whereas only I"„' ' contributes for the oth-
er flavors of neutrinos. In view of this, we keep the calcu-
lations of I „'~ and I „'

' separate from one another. We
also make the local approximation, i.e., neglect the
momentum dependence in the S'and the Z propagators
from now on.

When the electron propagator from Eq. (2.2) is substi-
tuted in Eq. (2.4), several terms are produced. The terms
that are independent of the electron-positron distribution
functions contribute only to the standard vacuum part
and we drop them. The rest of the terms contain either
one or two factors of g(p U ) and therefore contribute to
I „'. However, the terms with two factors of g contribute
only to the absorptive part of the amplitude. In this
work we will calculate only the dispersive part of the
form factors and hence we also drop the terms with two
factors of q (Ref. 3).

The expression for I „'
' in Eq. (2.4) can be rewritten by

using the Fierz-type identity

+z = gz A "[ey„(az+b'zys)e+vt. y„vL, ] . (2 5)

1
Xy iSF(p)y L

(k —p) —M~
(2.4)

e 2
Rz

X I Tr[iSF(p —q)y„iSF(p)
d p

(2m. )

Xy (a +b y, )]

which are the contributions to I „ from diagrams (W')
and (Z). We have written the couplings to the Z in the
form

+ 6(p —m )g(p. U)

(p —
q )' —m

(2.9)

and V„) is given by an expression that can be obtained
from this by making the following replacements:

g b (2.10)
~z 2~a

In view of this, we henceforth concentrate on the evalua-
tion of I „'

' only. The results for I „'
' can easily be

recovered at any stage by using the substitutions given in
Eq. (2.10).

Making the change of variable p~p+q in the erst in-
tegral of Eq. (2.9) and carrying out the traces, one then
obtains
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z d p (f +f )
ppp p q qpp g p

M (2m) 2E +2p 'q

b—(f -f —)ie„,pe p~, +(q1

+Zp q
(2.11)

where

p"=(E,p), E=+p +m (2.12)

v
Bp =gpvV

Further, V'T
L z are functions of the scalar variables

(2.20)

We have introduced the electron and positron distribu-
tions

Q=q U,
6—=VQ —

q
(2.21)

(2.13)

with p" defined in Eq. (2.12). It should be noticed that
p U is equal to the energy of the background particles in
the rest frame of the medium and that, in this frame,

ng=2
3 y p

d p
(2m )

(2.14)

q"V' „=0 . (2.15)

From Eq. (2.11) it is easily verified that both V„,' and

7„,' separately satisfy this equation. However, from Eq.
(2.11) we also see that both 7„„'and 7„'have the addi-
tional property that they are symmetric under the simul-
taneous interchange p~v, q —+ —q. Therefore, V'„, also
satisfies4

give the number densities of electrons and positrons. The
factor 2 in the last formula appears because of spin de-
generacy.

The remainder of the calculation can be conveniently
organized by making use of the following observations.
Electromagnetic gauge invariance implies that 'T„„msut
satisfy

the latter of which also appears in the definition of P„ in
Eq. (2.18). We will indicate the dependence of 7 T L z on
these variables explicitly when needed.

The tensors R„,Q „,and P„„have the useful proper-
ty that when one of them is contracted with the others it
gives zero, while

R R""=2,

Q„.Q"'=1

P P" = —2.PV

(2.22)

The form factors TT I p can thus be obtained by project-
ing as follows:

=—'R TI"'=— 'T"—1
T 2 P,v 2 P

U"V
-2 P~
U

(2.23)

V'p = ,'P„V"' . ——

Applying this to the expression for V„given in Eq.
(2.11),we obtain

q"'T„=O . (2.16)

Moreover, from Eq. (2.9) or (2.11), one can see that with
our approximation of keeping only the leading-order
terms in 1/M~, V'„„does not depend separately on k and
k', rather, it is a function of q only. The most general
form of 'T„„that is consistent with these properties is

2egz
&r = az

Mz
24eg,

1. ~2 Za
Z

U

(2.24)

7„='TTR„„+V'I Q„+7IP„
where

R„,=g„„—Q„, ,

BpUV
QP~ —2

U

aUPP = ep pg

We have defined

(2.17)

(2.18)

where

2' 2d p + 2' 2p'q
(2m) 2E q +2p q

B=J 3 (f +f+)
(2m) 2E

2(p. u) +2(p u)(q. u) —p q + q~ —
q+2p

'(2.25)

and

qpqv
gpv gpv 2

q
(2.19)

+(q~ —q)
d3

(f f+)—
2m 2E U

2 q2+2p q
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The expressions for 7"TL'2, can be obtained from Eq.
(2.24) by using the substitutions indicated in Eq. (2.10).

The integrals in Eq. (2.25) must be interpreted as their
principal values. The convenience of presenting the form
factors TT L ~ in this form lies in the fact that 3, 8, and
C are scalars, so that the integrations can be performed in
any reference frame, in particular in the rest frame of the
medium which is defined by setting v"=(1,0). The de-
tails of' this calculation have been summarized in the Ap-
pendix. To collect together some of the results for future
reference, we introduce some notation. In the rest frame
of the medium, we denote the components of the four-
vectors q" and p~ by

q"=(Q, e), p"=(6,P) (2.26)

in the rest frame. Thus, Q = ~6~ and 0 are the invariants
defined in Eq. (2.21), and P and 6' can also be written in
manifestly covariant forms similar to the expressions in
Eq. (2.21). In this notation, then

Q
F, —rT+ 2 (Tl —5'T),

1
F2 = ( V'L —'TT ),

U

iF =—
3

0, (&I.—"TT),
(3.2)

Thus, F, is of the form of the standard charge-radius
form factor. The physical interpretation of the other
terms is obtained by considering, as usual, the interaction
with an external, static field. Thus, taking the external
field of the form A "=($,0) in the rest frame of the medi-
um, we see that F2 yields an additional contribution to
the charge radius. To obtain the interpretation of F3 4 let
us recall some of the results of Ref. 2. That work ana-
lyzed the implications of the terms in I „' of the form

iDz(y„v —y,v„)q'y5+iDMe„&y y5q v~ . (3.3)

U

—2coo+O(O ) (for Q~O),

O(Q ) (for A~O), (2.27)

Q2 2

(for 6~0),COp

Q

1 d P d 2
(2.28)

+ + +0 for 0~0
(2~)' d&

D' = — (T —'r ),iO,
262 L T

(3.4)

It was shown there that, for massive neutrinos, DE and

DM can be regarded as additional contributions to the
electric and magnetic dipole form factors, in the nonrela-
tivistic limit. Comparing Eq. (3.3) with Eq. (3.1) and us-

ing Eq. (3.2), we then identify

d'P f f+, 2P'——
(2~)'2@

(for 6—+0),
(2.29)—I, (f +f+ )+O(0')

2 (2~)'2g d 8
(for Q~O),

where coo is defined in Eq. (A19).
We reiterate that, while these expressions are valid

only for the limiting values of q indicated, no assumption
has been made regarding the condition of the electron
gas. Thus, they hold for a degenerate or a nondegenerate

gas, whether or not it is relativistic.

III. PHYSICAL INTERPRETATION
OF THE FORM FACTORS

Although the separation of "T„„into its 'Tz. l I com-
ponents is very convenient for carrying out the explicit
calculations, it is not immediately obvious what is the
physical interpretation of these form factors. For this
purpose it is more convenient to rewrite I „' in the form

r„'j'""'(k,k, v )=r,(k, k', v)+r„'( —k, —k, , ),
where I „is the quantity that we have already calculated
and I „is obtained from I „by multiplying every quantity
that appears in I „by its charge-conjugation phase qc.
The values of gc for the various quantities are given in
Table II of Ref. 2. For the present purpose, it suKces to
know that for the particular form of I „' given in Eq. (3.1),
I „ is obtained simply by making the replacement

y I.~—y R. Noting that, as a consequence of the local
limit M~~ ~, the form factors F; depend only on q and
not on k, k' separately, it is trivial to see that

F, ( —k', —k, v )=F;(k,k', v ), (3.6)

P
DM 26

The discussion so far has implicitly assumed that we
are treating the case of Dirac neutrinos. In particular,
Eq. (3.1) holds only if the neutrinos are Dirac particles.
For Majorana neutrinos we have to add the contribution
from diagrams similar to those of Fig. 1, but with the
external neutrino lines crossed. Such diagrams would
contribute to the process v~vy for Dirac neutrinos, but
for Majorana neutrinos they contribute to the same pro-
cess. The net result is that

I ' =[F,g y +F2v 8+iF3(y v~ —y v„)q"

+iF4e„&y q v ~]L, (3.1)

so that Eq. (3.5) yields

I „"'""'=—tF,g„y +F2V„Q+iF3(y„v yv„)q—
where + iF4epvapy q v ly 5 (3.7)
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Therefore, in particular,

D & Majorana — i
( ~ cZ"

(3.8)

to include the efFects of the neutral currents of the stan-
dard model. Here we show how the rate for this process
can be deduced straightforwardly from our results.

The amplitude for the process

~ ~ Majorana y, (q }~v(k'}v(k ) (4.1)

These results illustrate very simply some of the con-
clusions of Ref. 2. For example, if the chemical potential
p of the electron background is zero, then f =f+ and
therefore, from Eq. (2.25), T~ =0, which in turn implies
that DM=O for both Dirac and Majorana neutrinos.
This result is a consequence of CP invariance, as can be
deduced by referring to Eq. (lid) of Ref. 2. Since the La-
grangian is CP invariant and, for p=O, the background is
CP symmetric, D~ must satisfy

DM( —k', —k, u }=—DM(k, k', u ), (3.9)

Hermiticity: Dz*(k', k, u ) =Dz(k, k', u ),
T symmetry: Dz'(k, k', u)= —Dz(k, k', u) .

(3.10)

Again, these relations should hold for Dirac as well as
Majorana neutrinos. The second equation in (3.10) im-
plies that DE is purely imaginary while the first equation
then implies that DE must change sign under the substi-
tution q —+ —q, or equivalently, that DE is an odd func-
tion of 0 and therefore must vanish when Q=O. Since
the zero-momentum limit of DE gives the rnatter-induced
electric dipole moment, it is zero within our approxima-
tions.

IV. APPLICATIQNS

Apart from illustrating some of the general aspects
considered in Ref. 2, the results of the present work can
be useful in various contexts. In this section we consider
two possible applications.

A. Plasinon decay

The process y &

—+vv, where y &
represents a photon

mode propagating through a plasma, is an important pro-
cess in the cooling mechanism of white dwarfs. The rate
for this process was calculated many years ago in the
context of a local V—A theory and was later corrected

independently of whether the neutrino is of the Dirac or
Majorana type. Since in our case D~ is a function only
of q =k —k', Eq. (3.9) implies that it is zero. However,
when f Af+, we have CP as well as CPT asymmetries
in the medium, and therefore DM is nonzero in general.

As another example, consider the static limit (Q —+0)
of Dz. It will be shown in the Appendix that V'r I have
well-defined limits as Q~O. Thus, Eqs. (3.4) and (3.8)
imply that DE =0 as Q=O for both Dirac and Majorana
neutrinos. This result can be understood in terms of
time-reversal invariance as follows.

Consider the restrictions on DE due to the Hermiticity
of the Lagrangian and time-reversal (T) symmetry, both
of which hold in our case. Equations (1 lb) and (13) of
Ref. 2 imply the following relations for DE.

is given by

iM = i +—N ie "(qA )u (k')A„u(k ),
where

(4.2)

A„=I „'( —k, k', u) (4.3)

and QN i is the normalization factor that is associated
with photons in external lines and e" is the polarization
vector. Since, in the local limit (Mii, ~ ao ), I „' depends
only on q and not on k and k' separately, we can write

A„=(V'TR„, + V'L Q„„—'TpP„„)y'L, (4.4)

where the tensors R„„,Q„„,and P„„are defined in Eq.
(2.18). In writing Eq. (4.4), it was also necessary to use
the facts that V'rL ~ are even functions of q, as Eqs.
(2.24) and (2.25) show. In Eq. (4.3) we are dropping the
background-independent part since it is of order
(q ) /Minim and hence a factor -q jm smaller than
the background-dependent term, m being the electron
mass.

To proceed we borrow the following result from Ref. 8.
It was shown there that the tensors R„„,Q„, and P„„
have the following representations in terms of the polar-
ization vectors with definite helicity:

R„,= —[e„(q+)e,(q+)+ez(q —)e (q —)],
Q„=—e„(q3)e,(q3),
P„=e„'(q+)e,(q+) —e„*(q—)e,(q —) .

From this we obtain

(4.5)

N63 l

(2n ) Q63

Here J„ is the kinematic integral

(4.8)

e"( Aq, ) A„=(V T A, 'Tp)e„(qk, )y—'L for A, =+ or —,
(4.6)

e"(q3)A„=V'I e (q3)y'L,

which simplify the calculations enormously.
The decay rate, in the rest frame of the medium, is

given by
3 3k

dl = (2n} 5 (q k k )IMI'
2Qei (2m) 2' (2m) 2co'

(4.7)
where q"=(Qai, e} with Qei representing the photon
energy in the rest frame of the medium. Below we give
the details only for the case of longitudinally polarized
plasmons, since the calculation is very similar for the oth-
er polarization states.

Substituting Eq. (4.6) in Eq. (4.2) and carrying out the
traces involved in lM l, we obtain
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X(k k' +k k„' —k k'g„)
2

which gives

&63I&L, I'
' 6'r, = 1

224m +263

(4.9)

(4.10)

vector current when the factor Q/m is not necessarily
small, represented by the presence of V'~ in Eq. (4.16).

Apart from its ability to reproduce known results for

&pi decay, our model of calculation provides an efficient
way to include corrections to these results, such as the
contribution from more diagrams involving the exchange
of other particles that are predicted by extensions of the
standard model.

B. Neutrino index of refraction in matter in the presence
of a magnetic field

Then, recalling from Ref. 8, the formula

2063

a
(q el )

' Q= 063

we finally obtain

afl
12m

(4. 1 1)

(4.12)

As first shown by Wolfenstein, ' neutrinos propagating
through matter have an index of refraction. Thus, the
dispersion relation for neutrinos in a medium differ from
the one in vacuum, viz. , E = lpl, for massless neutrinos.
Recently, it has been shown how the dispersion relation,
and equivalently the index of refraction, can be obtained
from the calculation ef the neutrino self-energy using co-
variant techniques of finite-temperature field theory. "'
The method used in Refs. 11 and 12, coupled with the re-
sults of the present work, provide a simple and efficient
way to calculate the correction to the index of refraction
due to an external magnetic field, as we will show now.

where we have used the fact that 063 is the solution to
ei(063, ) =0.

To compare this with the old result of the V—3
theory, we use the approximate result of Eq. (A21) for
'Tz and, on the other hand, recall that el is given simply
by

However, before presenting the details of the calcula-
tion we should stress the following. The possibility that
neutrinos may have electromagnetic dipole moment in-
teractions, which change left-handed neutrino into right-
handed ones, can have important consequences in the
context of the solar-neutrino puzzle. ' ' Moreover, the

4e coo
ei(0, 6)= 1—

where coo is defined in Eq. (A19). Thus

063=4e ~0,2 = 2 2

and therefore

(063—6 ) G~

(4.13)

(4.14)

(4.15)

combined effect of matter density and magnetic fields on
neutrino flavor oscillations and spin precession has been
studied. ' ' However, the existence of such chirality flip-
ping interactions require either (a) neutrino masses, (b)
right-handed neutrinos, or (c) lepton-number violation so
that, for example, transitions of the form v,t ~v„'~ can
occur. Further, none of these ingredients is contained in
the standard model with just one Higgs doublet, and
therefore require that it be enlarged.

On the contrary, the effect that we discuss here is quite
c3E1

24~ a
BQ

which is the known result.
For completeness, we give the formula for the decay

rate of the transverse modes as well. Following steps
analogous to those leading to Eq. (4.10), we obtain, for
the transverse modes,

noel vT x7pl'
' 62—r=

24m
1—

6A,N
6A,

different. In particular, it does not require any of the in-
gredients mentioned above. The new form factors that
we calculate preserve flavor and chirality, and are present
even in the standard model with massless left-handed
neutrinos. These new terms arise because of the interac-
tion of the neutrino with the particles in the background.
In the presence of an external magnetic field the new
terms, instead of inducing flavor or spin transitions, con-
tribute to the neutrino index of refraction and can modify
the Wolfenstein resonance condition' for neutrino oscil-
lation in matter.

I et us consider the scattering of a neutrino by an exter-

for A, =+ or —. (4.16) nal electromagnetic field. If we define the Fourier trans-
form of the external potential by

The 'Tz term in this equation comes from the axial-
vector current, and is usually neglected in the standard
calculations. This is justified by the fact that V~ is a fac-
tor of 6/m smaller than TT, as can easily be deduced
from Eq. (2.24) with the help of the formulas in Eqs.
(2.27) and (2.29). Nevertheless, as a by-product of our
calculation, we obtain the correction from the axial-

g ext( )
0 g ( )

—iqxd
P (2 )4 P (4.17)

St „~= iI „(k,k', U)—A "(k' k) . — (4.18)

then the contribution to the off-shell v-v S-matrix ele-
ment is
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B =—F U= —'e pUFp (4.19)

so that in the rest frame of the medium, B)'=(0,B).
Thus, Eq. (4.18) gives

S(„)= iF4y"LB—„(k'—k) .

Taking a uniform magnetic field implies that

B (k' —k)=(2m) 5 (k' —k)B„'"',

(4.20)

(4.21)

where B„'"' is the magnetic field in coordinate space.
Therefore, we Gnally arrive at

S(„)= —iF„(2m) 5 (k' —k)y"LB'„"' . (4.22)

Thus, in the presence of the external magnetic field, the
neutrino acquires an additional contribution to its self-
energy that depends on the field. Identifying the self-
energy as usual by X, defined by

S( )
=—iRXL, , (4.23)

We now restrict ourselves to a static field. In addition,
we assume that the Geld is uniform in space. The
justification for the latter assumption is that we are work-
ing in a region of space that is microscopically large but
macroscopically small, and therefore the external field is
approximately constant over the region. The macroscop-
ic dependence of the external field on x can be restored at
the end of our calculation.

For a static and uniform field, only the F4 term in Eq.
(3.1) contributes for I „'. This can be seen as follows. In
the static limit F3 =0 as Eq. (3.2) shows, since 'TT L are
finite in that limit. The F2 term in the static limit con-
tains a factor U A, which is zero for an external magnetic
field. On the other hand, by taking the Q —+0 limit of F,
in Eq. (3.2) and using the result that VT(0, 6)=O(6 ), it
is easy to see that the F( term has a factor Q A, which
is zero for a uniform field as well. To rewrite the F4 term
in a convenient way, we can define

b=(n —n+ )X '

2
g2 gZ+, az for

~z
2

gz
az for vAv, .

Mz

(4.27)

As for c, remembering Eq. (3.2) and using Eqs. (2.24) and
(2.29), we obtain

c=2e f (f f+—)
(2~)'2E d&

2
g2 gz

4M M
b for v

w z
2

gz
bz for vWv, .

Mz

(4.28)

which in turn implies

ck-8'"' —b
(4.31)

As an example, consider the nonrelativistic and nonde-
generate limit of the electron gas. In this case, n+ =0 in
the expression for b in Eq. (4.27). Then, using Eqs. (A4)
and (Al 1), we can simplify Eq. (4.28) as

The most significant feature of Eq. (4.26) is that, for neu-
trinos moving in different directions in space, one obtains
different dispersion relations and therefore different
speeds. Equivalently, the index of refraction, defined by

(4.29)
COk

is not isotropic. This is caused by the direction of the
external magnetic field.

For weak fields, Eq. (4.26) yields

a)„=IkI ck—B'"'+b (4.30)

X=ak'+ br(+ cg '"', (4.24)

where the coefticients a and b have been calculated previ-
ously"' and

the complete self-energy in the medium iri the presence of
an external magnetic field can be written as

2
gz

bz for
Mz4M~

c= p~Pn X '—
gz

bz for vive ~

Mz

(4.32)

c=F~(Q=O, 6—+0) . (4.25)
where p~ is the Bohr magneton, e/(2m). Thus, Eq.
(4.30) yields in this case

cok = Ik —cB'"'I+b, (4.26)

In Refs. 11 and 12, it has been shown that, with B„'"'=0,
Eq. (4.24) can be used to determine the dispersion rela-
tion satisfied by neutrinos propagating through the medi-
um. Further, it was shown that this method reproduces
the Wolfenstein formula for the index of refraction. Bor-
rowing from Refs. 11 and 12 the general procedure and
the result that a =0, the dispersion relation for the
present case is found to be

a)k = IkI+b(1+@&Prk B'"'), .

where

1 (4gzMw )bz/(g 2Mz~ )

1+(4gzMw )a, /(g Mz )

bz
for vXv, .

az

(4.33)

(4.34)

where now all the quantities refer to the rest frame of the
medium. Here,

The relative importance of the matter-density effects and
the magnetic-Geld effects thus depend on the magnitude
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of (Mi)prlBI Since the magnetic field in the Sun is at
most a few tenths of a tesla and the core temperature is of
order 1 keV, we obtain p~prlBl —10, using r —1 from
Eq. (4.34}and(M2) =5.8X10 "MeV/T.

Although the application of these results to the solar
neutrinos appears to be of no consequences, their possible
application in other physical contexts remains an open
question and their implications should be kept in mind.

V. CONCLUSIONS

In the present work we have carried out an explicit cal-
culation of the neutrino electromagnetic vertex in a back-
ground of electrons. We have been motivated in part by
our desire to provide examples of some of the results ob-
tained in Ref. 2. However, our calculations also have
some practical applications. We have illustrated this by
rederiving in a simple manner the standard formulas for
the decay rate of plasmons into neutrinos. Those calcula-
tions serve to show the way how to calculate other, simi-

lar decay processes in a medium. We have also deter-
mined the index of refraction of neutrinos propagating in
matter in the presence of a magnetic field. Although the
application of this to the solar-neutrino puzzle seems to
be uninteresting, their possible implication in other con-
texts deserve further attention. Some of these issues are
currently under study.

c(o,6)=, g (-,'6)'"f, (f f—+)
16m' )v —()

X f d(cos8) 2++2
i

—1 os2%+2g

2)V

C(0,6)=— ( ( 6)2)v
P(p —m )

g~2 ~ 0 2(2%+1)
1 /2 —N

X I (-,' —X) .

%'e can easily eliminate the explicit dependence on the
chemical potential by invoking the expression for the
number density of electrons. Using Eq. (2.14) with the
nonrelativistic limit in Eq. (A4), we obtain

3/2

P(P —~)m I (3) (A6)
2%2

where g is the angle between the three-vectors P and 6.
In the nonrelativistic and classical limit, we can put

f =O and f =e-P("-~),

where I=m+8 /2m. The integrals in Eq. (A3) can
then be evaluated to give
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APPENDIX: CALCULATIONAL DETAILS

Here we give expressions for the functions 3, 8, and
C, defined in Eq. (2.25), in various limiting cases. Since
these functions are scalars, we can choose to do the in-

tegrals in the rest frame of the medium, defined by
U"=(1,0). In this frame, the components of the four-
vectors q" and p" are denoted as in Eq. (2.26).

so that finally

pn

S ~, (2++1)!!

N

4m

where

X[6,f(p+ —,'q) b,f(p —
—,'q)], (—AS)

There is another way to expand the integrand in Eq.
(A2) which brings out the leading term of C(0, 6) more
elegantly. For this, change the integration variable

p —+p+ —,'q in the first term of Eq. (A2) and p ~p —
—,'q in

the other. This gives

c(o,6)=—,'f "'-,—,'(2' )

1. Static limit ~f(p') =f (p' } f+ (p ) ~— (A9)

We consider first the static limit, i.e.,

Q=O .

This time, while making the expansion of the integrand,
we remember that f+ depend on 'P only through 8, so
that we obtain

1 d P
C(0, 6)=—f (f —f+ )

(2m )

1

2P.6—6
l

2P.6+6 (A2)

In this limit, the expression for C in Eq. (2.25) reduces to d P
C(0, 6}=—f —

3 (f f+ )+O(6 ) . (Alo)—
2 (2n-)'2(, d

Performing integration by parts, this result can easily be
seen to coincide with that of Eq. (A3). Furthermore, for
a classical and nonrelativistic electron gas, Eq. (A4) im-

plies

For small 6, one can easily expand the function within
the large parentheses as a power series in 6. This yields

df
d@

= Pf— (A11)
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so that we immediately obtain

n
C(O, Q)=-

8m
+O(Q ), (A12)

which is the same as the leading term of Eq. (A7).
Formulas for the other functions, A and B, are ob-

tained in similar fashion. Omitting the intermediate
steps, the results are

6 —QP Q/Q' —1 2(P Q)'
2 2

1
q

—4(p q) 46Q v Q
(A16)

In the integral we can replace P'P~ —+ —,'P 5'~, so that final-

ly we get

The denominator in the large parentheses is now expand-
ed for Q~0. We will assume also that Q && b. Omitting
the terms linear in P, which integrate to zero, we obtain

d3
A(O, Q)=B(O, Q)= —I (f +f+)+O(Q ) .

(2ir)' d@
1 d P

C(Q, O)= ——I (2m. ) 28
f f—+— 2P21—

3A'

(A13)
( for Q « 6 ) . (A17)

It must be remarked that the O(Q ) terms are difFerent
for A and B. In particular, this result implies that
TT(0, Q ) vanishes as Q ~0.

Again, as an example, consider the classical and non-
relativistic gas. Then

Carrying out similar steps for A and B we obtain

8(Q Q)~6 o=Q n~(~)/Q

where

(A18)

n
A(O, Q)=8(O, Q)= — +O(Q ) .

2. Long-wavelength limit

(A14)

and

P P'
neo:—f 3 (f +f+) 1—

(2m ) 26 382

A (.Q Q) ~6 o=B(Q, Q) ~6 o 3coo

(A19)

(A20)

The long-wavelength limit is defined by taking Q~O
keeping Q fixed. In order to evaluate A, 8, and C in this
limit we first combine the denominators that appear in
Eq. (2.25). Let us consider C to start with:

13 6"—Q
C(Q, Q)= I (f —f+)2q

(2m. ) 2C q
—4(p q)z

(A15)

2 2 2 6 2~ii) eg neo q, GF q
M Q &2Q (A21)

which is the result used to obtain Eq. (4.15) from Eq.
(4.12).

In particular, using U = —Q /q and substituting the re-
sult for 8 into Eq. (2.24), we obtain, with the substitu-
tions of Eq. (2.10),
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