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Hyperfine-interaction meson spectroscopy and the linkage
between contituent-, dynamical-, and current-quark masses
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SU(3)~ current-quark masses and the dynamical-quark mass characterizing the chiral noninvari-
ance of the @CD vacuum are related to hyperfine-interaction constituent-quark mass expressions
for SU(3)I mesons.

Since quarks are nonasymptotic states confined to live
within colorless hadrons, there is a great deal of ambigui-
ty associated with assigning them masses. In this paper
we endeavor to develop the phenomenological connection
between the constituent-quark masses associated with
hadron spectroscopy and static hadron properties, the
dynamical-quark mass characterizing the chiral nonin-
variance of the QCD vacuum, and the current-quark
masses associated with current divergences and higher-
momentum-transfer physics.

The nonrelativistic (valence-) quark model (NRQM)
approach to baryon spectroscopy, ' in which the
ground-state baryon masses are the sum of all
constituent-quark masses and quark-quark hyperfine-
interaction terms,

mbaryon 1 ™2™3
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succeeds in fitting the eight SU(2) baryon-multiplet
masses (lil', A, X, :-,b„X,:-*,0) within 5% provided

m„=md =363 MeV,

m, =538 MeV,

8 =(298 MeV) .

The corresponding NRQM approach to SU(3)&-
nonsinglet mesons is astonishingly successful, despite the
fact that this approach is in apparent contradiction to a
chiral-symmetry realization of the pion. As in Eq. (1),
the meson mass is assumed to include a hyperfipe interac-
tion term in addition to the sum of constituent-quark
masses:

m =m„d =306.2 MeV,

m, =487.9 MeU,

M =5.932 X 10 MeV = (390.0 MeV )

(4)

These values succeed extremely well (Table I) in fitting
the masses of the (nonisoscalar) SU(3)-meson isospin mul-
tiplets. Moreover, application of (3) and (4) to the co tti-
system in the ideal mixing limit (P =ss ) yields
rn ( =m ) =771 MeV and m

&
= 1038 MeV, values within

2% of physical. The hyperfine-interaction term in (3) is
also useful in charmed-meson spectroscopy, serving to
correlate the sizes of (F* I') and (—D* D) relativ—e to
(K' —K) and (p —m. ) mass differences. The phenomeno-
logical consistency of (3) is further supported by the ap-
proximate agreement between the constituent masses in
the baryonic (2) and mesonic (4) fits, as well as the rough
agreement with the M/8 =2 prediction of the color
SU(3) for the relative strengths of qq and qq hyperfine-
interaction couplings.

Of course, the empirical successes of (3) in relating the
pion mass to the masses of heavier mesons are somewhat
embarrassing. The nonrelativistic addition of constituent
masses in (3) would appear inappropriate for generating a
light (m —138 MeV) bound state from much heavier
constituents (rn -mt'/3). Moreover, (3) contains no in-

formation about chiral symmetry; a naive application of
(3) would have the pion mass grow as rn decreases, in ap-
parent contradiction to our understanding of the pion as
the Nambu-Goldstone particle of broken SU(2)I chiral
symmetry. Such breakdown (more carefully considered)
may be characterized as explicit, through the introduc-
tion of small quark masses in the QCD Lagrangian, or
dynamical, through the chiral noninvariance of the QCD

qSq S-
m ~eso mq +mq +~

mqm
(3)

TABLE I. Comparison of physical, isomultiplet-averaged
masses of SU(3)&-nonsinglet mesons with masses predicted from
Eq. (3) using the three parameter values of Eq. (4).

Since s -s = —
—,
' for spin-0 mesons and +—,

' for spin-1
mesons, the hyperfine interaction provides a means for
obtaining a pion mass substantially lighter than its u and
d constituents. If we assume equal constituent values for
rn„and md, a least-squares fit of (3) to m', K, p, and K*
isospin-multiplet masses is obtained using

Physical

138
496
770
894

Eq. (3)

137.8
496.3
770.6
893.4
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vacuum. The quark masses characterizing chiral-
symmetry breakdown in the former case are known to be
quite small compared to those in (2) or (4). By contrast,
chiral noninvariance of the QCD vacuum allows the oc-
currence of a chiral-noninvariant vacuum expectation
value (ol:q(x)q(y):Io), whose contribution to the fer-
mion two-point function leads to a "dynamical mass"
quite comparable to m in (2) and (4). In the absence of
explicit chiral-symmetry breaking (i.e., mass terms in the
QCD Lagrangian), dynamical-symmetry breaking
through the chiral-noninvariant QCD vacuum necessari-
ly would lead to a zero mass pion. The only way to
reconcile (3) to this boundary condition is to identify the
dynamical quark mass with the zero-pion-mass limit of
the constituent mass m:

lim (m )=2md„„—3M/4md „=0,
m md yn

in which case

md@„=(3M/8)' =281 MeV . (6)

This phenomenological estimate is quite comparable
to the theoretical value generated through
(ol:q(x)q(y): lo &:

m dyn

4m.a, ( 1 GeV )
&qq)t G v

=290—320 MeV (7)

l 8' 2 — pg ~gp5/ g ~

iB 3 +' = —(m, +m),„,dyes .

The masses in (8) necessarily vanish in the 8 A =0 limit
of Lagrangian chiral symmetry, thereby suggesting the
identification of current-algebra masses in (8) with La-
grangian quark masses. However, there are phenomeno-
logical reasons' for believing that the scale of the

in which a, (1 GeV) is taken to be 0.5, constituent with
the relative widths of strangeonium P and charmonium P
(Refs. 1 and 9) and,

I&qq &„I—:I&olq(o)q(o):lo& I

- (225-25o Mev)',
@~1Gev

consistent with QCD sum-rule phenomenology. '

The passage from a dynamical-quark mass (6) to the
meson isodoublet constituent-quark mass (4) is linked to
the existence of nonzero quark mass terms in the QCD
Lagrangian. Such terms, which necessarily break the
chiral symmetry of the QCD Lagrangian, prevent the
pion from being a true Nambu-Goldstone state, except in
the limit that such terms vanish. Since the pion is sub-
stantially lighter than any other hadron, such terms are
clearly quite small compared to constituent-quark
masses; lattice simulations of QCD obtain up and down
Lagrangian quark masses of order 10 MeV in the limit in
which the strong interactions are turned off entirely. "

Similarly, the SU(3)f current-quark masses, as comput-
ed via Heisenberg equations of motion, satisfy the
current-divergence quark operator equations

current-algebra iso doublet quark masses is of order
m /2, in contrast with the much smaller values for La-
grangian quark masses obtained from lattice simulations.
To reconcile these scales, it has been argued elsewhere'
that chir al-symmetric condens ates, such as the
dimension-4 gluon condensate (F"'F„,) can enhance the
apparent scale of any explicit chiral-symmetry-breaking
terms entering the Lagrangian.

For example, the 0 (a, ) contribution to the pole (m) of
the quark propagator in the presence of both QCD con-
densates and a renormalized Lagrangian quark mass
(mL ) has been calculated explicitly to be '

~a, &F~ F„.&m

3(m —mL ) (m +mL )

4ira, I ( qq ) I

=mL +
3m

mL 1+
4vra, l&qq &I

3&i

(9)

In the limit of explicit Lagrangian chir al symmetry
[ml =0], the contribution of the chiral-invariant conden-
sate (F F„)necessarily vanishes, and the identification
of the propagator pole with (7), the dynamical-quark
mass generated entirely through chiral noninvariance of
(qq ), is recovered. However, if mI WO, the contribution
of an explicit Lagrangian mass term to the propagator
pole (9) is substantially enhanced by its ( F" F„)-
dependent coefficient. ' If we choose to identify (1) the
current-quark mass with mL, the gluon-condensate
enhanced contribution from explicit chir al-symmetry
breaking, (2) the constituent-quark mass with the propa-
gator pole m, and (3) the dynamical-quark mass with the
propagator pole in the mL ~0 limit, we find that (9)
yields a simple relationship between current-,
constituent-, and dynamical-quark masses: '

3 / 2
~con mcur ' ~ dyn ™con (10)

m =2m„„—3M/4m „„. (1 la)

If we use (10) and (6) to replace 1/m, „ in (lla) with

Equation (10) can also be obtained from the asymptotic
momentum dependence of the two Bethe-Salpeter solu-
tions to the Schwinger-Dyson equations for the quark
propagator. ' The irregular solution only depends weak-
ly (i.e. , logarithmically) on external momentum, corre-
sponding to the renormalization-group behavior of the
Lagrangian quark mass. The regular solution exhibits in-
verse proportionality to the square of external momen-
tum; its suppression at high off-shell momenta is sugges-
tive of a dynamical mass contribution to static hadron
properties that disappears at momenta characteristic of
scaling in deep-inelastic scattering. The sum of these two
contributions can be identified with the constituent-quark
mass of Eq. (10), provided the (on-shell) momentum is
self-consistently constrained to the constituent-quark
mass shell.

A spectroscopic assessment of the isodoublet current-
quark mass can be obtained from utilization of (3) to re-
late the constituent isodoublet quark mass m„„ to the
physical pion mass:
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(m„„—m, „,)/md„„=8(rn„„—m, „,)/3M, we find that
the remaining factors of m„„cancel, and that

m~ =2m~~r (1 lb)

This result is a startling confirmation of the current-
quark mass additivity in mesons predicted in Ref. 12
from the m /2 scale of isodoublet current-quark masses
necessary to account for the observed 5 —6%
Goldberger- Treiman, discrepancy. Indeed, one could
have begun with the nonrelativistic picture of the pion
suggested by (1 lb) of two (virtually) unbound current
quarks, each carrying half the pion mass, which are then
separately related via (10) to the (constituent) masses
dressed by the 1/p dynamical contributions in order to
yield (lla). It is important to note that our use of (10) in
(1 la) yields an expression for m (m,„,) that is completely
independent of a dynamical mass scale, as would appear
appropriate for a Goldstone pion. By contrast, had we
used the naive additivity relation m«„=m«, +md„„ in-
stead of (10) to eliminate the constituent mass m„„ from
(1 la), we would have obtained m =6m,„,—6m,„,/md„„
+O(m, «/md„„), an expression that is difficult to inter-
pret physically.

The distinction between current and Lagrangian
masses is crucial in attempting to reconcile the relation-
ship (lib) to the m -m„'rd behavior obtained from lat-
tice simulations of @CD (Ref. 11). The lattice-generated
relationship between m and m„d puts the physical value
for m in correspondence with a very small ( 810 MeV)
value for m„d, suggesting that the lattice-simulation
mass be identi6ed with the Lagrangian mass mL rather
than the corresponding current mass mL of Eq. (9).
Indeed, if we utilize the O(a, ) relationship (9) between
mL and mL, we find from (1 lb) that

77k =2@iL

ma, (F"F„„)m„„
3(rn„„—mz ) (m„„+mL )

Moreover, we see from (10) and (1 lb) that m„„ is impli-
citly a function of m +

I~K„f}
{a}
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as a function of m, „,. Through successive di6'erentiations
of both sides of (10) with respect to m, „„one can easily
obtain Taylor-series coefficients for m„„(m,„,) expanded
about m,„,=0:

2
Nl

9m dpQ 8 1m dy11

(13)

(m,"„,has a coefficient of zero. )

In (13), md„„ is related via (6) to the hyperfine-
interaction coefficient M appearing in (3) (m d~„=3M/8).
Upon substitution of (13) into (3) we obtain the following
power-series expressions for masses of the spin-0 and
spin-1 mesons [m =2m, „,as in (1 lb)]:

m „„=( m /2) + m d„„/m „„, (12b)

where the constant md„„ is given by (6). Equations (12a)
and (12b) taken together suffice to define m as depen-
dent on a single variable ml, in that (12a) is now a con-
straint of the form

150--
100-- 0
50-- 0

QUAL

0 1 2 4 5 6 7 8

m
L

m =F[rnL, m„„(m )] . (12c)

In other words, the constraint (12c) between rn and mL
serves to de6ne m„ implicitly as a function of mL. %'e
see from Fig. 1 that the relationship between m and
+mr obtained through (12) is very nearly linear, con-
sistent with the lattice result. "'

Equation (10) may be utilized in conjunction with (3) to
express all SU(2)f-nonsinglet meson masses as power
series in the appropriate current masses. To do this, it
will prove useful to regard (10) as implicitly defining m„„

FIG. 1. The dependence of the pion mass on the Lagrangian
mass is determined numerically from Eqs. (12). In (a) we use the
"standard" value for the gluon condensate a, ( F„„F"')
=(441 MeV)". In (b) we use double this value, as discussed in
Ref. 13. The breakdown of proportionality between m and
m I at very small mL can be understood by noting that
m (mL ), implicitly defined through {12c),is analytic at mL =0.
Thus one can construct a Taylor series for m (m& ) expanded
about ml =0 [K—:m (a,F „F""/3)]: m =mI (2+2Kmd„„)
—

mL, (14K/3mpy'&+8K /3mdyz)+O{mL, ). %'e see from this
~ 1/2

series that M„ is proportional to mL (rather than mL ) for
sufficiently small mL.
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mx =(m, +m ),„, md„„= Im „„[m„„—(m ),„,]I' =339 MeV . (19)

(m, m—),„,+
9md „

+O((m, ),„,),

(m, +m, m+m ),„,
1 —2

m dyn

(14)

Further phenomenological support for the 58-Me V
difference between (19) and the meson-spectroscopic
dynamical mass (6) may be obtained by using (1) to relate
the baryonic dynamical mass to the chiral-limiting nu-
cleon mass m~":

9 27m dyn 243m dyn
m~ = 3m d„„—3B /4m d„„. (20)

+O(m, „,),
8md„„(m +m, ),„,

m += +K 9

(15)

mz"=m~ —o.~=881 MeV . (21)

A direct estimate of m& can be obtained from the
0.&-—60-MeV nucleon a term extracted from low-energy
m.N scattering:

(3m +3m, +2m, m ),„„8(m +m, ),„,+ '"' +
27m dyn 243md „

+O((m, ),„,),
8md„„2(m, ),„, 8(m, ),„, 16(m, )~„,

3 9 27m dyn 243m dyn

+O((m, ),„,) .

(16)

(17)

(m, ),„,=(m, )„„—mdy„/(m, )„„=394MeV . (18)

This large value, which succeeds in accounting for the
K%A Goldberger-Treiman discrepancy, ' can be recon-
ciled with a Lagrangian mass of order 200 MeV once
gluon condensate enhancement effects are properly taken
into account. ' The large SU(3)f current-quark masses of
(11b) and (18) can be shown to be consistent, in the
infinite-momentum frame, with quadratic mass formulas
induced entirely by kinematic considerations. ' More-
over, similarly large current masses are obtained' when
current-divergence expressions for quark masses, such as
(7), are sandwiched between all SU(3)f ground-state had-
rons (0, 1,—,'+, and —', + ).

We now consider briefly how the dynamical quark
mass can be related to hyperfine-interaction ground-state
baryon spectroscopy. One approach toward obtaining
the dynamical mass appropriate for baryon spectroscopy
is to rearrange (10) in order to find the value for md„„
consistent with both the baryon-spectroscopic value for
the isodoublet constituent-quark mass m =363 MeV (2)
and the isodoublet current-quark mass (m ),„,=m „/2:

Ideal mixing is assumed in (17); correspondingly (15) is
the ideal mixing expression for m„. Thus we have ob-
tained a model for corrections to the meson masses that
is quadratic-and-higher order in the current mass. Of
course, such terms would be modified by including addi-
tional nonhyperfine interaction terms; the higher order
terms in (14)—(17) are listed primarily to show that they
are calculable and manifestly smaller in magnitude than
the leading terms. The strange current-quark mass can
be ascertained either through a direct fit of (14)—(17), or
alternatively, from (10) through use of the dynamical
mass (6) and the spectroscopically fitted constituent
masses (4). We find that

Substitution of (21) into (20) yields 348 MeV for the
dynamical mass, a value close to (19) but 67 MeV larger
than that generated through (5) (Ref. 19).

This difference between the baryon and meson dynami-
cal masses in (6) and (19) may be understood as the un-
derlying source of the -60 MeV disparity ' ' which
seems to characterize the difference between baryon and
meson constituent-quark masses, as evidenced by com-
parison of (2) and (4). Curiously, the averages of mesonic
(4) and baryonic (2) constituent masses,

(~~ meson+~~ baryon) /2 335 MeV

(m meson+ m baryon) /2 514 MeV
(22)

are quite close to the corresponding quark masses ob-
tained from the NRQM's analysis of hadron magnetic
moments

m„„=M /p =336 MeV,

m, „„=—M~/3luA=513 MeV .
(23)

(m, +m )„„/2=fzgz —+m, „„=[2(f&/f )
—1 jm

=507 MeV . (25)

Once again, the results (24) and (25) are consistent with
the averaged spectroscopic masses (22). A similar
averaging of mesonic and baryonic determinations of the
dynamical mass yields mdyn 310—315 MeV =m&/3, a
value compatible with (7) and other model estimates,
such as the vector-dominance value of the pion radius
r =md „'=0.63 fm.

To conclude, we have examined naive NRQM
constituent-quark meson spectroscopy in light of (10), a
relation between current-, constituent-, and dynamical-
quark masses that follows from the anticipated 1/p

Such values also characterize the masses entering quark
triangle diagrams contributing to pion and kaon charge
radii. Moreover, the alternative relativistic chiral-
symmetry picture with pion-quark coupling strength
g = 2m. /+)V, = 3.6 leading to the quark-level
Goldberger-Treiman relation

m„„=f g =338 MeV (24)

can be extended to the kaon (gxqq=g qq) for the ob-
served decay constant ratio fx /f „=1.25:
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dependence of the quark mass's dynamical component.
We find that the current quark mass contributes additive-
ly to the pion mass [and very nearly additively to the
kaon mass (14) as wellj, providing a framework for ex-
plaining why the NRQM expression (3) is applicable to
the pion. By considering NRQM constituent-quark
baryon spectroscopy, we have also shown how the -60-
MeV NRQM difference between baryon and meson
constituent-quark masses is a reQection of a correspond-
ing difference between the NRQM baryon and meson
dynamical masses. The SU(3) current-quark masses we
obtain are much larger than the widely quoted range of
values. We believe this discrepancy can be removed by
careful treatment of how chiral-invariant QCD conden-
sates (in particular, the dimension-4 gluon condensate)
can magnify the renormalized Lagrangian quark mass

(mL ) devolving from the electroweak Yukawa sector. '

Presumably, it is this Lagrangian mass that is accessible
from lattice QCD calculations through analysis of the
limit in which QCD interactions are turned off, an inter-
pretation supported by the e6'ectively linear relationship
we obtain between m and m I (Fig. 1).
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