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Branching ratios for decays of light Higgs bosons
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We have carried out a coupled-channel (mm, KK) analysis of the effects of final-state interactions
on the branching ratios for the decay modes of a light Higgs boson. We find no large enhancement
of H —+ m m relative to H ~pp for m~ (950 MeV.

I. INTRODUCTION II. FORMALISM

A Higgs boson of mass less than m~ can be produced
with large probability in the decays of a 8 meson. ' The
Higgs boson would be detected by observing its decay
products. For 2m„(mH (2m, (3.6 GeV), the cleanest
signal may be the H —+pp mode. But then one has to
know that the branching ratio (BR) for H~IJp is not
too small. At the most naive quark level, for mH &2m„
the H will decay primarily into ss and pp, with a ratio of
about three to one (the color factor for qq) or somewhat
more, depending on what one takes for m, . It was point-
ed out that heavy quarks could also. contribute substan-
tially through a virtual-heavy-quark loop giving H~gg
with the gluons then materializing as light hadrons —in
particular, as mm. This observation was eventually
refined into a low-energy theorem (LET) for the H~arm.
amplitude. The crucial feature of this result is that the
amplitude contains a term proportional to mH as well as
one proportional to I„. But even if one extrapolates this
result well beyond its range of validity, it still leads to a
BR for H &pp which ranges —from 40% at mH =0.3 CxeV

to 7% at mH =2 CieV. It was then observed by Raby and
West that strong final-state interactions could further
enhance the rate for H ~m~, and hence decrease the BR
for H~pp. They made an estimate and claimed very
large enhancements for H~~m. We find that their esti-
mate is a substantial overestimate for several reasons, the
most important of which is that they treated the fo(975)
(formerly, and in this paper, S") resonance as an elastic
mm resonance. But the S* is strongly coupled to the KK
channel and cannot be reasonably treated in a single-
channel framework, even below the KK threshold (which
is the range treated by Raby and West). In this paper, we
provide a coupled-channel analysis which incorporates
the constraints of unitarity on the S* resonance parame-
trization both above and below the KE threshold. We
also find a large enhancement of the rate for H ~ma very
close to the KK threshold, but not as large as the estimate
of Ref. 4; and, more importantly, there is no large
enhancement for mH below 0.95 GeV.
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where H is the Higgs field. A similar definition holds for
Ftc(q ) with mtr replaced by XK. The scalar form factor
F (q ) satisfies a dispersion relation

F(q )=F(0)
2+q f" dq'

4m

cr(q' )

q' {q' —
q

—ie)
(2.2)

o (q ) = ImF(q ) . (2.3)

The function o(q ) has contributions from trtr, KK, . . .
real intermediate states.

Above the cuts on the real axis we can write

F(q +ie)=e' ' '~F(q )~ . (2.4)

Below the inelastic threshold, time-reversal invariance ap-
plied to the H +mmamplitude —deter. mines that a(q ) is
the elastic m~ (J =0) phase shift 5 (q ):

a(q )=5 „(q ) (q (4m+) (2.5)

(we ignore small 4' inelasticity). In this elastic range the
J =0 partial-wave unitarity relations are

ImF =F*pt,
Imt =pi ti',

p=k/8' k =
1/2

IT

(2.6)

(2.7)

(2.8)

so t may be parametrized by the elastic s-wave mm phase
shift

The amplitude for the decay H~mm defines a pion
scalar form factor

M(H 177r)=(fr1T,„,~X.',a{0)~0)—:—{6&2)'~F (q },
(2.1)
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1
t =—e' sin5 .

p
Here 8'is the c.m. energy; we use the notations

W =s =q (=mH) .

(2.9)

(2.10)

2WI iD2(s)
11

—4Wa, r,r,
12 21 D( )

(2.16)

We extend the consideration to two coupled channels;
then the s-wave t, are"the elements of a 2X2 (symmetric
by time-reversal invariance) matrix, which satisfy the
coupled-channel unitarity relations

Imtj, = tjk pk tk (2.1 1)

Including the KE contribution to o (2.3), and the m.m

contribution to o.z, leads to the coupled unitarity equa-
tions for F,Fz.

k = ——m 2
1 4 1

2
2 4 2k = ——m

2WI 2D, (s)
t22 =

D(s)

D, (s) =M, —s —2ik, I, ,

D2(s) =M2 —s 2ik—2I 2,
D(s)=D, (s)D2(s) —4A, I,I 2 ',

1/2 1/2

(2.17)

(2.18a)

ImF; =F-*p t; . (2.12)

F; (s) =
C~ (s)t~; ( W)/W, (2.13)

where the right-hand side (RHS) of this equation is divid-
ed by 8' to remove any kinematical singularity which
could be present in t, but which should not exist in F;
(see below), and where the C (s) are real polynomials to
be determined by certain "initial conditions" (a low-
energy theorem). Note that as k~0, tii( W)/W~a, the
~~ s-wave scattering length.

An alternative approach ' to satisfying the form-factor
unitarity equations (2.6) and (2.12), is to construct an
Omnes-Muskeleshvili (OM) representation. In their pa-
per, Raby and West give the formalism for the two-
channel OM representation, but conclude that it is in-
tractable for actual application and use only the single-
channel two-resonance approximation. We will see below
that it is not difficult to give a two-pole parametrization
of Eqs. (2.11)—(2.13) which gives a good representation of
the known ~a and KK data and manifestly satisfies all
the constraints of elastic and inelastic (two-channel) uni-
tarity.

A standard starting point is the observation that t
satisfies a simple matrix unitarity equation

Imt = —p .
—1 (2.14)

A simple parametrization of t ' which satisfies (2.14) is

M i
—s —2ik, I )

2mr,
M —s —2ik I

28'I 2

(2.15)

Then

The solutions for the coupled integral equations for F~
and fz are known in the literature. They are in general
fairly complicated if t, contained the left-hand cut singu-
larity. We are interested in a simple parametrization of
the t, . such that they can be fitted to the experimental
data and do not contain the left-hand cut singularity. In
this case the unitarity equations are satisfied by the con-
struction

Below the relevant threshold, s, =4m„
' 1/2

k=i m
S

a a 4
=i', (s) . (2.18b)

In particular, a measure of the inelasticity above the
KK threshold is

1 —g t i2=kik2
4

0+~~0.25 . (2.20)

We have found a set of values for the parameters in
(2.15) which provides a good representation of the known
elastic mar and inel.astic rrn~KIC data. We use (all in
GeV units)

m =0.138, m& =0.496,

M& =0.87 I i =0.7 M2 =0.92

r, =1.0, X=O. 1. (2.22)

Note that the output parameters ("observed resonances")
can be substantially different from the input m, , I;. The
roots of D(s) determine the positions of the output reso-
nances, and the widths are determined from the rates of
variation at the resonance positions:

D(s„)=0,

I (,)=I,D (s, )
d ReD (s)

dS sl

With the values (2.22) we find an e with M, =0.85,
I,=0.63 and a very narrow S* just below the EK
threshold; the effective S* width is a very sensitive func-
tion of just how far below the threshold. These parame-
ters produce an inelasticity 1 (2.20) which rises sharply
from the KE threshold to a peak value about 0.10 at
W=1.00 and then falls back slowly. (2) falls sharply
from 1 at the EK threshold, then comes back up. ) Experi-
mentally, q is not well determined, but this result is at
least consistent with the results from large-scale fits ' to

The conventional elasticity parameter g is introduced as

2i5) i(6) +5~)
2)e

' —1 i+(1—r) )e
t&2 t2&

2l pi 2(/p, p

(above KE threshold) . (2.19)
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mm, KK data: see, for example, Fig. 7 of Ref. 8. For the
elastic n.m. I =0 s-wave scattering, the parameters (2.22)
in t» of (2.16) give the scattering length equal to 0.26
m ' and a phase shift which rises smoothly from mw

threshold (roughly linearly in W), passes through 90' at
8'=0.85, and then begins a rapid rise just below the KK
threshold, all in good accord with detailed phase-shift
analyses of the data. We conclude that Eq. (2.16) with
the parameter values (2.22) provides a reasonable account
of the coupled mm, KK system, both below the KK thresh-
old, and somewhat above it.

Returning to (2.13), to compute F,Ftt we have to
determine C, z(s). These are determined from a low-
energy theorem. From the amplitudes of Fig. 1, one ob-
tains the elfective Lagrangian for (2.1):

T

X,tt=(G&2)'~ H —g m qq+N„G„" G„"
light q

(2.23)

Here Xz is the number of quarks-with mass ~mB.
The mm and KK matrix elements of the first term in (2.23)
are evaluated by standard PCAC (partial conservation of
axial-vector current) and SU(3) current-algebra tech-
niques. The second term is related through the trace
anomaly of broken scale invariance to the trace of the
energy-momentum tensor, and the mm and KK matrix ele-
ments of 8„"are evaluated in the chiral limit. The result
is a LET (Ref. 10):

„,(M.M, lu'„lo& =S.„(—", m.'+-,'q'+ . ) .
( G 2)1/2

(2.24)

at s =0, we determine

C, (s) =0.0872+ 0.24s,

C2(s) =0.5563—0.0050s .
(2.26)

G&2 4m„f'(H~pp)= mHm„ 1—
Sm

4m) 2
2

1—
2

mH

Gv'Z IFi, pl'
I (H mm, KK)=. '

32& m~

1 /2

(2.27)

(s =m~~) . (2.28)

Then define the ratio of hadronic-to-muonic decay
rates. Below the KK threshold the hadronic decay is just
7T&:

1
1.(H-~~)
I (H~pp) 4 mHm 1—

Above the KK threshold we have

4m
2

mH
3/2

mp
2

mp

(2.29)

Note that only products of a C with a t /W are physically
significant (2.13). And these products are fixed by the
LET (for small s); hence, they are not so sensitive to
small variations in the parameters of the fit as the indivi-
dual factors might be, in particular the small coefticient
of s in Cz(s).

With the form factors Fi 2(s) computed (2.13), we can
compute the rates for H —+mw and H~KK, and their ra-
tios relative to H ~pp:

The I=0 mn state is +3=, lM, M, )/&3 and the I=0
KK state is +7=4LM, M, )/2. In this Cartesian basis
both a,a, and K,K, are normalized as identical parti-
cles. The result is that the rate for H~mm (I =0) is
three and a half times the rate for H —+m+m and the
rate for H ~KK (I =0) is twice the rate for H +K+K-
So the "initial conditions" for (2.13) are

I (H~nm)+I (H~KK)
I (H +pp)—

The BR for H~pp is

1B(H~pp )= f+1

III. RKSUI.TS AND DISCUSSION

(2.30)

(2.31)

F (0)=&3—"m =0.040,

F', (0)=&3—'=0.385,

F2(0)=2—", mx =0.601,

F2(0)=2—,
' =0.444 .

(2.25a)

(2.25b)

Then, using the values of the t;; /8' and their derivatives

oe g

FIG. 1. Feynman diagrams for Higgs-boson decay into (a)
light quarks {b) gluons through virtual intermediate heavy
quarks.

In Table I we give the values of F» lF, l, and lFzl .
[From the real and imaginary parts of F„below the KK
threshold, one can immediately extract the elastic mm.

I =0 s-wave phase shifts produced by our parametriza-
tion (2.16) and (2.22).] In Table II and Fig. 2, we give the
values of f„,fx as functions of the Higgs-boson mass
(W=mH). Note the dip in f„just below the S* reso-
nance, which is the result of destructive interference be-
tween the two terms in (2.13). Note also that f never
exceeds 4 until mH is within 50 MeV of the S' resonance
and XK threshold, i.e., the BR for H~pp is never less
the 20% for mH &950 MeV.

In the text following Eq. (2.22) we described qualita-
tively the goodness of our fit to the s wave I =0, mm, KX
data. (See also F, in Table II.) Here we emphasize that
the parameters in (2.22) are overdetermined by the quan-
titative and qualitative features described there. We list
seven such features: the scattering length, the energy at
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0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

0.092+0.012i
0.121+0.042i
0.150+0.090i
0.163+0.163i
0.130+0.244i
0.041+0.265i

—0.017+0.088i
0.390+ 1.458i

—0.166+0.787i
—0.322+0.605i
—0.383+0.478i
—0.405+0.389i
—0.411+0.325i

0.009
0.016
0.031
0.053
0.076
0.072
0.008
2.279
0.648
0.468
0.375
0.315
0.275

28.712
3.658
1.690
0.976
0.426
0.416

which 5 rises through vr/2, the slope there, the position
and slope of the rapid rise of 5 near the KK threshold,
and the rapid rise and then turnover of the inelasticity.
We therefore expect that anyone who does a five-
parameter, two-pole, two-channel fit will arrive at param-
eters very similar to (2.22).

We have already remarked that Raby and West (RW)
have overestimated the enhancement of H~m. m by the
S* by treating it as an elastic m.m resonance, ignoring the
constraint of coupled-channel unitarity. In addition,
even in the context of a single-channel resonance parame-
trization, we have found two other errors in the treat-
ment of RW, each of which also goes in the direction of
overestimating the (dominant) S' enhancement. RW use
a resonance parametrization of a single-channel Omnes-
Muskeleshvili representation [RW Eq. (64)]

F(s)=P(s)Q(s) .

[In the single-channel approximation this is entirely
equivalent to the single-channel version of (2.13).] For
P(s) they take the LET result (2.24) [RW Eq. (95)].
[They put in the i-spin factor of 3 in the calculation of the
rate, see RW Eqs. (97) and (98).] However this does not

TABLE II. Values of the m.~/pIT, and KK/pIT, ratios.

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

2.46
2.65
3.11
3.57
3.68
2.63
0.229

52.5
12.3
7.42
5.05
3.65
2.77

86.9
30.9
15.5
8.70
5.21
3.28

TABLE I. Values of F& and F2 in the range 0.3 ~ mH ~ 1.5
GeV. F

&
and F2 are in units of GeV'.
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FIG. 2. The ratios f (so1id line), fk (dashed line), and f&cD
(dashed-dotted line).

&s

For mH in the range 2—3.6 GeV we take a, /m =0. 1

and Nh =3 (or 2). Then roughly

1„+I
fhad 7+mH (3.2)

This is also plotted in Fig. 2.

satisfy the LET because 0'(0)%1. When the contribu-
tion of Q'(0) is taken out to satisfy the LET, the value of
F at the S* is decreased by almost —,

' (and F is squared in
the rate). A second error in RW is that for the denomi-
nators in their resonance forms they use M —s —ikI
[RW Eqs. (67) and (96)]. The conventional form is
M —s 2ikI =—2M(M —W —iI /2). [See, for example,
the Particle Data Group (PDG) review. ] Thus when they
take a (total) S* width of 33 GeV from the PDG review
and use it in their formulas, they are affectively using a
width of 16.5 GeV. Thus they overestimate the peak
height by another factor of 2 in amplitude and 4 in rate.
(This also explains why they obtain I",=1.3 GeV from
fitting to elastic m.m phase shift, while we obtain 0.63
GeV, fitting to the same phase shift, with the convention-
al resonance form, or its equivalent I =2/[d5/dW]. )

Compounding all of these factors leads to a large overes-
timate of the S* contribution.

Somewhere above the EE threshold, additional chan-
nels (rig, 4', pp, . . . ) become important and our two-
channel formalism is no longer adequate. At still higher
energies, where many channels are open, for the inclusive
hadronic ratio fh, z =I (H~hadrons)/I (H~pp), one
can use the quark-gluon QCD description" [see (2.23)]

+2
9

mH . (3.1)
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27&a—6~mb
64rr

I V,b I
mb f(m.

2 2
P20

2
mb

/m

(3.3)

In order to evade the Linde-Weinberg bound' and have
an H with mass less than m~, in the minimal standard
model, it is required that the top mass be ~80 GeV.
Thenen, with the b ~cl v phase-space factor
f m, /mb)=0. 5 and 8(8—&lvX)=0. 12, Eq. (3.3) gives
the theoretical value

In the range above 1.2 or 1.3 GeV where our two-
channel description breaks down, but below some several
GeV where the inclusive QCD description becomes accu-
rate; it is very difficult to make any detailed calculation.
But we remark that the large enhancement associated
with the S* is a very special case. The S* is a very nar-
row resonance, and, more importantly, it is located very
close to a threshold to which it is strongly coupled. This
special set of circumstances is not repeated at higher
masses. s-wave resonances at higher energy are broad,
and there are no sharply de6ned thresholds. The most
reasonable guess is just to extrapolate f&cD [Eq. (3.2)]
back to smaller q with some smooth broad bum s

[fo ), fo(1590),?] superposed on it. A conservativef (1400 ?
estimate is that B„„is not less than 1% for m~ in the
range from 1.1 to 3.6 GeV.

We briefly consider the application of these results to
the experimental searches for the H in B decays. In the
standard model with a single physical H and just three
generations of fermions, the BR for the decay of a B
meson into H plus anything is'

8 (8 +HX)—
8 (8 —el vX)

r [ e r

0
0
Q%

~
C

V
C
O
LI

0 1 2
p'p tnvorio~t Moss (GeV)

FIG. 3. The CLEO (Ref. 14) upper limit on B(B~ppX)
(solid line) and the theoretical lower limit on
B(B~HX)B(H~pp) under the conditions stated in the text
(dashed line).

8(B~HX)B(H~pp)) 0.05 (0.3~ mH &0.95), (3.6)

which exceeds (3.5) by a factor of 6. In the ran e
0.95—1.1 GeV the strong S enhancement of the mm and

n e range

KK decay modes of the H depresses the BR for H~
so m uch that no conclusion can be drawn from this

OI ~pp

mode. For IH &1.1 GeV, up to 3.6 GeV, the recent
CLEO experiment' provides stronger bounds. In Fig. 3
we have reproduced the CLEO limits for 8(B~ X)
F'( ig. 6 of Ref. 14) and superimposed the theoretical lower

limit following from (3.4) (with mb =4.9 GeV) and our
conservative estimate 8 (H ~pP ) )0.01 in this range:

Pl
8(B~HX)8 (H~pP ))26X10 1—

mb2

(1.1 ~ mH ~ 3.6) (3.7)
2 2

8(8 +HX))0 26 1
2

Plb

(m, ~ 80 GeV, mH (m~ ) .

There are a series of experiments' which give

B(B~pPX),„,~0.008 (for mH )0.3 GeV) .

(3.4)

(3.5)

we see that the theoretical lower limit substantially
exceeds the experimental upper limit everywhere in this
range, except just at the position of the J/g resonance,
where the experiment observes 8 —+ 1(X followed by
g~pP at the level 8X 10
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