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Lower bounds on the constituent-quark mass differences
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Using a potential-model approximation to quantum chromodynamics and the masses of ground-
state mesons and baryons as input, we obtain lower bounds on the constituent-quark mass
di6'erences. We find md —m„) 4. 1+0.3 MeV, m, —m ) 184+4 MeV, m, —m, ) 1180+4 MeV, and
mb —m, )3343+4 MeV, where m is the average mass of the u and d quarks.

In the absence of free quarks, quark masses cannot be
directly measured but must be inferred from the proper-
ties of hadrons. At least three kinds of quark masses
have been discussed in the literature: current-quark
masses, invariant quark masses, and constituent-quark
masses. In this paper we concentrate our attention on
the constituent-quark masses. Current-quark masses
have been reviewed by Gasser and Leutwyler' and invari-
ant quark masses by Narison.

The constituent quark masses are most appropriate for
calculating the static properties of hadrons in an approxi-
mation to QCD which considers only valence quarks as
constituents. In this approach, the contributions of
gluons and quarks of the sea are ignored. We cannot be-
gin to quote the many papers which use constituent-
quark masses as a basis for calculation, but simply call at-
tention to a review which discusses this subject among
others.

We assume at the outset that the five known quarks are
ordered from lightest to heaviest: u, d, s, c, and b.
Then, using rather general considerations, we show in
this paper that the constituent-quark mass differences in
MeV satisfy the lower bounds

md —m„&4. 1+0.3, m, —m & 184+4,

m, —m, & 1180+4, mb —m, & 3343+4,

where m =(m„+md )/2.
We discuss the quark masses within the framework of a

potential-model approach, as this approach has proved
most successful in enabling people to calculate the energy
spectrum of hadrons. Unfortunately, the constituent-
quark masses are not very well determined in potential
models. This is because one can change the mass of a
quark by a substantial amount without spoiling the agree-
ment with experiment if one makes compensating
changes in the parameters of the potential. One can get
around this diSculty by considering the mass differences
of the quarks. Provided the potential is flavor indepen-
dent, the quark mass differences are much more stable
than the quark masses themselves. For this reason, we
emphasize mass differences here.

Although we use the potential-model approach, we do
not need to consider any particular functional form for
the potential. However, we need to assume that the
Hamiltonian for the quark-antiquark or three-quark sys-
tern satisfies certain properties. In particular, we divide
the Hamiltonian into a sum of three terms:

H =Ho+H) +H2,
where Ho includes the rest energy, the kinetic energy,
and that part of the strong interaction which is indepen-
dent of spin variables, H& includes the spin-dependent
part of the strong interaction in the Fermi-Breit approxi-
mation, and H2 includes the electromagnetic interactions
of the quarks. %'e treat H, and H2 as first-order pertur-
bations.

Because of the Feynman-Hellmann theorem, if Ho is
the Hamiltonian of the nonrelativistic Schrodinger equa-
tion with a flavor-independent potential, then, as the
mass of any of the constituent quarks increases, the ener-
gy eigenvalues Eo„(excluding the rest energy) of Ho de-
crease. This fact was shown in a review of Quigg and
Rosner. Subsequent applications to quarkonium were
given by Bertlmann and Ono and Bertlmann and Mar-
tin.

We now point out that we can apply the Feynman-
Hellmann theorem to a much larger class of Hamiltoni-
ans Ho, including many-body Hamiltonians and a num-
ber of relativistic Hamiltonians. For example, if we apply
the Feynman-Hellmann theorem to the two- or three-
particle spinless Salpeter equation, we can show that if
the potential is flavor independent, the eigenvalues Eo„
will decrease as any quark mass increases. We omit the
proof, which is straightforward.

Because of the wide applicability of the Feynman-
Hellmann theorem, it is plausible to assume that if the
potential is flavor independent, then Ho has the property
such that Eo„decreases as any quark mass increases.
How realistic is the assumption that the potential in Ho is
independent of quark flavor? At small distances between
two quarks (or a quark-antiquark pair), the spin-
independent potential is Coulomb type, with a running
coupling strength a, which depends on the square of the
four-momentum transfer Q . If u, is considered a func-
tion of Q, the potential depends upon the scale, and
therefore on flavor through the quark masses. However,
we can circumvent this problem by considering the
Fourier transform of a, which is a function of the dis-
tance r between two quarks or a quark-antiquark pair.
Then at small distances, according to QCD perturbation
theory, the potential can be written V(r)=ca, (r)/r,
where c = ——", for mesons and ——', for baryons. This ex-
pression is flavor independent, as emphasized in a recent
review. It is usually assumed, partly from lattice QCD
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M= g m;+Eo+E, +E~, (3)

and partly on phenomenological grounds, that the
confining part of the potential is also independent of
flavor.

In the Fermi-Breit approximation to the QCD interac-
tion, there exist flavor-dependent terms which are in-
dependent of spin. There is some controversy over the
nature of these terms, and, furthermore, there is little or
no empirical evidence for their existence. In QED, the
spin-independent Fermi-Breit contribution vanishes in
the ground state. We shall con6ne our considerations to
ground-state hadrons, and hope that the Fermi-Breit
spin-independent contribution arising in QCD also van-
ishes, or at least is very small. In any case, we shall
neglect any flavor-dependence in the potential in Ho.

On the other hand, the interactions H, and H2 explic-
itly depend on flavor through the quark masses, and we
do not neglect this flavor dependence. Furthermore, we
also take into account an implicit flavor dependence in
the expectation values of H, and H2, using the fact that
the flavor-independent potential is concave downward. '

In the groun, d state, only the color hyper6ne interac-
tion contributes to the expectation value of H &. In order
to obtain a reliable estimate for this expectation value, we
need to examine the properties of the QCD potential un-
der Lorentz transformations. The one-gluon-exchange
contribution, which is Coulomb-type, is known to trans-
form like the time component of a vector. Also, for
baryons, this part of the potential is a sum of two-body
potentials. On the other hand, the confining part of the
potential is believed to transform like a Lorentz scalar.
If so, it does not contribute to the hyperfine interaction.

In a previous paper, " we used the above framework
(except that we did not have the proofs based on the
Feynman-Hellmann theorem) to obtain inequalities
among the masses of ground-state baryons and mesons.
In all cases in which these inequalities could be compared
with experiment, they turned out to be in agreement with
the data. This fact gives us confidence that our assump-
tions are reasonable. In this paper, we turn the argu-
ments around to obtain inequalities among the quark
mass differences. These inequalities turn out to be lower
bounds.

Within our framework, the mass of a ground-state had-
ron containing quarks with masses m; is

the potential between quarks i and j which transforms
like the time component of a four-vector.

We now introduce a more explicit notation. For a
meson, we let the eigenvalue of Ho be m; +m +E; to
show that the energy depends on the flavors of the quark
it contains. We also define

R,~=(V V(r, )/(.6m;m ),
C;J. =a(1/r; )/3,
3;~.=2ira(5(r; ))/(9m;m ) .

(6)

R, . k=(V V(r;, ))/(6m;mj ),
C, k =o.(1/r, )/3,
3," i, =2~a(5(r,"))/(9m;m ) .

By writing the subscript k on R,j k, C,j ~, and 3,, &, we
have noted explicitly that the matrix elements of a two-
quark operator depends on the third or spectator quark
through its dependence on the baryon wave function. '

We can now write the expression for the mass of any
meson or baryon in terms of the quantities we have
defined above. For the K mesons we obtain (in a notation
that the symbol for a hadron denotes its mass)

K+ =m„+m, +E„,—3R„,+2C, /3+ 22~, ,

K =md+m, +Ed, 3Rd, C, /3 ——3, , —

K p +ms +Eps + ps + Cqs / 2qs /

md ™s +Eds + ds Cqs + ~qs

Because of the Feynman-Hellmann theorem, if the mass
of quark i or j increases, E," decreases. The quantities
C;, 3;, and R; are all positive definite. " Furthermore,
if the mass of quark i or j increases, C, will increase, but
3;. and R; will decrease. " Briefly, the contraction of
the wave function with increasing quark mass causes the
expectation value of 1/r; to increase, while the explicit
mass dependence of 3; and R; causes them to decrease
(except possibly for very heavy quarks such as the t
quark).

For a baryon, we let the eigenvalue of Ho be
m, +m j +mk +EIjk We define the positive-definite
quantities

where g;m;+ED is the lowest eigenvalue of Ho, and E,
and E2 are the expectation values of H

&
and H2, respec-

tively.
The energies E& and E2 are given by

(4)

E2= g Q, Q [(1/r, ) —2m(5(r,"))o; o /(3m", m )], (5)

where the symbol q stands for either a u or d quark, and
we have neglected the mass difference between the u and
d in C," and 2;., since these are electromagnetic quanti-
ties and are already very small.

We can obtain the following expression from Eq. (8):

md —m„=(3K* —3K*++K K+ )/4+E„, Ed, + Cq,—. —

(9)

where 0.; and o. are the Pauli spin matrices for the ith
and jth quarks, Q, and Q are their charges, and r," is the
distance between them. In Eq. (4), V(r, )is the part of"md —m„) (3K' —3K* +Ko —K+ )/4 . (10)

Because md )m„, we have Ed, & E„,. Also, C, )0. It
then follows from Eq. (9) that
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Using the experimental masses from the Particle Data
Group' in the inequality (10), we obtain a lower bound
for the d-u mass difference:

m, —m =(3K*+K—3p qr) l4+—E E, , —

m, —m, =(3D*+D—3K*—K)I4+E, Eq, , —

mb m =(3B +B 3D D)l4+E b Eq

But from the Feynman-Hellmann theorem, we have

Eqq Eqs )Eqc )Eqb

(13)

(14)

Using the inequalities (14) in Eq. (13) and the meson
masses from the Particle Data Group, ' we obtain the fol-
lowing lower bounds on the quark mass differences in
MeV.

m, —m ) 183+4,

m, —m, ) 1180+4,

mb —m, )3343+4,

(15)

where the errors of 4 MeV come from our neglect of iso-
spin violations.

We next turn to the baryons. Using the same approxi-
mations as those employed in obtaining Eq. (12), we can
obtain expressions for baryon masses. Several useful for-
mulas ale

%=3m +E —3R

A=2m+m, +E,—3R

X=2m+m, +E,+R,—4R,
3m +Eqqq +3R

qq q

X*=2m +m, +E,+R,+2R,
Using Eq. (16), we obtain

(16)

m, —m =(2X*+X+A 2X 2b )14+E —E—, . (17)—
Then, using Eqqq )Eqqz and the baryon masses from the
Particle Data Group, we obtain the lower bound

m, —m ) 184+4 MeV,

md —m„) 4. 1+0.3 MeV,

where the error is experimental.
In obtaining the remaining bounds on quark mass

differences, we shall use the symbol q for either the u or d
quark, m for the average mass of these two quarks, and
neglect all effects which violate isospin conservation. We
estimate that this approximation will introduce an error
of at most 4 MeV into our results. We obtain the follow-
ing useful expressions for meson masses:

7T 2m +Eqq 3Rqq 7 p 2m +Eqq +Rqq

D =m +m, +E,—3Rq„D *=m +m, +Eq, +Rq, , (12)

B=™~mb+Eqb —3Rqb, B —m+mb+Eqb+
q

Using Eqs. (8) and (12), we obtain the following expres-
sions for quark mass differences:

in good agreement with the bound in (15).
We have not been able to find other useful bounds from

the baryons, owing either to the absence of experimental
knowledge of certain baryon masses or the fact the lower
bounds are lower than the bounds we were able to obtain
from the mesons. For example, we have been able to ob-
tain the lower bound

rn, —m, )A, —A = 1169+4 MeV, (19)

but this is not as good as the bound given in (15).
Although most authors who obtain quark masses do

not compare their results with those of other authors, we
shall make a few selected comparisons. Some time ago,
Lipkin' obtained the forn1ula

m, —m„=A —p =178 MeV. (20)

In our formalism, which takes into account effects
neglected by Lipkin, we do not get Lipkin's result, but
rather the inequality (18), which contradicts Eq. (20), al-
though only by 8+4 MeV. In obtaining this number, we
have used (11) as well as (18).

Bertlmann and Ono obtain the following quark masses
in MeV:

m =310, m, =620, m, =1910, mb =5270,

values which satisfy our lower bounds. Godfrey and
Isgur, ' in a detailed analysis of meson spectra, find the
following values of the quark mass differences in MeV
(with m =220):

md —m„=8, m, —m =199,

m, —m, =1209, mb —m, =3349,
(21)

m„* =5.6+1.1, md ——9.9+1.1, m,' = 199+33,

m, = 1350+50, m„* =5000,
(22)

based on work by Dominguez and de Rafael' and Gasser
and Leutwyler. ' These masses lead to mass difFerences
which agree with our bounds in (1) within the errors.
Also Narison' Ands

m„*=5.2+0.5, md =9.2+0.5, m,*=159.5+8.8,
(23)

m,*= 1400+60, mb =5870+60,

all in agreement with our bounds. Furthermore, Cap-
stick and Isgur' are able to obtain a good description of
the baryon spectrum using the same quark masses as in
the meson case (neglecting isospin violations). On the
other hand, Thakur' finds m, —m =175 MeV, in agree-
ment with Lipkin.

We do not know of any good reason why current- or
invariant quark mass differences should be the same as
constituent-quark differences. Nevertheless, we give a
few comparisons. We use the notation that m, * is the
running current-quark mass evaluated at a momentum
transfer of 1 GeV and rn; is the invariant quark mass.
The Particle Data Group' gives, as its best estimates of
the current-quark masses (in MeV),
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m„=8.7+0.8, md = 15.4+0.8, m, =266.7+14.7,
(24)

m, = 1920+180, mb =7890+90 .

We see that in Eqs. (23) and (24) only m,*—m* fails to
satisfy our lower bound.

In conclusion, using rather general considerations, we
have been able to obtain lower bounds on the constituent
quark mass differences. Although in some models these

bounds are violated, we believe that one can obtain a con-
sistent picture of the static properties of hadrons with
quark masses which satisfy our bounds. As an example,
Isgur and collaborators' ' have obtained quite good re-
sults for the properties of hadrons, using as input constit-
uent quark masses which satisfy our lower bounds.
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