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Although linear quantum field theory on the background of a single gravitational plane wave is
trivial, colliding plane-wave solutions are likely to feature interesting quantum effects; these might
yield insight into similar effects in other more general inhomogeneous and dynamical spacetimes.
This paper presents the initial results of an investigation into the behavior of quantum fields in col-
liding plane-wave backgrounds. Throughout the paper, we restrict our attention to the analysis of
quantum field theory on the Khan-Penrose spacetime. Since spacetime is Oat before the arrival of
either plane wave, there exists a unique, well-defined set of in modes and a corresponding in vacuum
state. We introduce a physically plausible prescription for constructing a unique canonical set of
out-mode solutions, and we evaluate the Bogolubov transformation between the in and out modes
explicitly for a massless scalar field propagating on the Khan-Penrose spacetime. We then use these
results to approximately compute the spectrum of created particles in the out region. Next, we
study the quantity (T„„)=—(O, in~ T~ ~O, in), the renormalized in-vacuum expectation value of the
stress-energy tensor for a massless, conformally coupled (g= —') scalar field. In a colliding plane-
wave spacetime, ( T„,) vanishes everywhere except in the interaction region. To compute ( T„,) in
the interaction region, we make a number of assumptions about its general form; these assumptions
are entirely reasonable for the specific geometry of the Khan-Penrose spacetime, but they may not
hold for a general colliding plane-wave solution. Combined with the conservation property of
( T„,) and the choice of g= I/6, our assumptions reduce the determination of ( T~, ) throughout
the interaction region to the solution of a coupled system of first-order partial differential equations
for two functions. These equations cannot be solved exactly; but they can be used to obtain crucial
information on the behavior of (T„„)near the singularity of the Khan-Penrose spacetime. Al-
though our method of computing ( T„,) is unlikely to be adequate for other colliding plane-wave
solutions we use the information obtained through our calculations to speculate about (T„,) in
more general colliding gravitational-wave spacetimes. We argue that these speculations have im-
portant consequences for cosmology, but they must be verified by further calculations.

INTRODUCTION

Quantum field theory in a curved background space-
time generally involves difficult and tedious calculations.
Although the general formalism of the theory is by now
well understood and fairly standard, ' many of the more
extensively studied applications focus on background
spacetirnes which possess either a very high degree of
symmetry (such as de Sitter space or Robertson-Walker
spacetimes ) or a special geometric property (e.g. , space-
times that are flat" or conformally flat ). The most impor-
tant exceptions to this are the black-hole solutions; the
tremendous physical significance of quantum black holes
has motivated many researchers to study quantum field
theory on a black-hole background with great detail and
rigor. On the other hand, the work so far on the equally
important subject of quantum field theory in a dynamical,
anisotropic, and inhomogeneous spacetime has been
mostly confined to perturbation-theoretical analyses
around highly symmetric and/or conformally flat back-
grounds.

Very simple, exact examples of dynamical spacetimes
are provided by the gravitational plane-wave solutions. '

The theory of (linear) quantum fields propagating on an

arbitrary gravitational plane-wave spacetime has been in-
vestigated by Gibbons, ' and more recently by Klimcik. "
For a "sandwich" plane wave, i.e., for a plane-wave
spacetime whose curvature is sandwiched between the
two Hat, null wave fronts of the wave, the spacetime is
Bat both before and after the wave's passage. Therefore,
for any linear quantum field propagating on a sandwich
plane-wave background, it is possible to define unique in-
and out-mode solutions and corresponding in- and out-
vacuum states unambiguously. The Bogolubov transfor-
mation' connecting these two sets of mode solutions (for
a massive scalar field) is studied by Gibbons, ' and he
finds that no particles are created in the out region, and
that the renormalized expectation value of the stress-
energy tensor in the in vacuum (or equivalently in the out
vacuum) vanishes throughout spacetime. Quantum field
theory (linear) on the background of a single plane-wave
solution is essentially trivial.

From a general point of view this result is not terribly
surprising; plane-wave spacetimes have a high degree of
symmetry (in general there is a five-parameter group of
isometrics), and perhaps more importantly they satisfy
the Huygens's principle' (i.e., a linear scalar field experi-
ences no backscattering while propagating through a
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plane wave). Moreover, results analogous to those of
Gibbons' are well known to be true for semiclassical
plane-wave solutions in quantum electrodynamics and in
other gauge theories. ' Clearly, for the study of nontrivial
quantum effects in a dynamical spacetime, examples of
background solutions more complicated than single plane
waves must be considered.

Colliding plane-wave solutions furnish examples of
dynamical vacuum spacetimes significantly more compli-
cated than plane waves (their isometry groups are in gen-
eral only two dimensional); and the structures of these
solutions are correspondingly much richer. As a result of
the combined contributions of various workers over the
last two decades, the local and global structures of arbi-
trary colliding gravitational plane-wave spacetimes are by
now fully understood; for references and a detailed expo-
sition see Refs. 9, 14, 15, and 16, and the references cited
therein. In particular, it is now known that generic gravi-
tational plane-wave collisions create spacetime singulari-
ties with a rich, nontrivial asymptotic structure. ' ' Al-
though these plane-symmetric singularities are always
homogeneous in the x, y directions (directions along
which the orbits of the plane-symmetry-generating Kil-
ling vectors lie), their asymptotic structure is
inhomogeneous-Kasner, with the asymptotic Kasner axes
and exponents across the singularity in general depending
on the z coordinate (the spacelike coordinate along which
the colliding plane waves propagate and in which space-
time is inhomogeneous). Moreover, even when the collid-
ing waves are not exactly plane symmetric, the focus-
ing' ' of each gravitational wave by the other is strong
enough to create spacetime singularities provided the col-
liding almost-plane waves are sufficiently large in trans-
verse size and sufficiently intense in amplitude. ' ' It is
likely that these non-plane-symmetric singularities are
hidden behind event horizons, i.e., that collisions of
almost-plane waves create black holes (see Ref. 18, espe-
cially Fig. 2 and the discussion that follows it in Sec. I).
If this is the case, then the singularities inside these black
holes have a highly inhomogeneous and anisotropic local
structure. Therefore, when endowed with the opposite
time orientation, a colliding gravitational-wave spacetime
becomes a good local model for a highly inhomogeneous
and anisotropic initial singularity (with "white holes"' ),
in which initial vacuum inhomogeneities decay through
the emission of gravitational radiation (see Fig. 2 below).
Similarly, when its time orientation is reversed, a collid-
ing plane-wave solution can be regarded as an exact,
idealized model of such an' initial singularity, with all its
spatial inhomogeneity being restricted to the z direction.

It is clear that unlike single plane-wave solutions,
quantum field theory on a colliding plane-wave back-
ground will have nontrivial features, and the above dis-
cussion suggests that these features are well worth inves-
tigating. The purpose of this paper is to report on the ini-
tial results of such an investigation. The formidable
difficulty of the calculations involved has forced us to re-
strict our attention to a single specific colliding plane-
wave solution throughout the paper; and as the earliest
and perhaps the best-known solution, we have chosen the
Khan-Penrose spacetime to be our fixed background.

The main results from our study of quantum field theory
on the Khan-Penrose background are summarized in the
following two paragraphs.

Although like every colliding plane-wave spacetime the
Khan-Penrose solution has a Minkowskian in region (i.e.,
the region that lies before the collision, prior to the pas-
sage of either plane wave), unlike a single sandwich plane
wave, its out region (i.e., the interaction region that lies
to the future of the collision) is curved. Since both of the
two Killing vectors in the interaction region are space-
like, there is no unique way to specify out-mode solutions
and an out-vacuum state. We introduce a physically plau-
sible prescription for constructing a unique canonical set
of out-mode solutions, and we evaluate the Bogolubov
transformation between the in and out modes explicitly
for a massless scalar field propagating on the Khan-
Penrose spacetime. We then use these results to approxi-
mately compute the spectrum of created particles in the
out region. Our prescription for constructing the out
modes is applicable in a straightforward way to any arbi-
trary colliding plane-wave spacetime and to fields with
arbitrary spin, thus, we expect that the results on particle
creation in the general case will be similar to the results
reported here.

Since it is exceedingly difficult to compute the in-mode
solutions in the interaction region, we cannot evaluate
any of the in=vacuum Green's functions' there, and con-
sequently, we have no way of determining the response of
a particle detector. ' ' Therefore, in order to further un-
derstand the behavior of quantum fields in the interaction
region, it becomes necessary to study other quantities
that are not sensitive to our (rather arbitrary) choice of
the out-vacuum state. One such quantity is
(0, in~ T„~O, in); the renormalized in-vacuum expecta-
tion value of the stress-energy tensor for a massless, con-
formally coupled (g= —,') scalar field. Moreover, we find
that it is not too difficult to compute the in-vacuum
Green's functions near the initial null boundaries of the
interaction region, exactly along the boundaries and to
first order in the displacement away from them. Using
standard point-splitting renormalization, this allows us
to compute (T„,) —= (0, in~ T„,~0, in) exactly along
the boundaries. To compute ( T„,) elsewhere in the in-
teraction region, we make a number of assumptions
about its general form; these assumptions are entirely
reasonable for the specific geometry of the Khan-Penrose
spacetime, but they may not hold for a general colliding
plane-wave solution. Combined with the conservation
property of ( T~ ) and the choice of g= —,', our assump-
tions reduce the determination of ( T„,) throughout the
interaction region to the solution of a coupled system of
first-order partial differential equations for two functions.
These equations still cannot be solved exactly; but they
can be used to obtain crucial information on the behavior
of ( T„)near the singularity of the Khan-Penrose space-
time. Although our method of computing ( T„) is un-
likely to be adequate in other colliding plane-wave solu-
tions, we use the information obtained through our calcu-
lations to speculate about ( T„) in more general collid-
ing gravitational-wave spacetimes. We argue that these
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speculations have important consequences for cosmology,
but they must be verified by further calculations.

Our sign conventions are ( —,+, + ) in the terminology
of Misner, Thorne, and %heeler; our notation and all
other conventions are the same as those of Ref. 1. Unless
otherwise indicated, we use Planck units in which
A=v=6=1.

THK KHAN-PKNROSK SPACKTIME

The two-dimensional geometry of the Khan-Penrose
solution is depicted in Fig. 1. In the interaction region I
(where u ) 0, v ) 0), the metric is given by

(1—u —
U )/

dQ dV
(1 2)1/2 (1 ~ 2)1/2

ting

+ (1 2)1/2 (1 g 2)1/2 ]2

1 u U dx
(1—u )' —& (1—

U )' —u

2 z (1—u )' —v (1—
U )' —u

(1 —u )' +U (1—
U )' +u

with

0
a

g», = du du —(1+v) dx —(1 —v) dy

= dUdV —dX —dY

while in region IV (where u & 0, U & 0) it is

(3b)

where a and b are the focal lengths of the u wave (the
colliding plane wave whose initial wave front is Iu =OI)
and of the U wave (the colliding plane wave whose initial
wave front is I v =OI ), respectively (Fig. 1). In the regions
labeled II (where u ) 0, v &0) and III (where
u & 0, U ) 0) in Fig. 1, the metric is

g„= du du —(1+u ) dx —(1—u ) dy

= dUdV —dX —dY

grv = du dU —dx —dy (4)

The Minkowskian coordinates (X, Y, U, V) in the Aat re-
gions II and III are related to the coordinates (x,y, u, u)

by

X = (1+u)x, Y = (1—u)y,
(5a)

2 2

U = u, V = U+(1+u) —(1—u) in II,
a a

X = (1+u)x, Y = (1 —U)y,
(5b)

X
U = u+(1+U)

b
—(1 U),—V = u in III.

b

Both of the two colliding sandwich plane waves in the
Khan-Penrose spacetime are impulsive; i.e., their initial
(past) and final (future) wave fronts coincide. Consequent-
ly, the metric is continuous but not continuously
differentiable across the null boundaries (wave fronts)
Iu =OI and Iv =0); the spacetime curvature has a
delta-function discontinuity along these boundaries. The
curved interaction region I is bounded by a spacelike cur-
vature singularity located at I u + U = 1 I (Fig. 1). For
more details on the Khan-Penrose solution, see Refs. 20,
23, 15, and 9.

FIG. 1. The two-dimensional geometry of the Khan-Penrose
spacetime. (The actual four-dimensional geometry is more com-
plicated; see Refs. 23 and 9.) Both of the two colliding sandwich
plane waves are impulsive; i.e., their initial (past) and final (fu-
ture) wave fronts coincide. Consequently, the metric is continu-
ous but not continuously differentiable across the null boun-
daries (wave fronts) Iu =0) and I v =0I; the spacetime curva-
ture has a delta-function discontinuity along these boundaries.
The curved interaction region I is bounded by a spacelike curva-
ture singularity located at Iu + U

' = lI. The modes u;„;,
uL;, and u&; are constructed such that they are Minkowski-
an throughout the Oat regions IV, II, and III, respectively.

NORMALIZED MODES FOR A SCALAR FIELD
AND THK IN-VACUUM STATE

The natural in region for a colliding plane-wave space-
time is the Aat, Minkowskian region lying before the col-
lision, prior to the passage of either colliding wave (re-
gion IV in Fig. 1). The canonical, normalized in modes
for a real, massless scalar field are the modes that have
the standard Minkowski form' throughout this Aat in-
region IV:
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u;„„(x,y, u, U) = 1

[2coi, (2m) ]'

x exp [ i—[ ,'(—co„+k,)u

+ —,'(cok —k, )U

—k x —ky]j
in IV, (6)

Clg = 2e 2P„„+ 6„
F G

6+

a massless scalar field satisfies the wave equation (R—:0)
T

where
1

F2
1

G2 ~i%
= 0. (7b)

~k ——(k„2+ ky2+ k, 2)1/2 (6a)

On a plane-symmetric vacuum spacetime with the metric

g = e '""du du —F (u, u) dx —62(u, u) dy~,

(7a)

Applying Eqs. (7) to Eqs. (3) and using the continuity of
the modes across the null boundaries I u =0 j and

t U =Oj, it is not very difficult to compute the expressions
of the in modes (6) in regions II and III of the Khan-
Penrose spacetime: In region II (where u ) 0, U & 0),

u;„k (u, v, x,y)
1 4-

exp ti[k, x + k y + —,'(k, —co„)U]j
[2co„(2~) ]

1X exp i +
2(k, —cok ) 1+u

and in region III (where u & 0, u ) 0)

k

1 u
u (Sa)

u;„k (u, u, x,y) = 1
exp [i(k x + k y —

—,'(k, +co„)u]j
[2co„(2m ) ]'~2

1 k k
X exp —i +

U
& 2(k+cok) 1+U 1 —

U

in III . (Sb)

The vacuum state ~0, in ) associated with the in modes (6) and (8) is called the in vacuum. It is not possible to compute
the in modes explicitly in the interaction region I; we will return to this problem when we discuss the in-vacuum
Green's functions.

We now describe how to construct two new sets of normalized mode solutions for a massless scalar field. Although
we continue to work with the Khan-Penrose solution, our construction applies equally well to any arbitrary colliding
plane-wave spacetime. The modes uL are constructed so that they are Minkowskian throughout the (left) flat region
II (i.e., for u ) 0, U & 0):

ul k(X, Y, U, V) = 1
exp [ i[ ,'(cok—+k,—)U+—,'(cok —k, )V —k X —k Y]j in II,

[2co„(2m )']'i (9)

where the coordinates (X, Y, U, V) are defined by Eq. (5a). The modes uji are constructed so that they are Min-
kowskian throughout the (right) flat region III (i.e., for u & 0, U ) 0):

ui, k(X, Y, U, V) = 1
exp I

—i [ ,'(cok+k, )U +——,'(cok —k, ) V —k„X —
k~ Y] j in III,

[2cok(2~) ]' (10)

where the coordinates ( U, V, X, Y) are defined by Eq. (5b).
(See Fig. 1.) By appealing to the uniqueness theorem for
the solutions of the scalar wave equation (7b), it is not
hard to see that the modes uL z

and uz - are uniquely
determined throughout the colliding plane-wave space-
time once their expressions (9) and (10) in the flat regions
II and III are given. In fact, if the U wave were absent,
i.e., if spacetirne contained only the single impulsive
plane wave Iu =Oj (the u wave), then the modes uI
would be precisely the u-wave out-mode solutions. Simi-
larly, if the u wave were absent, i.e., if spacetirne con-
tained only the single impulsive plane wave I U =Oj (the U

uL X( ij in,j + ~ ij in,j
J

(11a)

ua —,I ij uin, j + ~ ij in,j ) (1 lb)

which give'

i

wave), then the modes ui, , would be the U-wave out-
mode solutions (Fig. I ).

To compute the Bogolubov transformations between
the modes u;„, uL -, and uz -, we put
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(12a)

R Ra;, = (uii, , u,„,), p;, = —(u~, , u,„,).
(12b)

From the linearity of the scalar field equation and the
continuity and uniqueness of the mode solutions, it fol-
lows that with exactly the same coefFicients expansion
(1 la) is valid in the spacetime of the single u wave (with
the U wave absent), and similarly that with exactly the
same coefficients expansion (lib) is valid in the spacetime
of the single U wave (with the u wave absent); i.e., the
transformations (1 la) and (lib) are precisely the Bogolu-
bov transformations between the in and out modes of the
u wave and of the U wave, respectively. We now turn to
the explicit computation of these transformations.

Consider first the transformation (1 la) and (12a) be-
tween the modes uL and u;„. To compute the
coefficients a; and p, in the spacetime of the single u

wave, we recall that (as explained by Gibbons' ) the null
Iu =U=constj planes can be used as partial Cauchy
surfaces on which the Klein-Gordon inner product' can
be evaluated as

(g, p) = —if (gv" p*)Q„
= —i f ( PP* i, —P*g v ) dVdXdY,

U=e

(13)

where Q is the volume form —,'dUhdVAdX h, d Yin Min-
kowski space. Thus, Eqs. (12a) can be written as

)}C

+U=0

—u*;„k uL k dVdXdY,

(14a)

L 8
P kk' i ~ uL —,k gVuin, k'

U=O

—u;„k uL i, dVdXdY .

(14b)

After expressing the in modes u;„k [Eqs. (Sa)] in terms of
the ( U, V, X, Y) coordinates [Eqs. (5a)] and evaluating the
V integral, Eqs. (14) become

1
kk' 2 ( k z ~k'+kz ~k )~[ kz ~k i k' 4' cok cok~

X —Y
X f exp i (k„—k'„) + (kz —k'z)Y+ ~(k', —cok )

a
dX dY, (15a)

—,
' [k'. —~k (k. ~k)]&—[(k.—~k)+(k', —~k)]

O'JT' COk COI ~

Y —X
X f exp i (k +k' ) + (k +k' ) Y + z(k', —cok )

a
(15b)

The argument of the delta function in Eq. (15b) is negative definite since cok —k, 0 [cf. Eq. (6a)]; this implies

p kk. =—0 (in accordance with Gibbons' ). A further evaluation of Eq. (15a) now yields

Qa „„=—
—,
'

( k', co„.+k, —cok ) —5[k, co„—(k', —cok —) ]

X exp i , [(k —k' ) —(k —k' ) ]2 k~ cok
(16a)

Pkk' =0.I. (16b)

For the computation of the coefficients a;J and p;~, we proceed in exactly the same way as above. The final result is

X exp i, —[(k —k' )' —(kx k'x)']—
2(k', +~„,)

(17b)
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THE OUT VACUUM STATE AND PARTICLE CREATION u,„, , (u, u =O, x,y) = uR+, (u, u =O, x,y), u ) 0,

According to Eqs. (16), (17), and (11), we have
where the modes uR+; are defined by

(20b)

uL —,i L
IJ lIl, J

J
(18a) L

uR+, I = ~& IJuR —t ~

J
(19b)

R
iJ 1n,j

J

(18b)

the vacuum states ~0, L —) and ~0, R —) associated
with the modes uL; and uR, . are both equivalent to
the in vacuum ~0, in ) . Now, consider an inertial observer
0 in the Minkowskian in region IV, moving into the Aat
region II on a timelike geodesic which initially in region
IV has the form v = cu —vo, with c » 1, vo & 0 (Fig.
1). Just before 0 crosses the null boundary [v =Oj be-
tween regions II and I and enters the interaction region I,
his motion is entirely confined to the flat,- Minkowskian
region II, where the preferred vacuum state is the stan-
dard Minkowski vacuum ~OM, II) =— ~0, L —) associat-
ed with the modes uL; [cf. Eq. (9)]. As 0 crosses the
boundary (u =0], he first feels the u wave, followed by
the gravitational field due to the nonlinear interaction
and scattering of the two colliding waves. However, since
0 moves to the "right" in Fig. 1 with arbitrarily large
speed (c )) 1), i.e., in the same direction as the u wave
and in the opposite direction to the U wave, he observes
the v wave as blue-shifted by the factor c and the u wave
as red-shifted by the factor 1/c; as c ~ m, all influence
on 0 from the u wave will be obliterated by this red-shift.
Therefore, in the limit c = ~, when his inertial trajecto-
ry degenerates to the null geodesic u = 0 (Fig. 1), the ob-
server 0 will not be able to distinguish his experiences
from those of any other inertial observer moving on the
spacetime of the single U wave, with the u wave absent.
But the sole effect of the passage of the single u wave is to
change the initial Minkowskian vacuum state (which for
0 is the state ~0, L —) associated with the modes uL;)
in accordance with the Bogolubov transformation given
by the right-hand side of Eq. (18b) (see also Fig. 1).
Hence, defining a new set of mode solutions uL+; by

The initial data (20) combined with the field equation
Cl u,„, ,

= 0 [cf. Eqs. (7) and (1)] constitute a well-defined
initial-value problem for each mode u,„,;. The solution
of this initial-value problem determines each u,„, ;
uniquely throughout the interaction regionI—:( u & 0, u & 0 j, and consequently throughout the
spacetime.

To compute the Bogolubov transformation

uout, i X( ij in,j + pij in,j )

J
(21)

L R ~ R L
Vil = ~ ij + jl & fail = ~ ij jl

J J
(22)

we find that

(23)

and that p;j are found by solving the integral equations

—,
' g ( y,)

—g, ) u;„, (u, u =O, x,y)
J

=QPj u*;„j(u, v =O, x,y), u ) 0,
J

(24a)

—
—,
' g ( y;j

—rjj ) u;„j (u =O, u, x,y)
J

between the in modes u;„, and the out modes u,„... it is
not necessary to calculate the out modes explicitly. Com-
bining Eqs. (19) and (18) with Eqs. (20), and introducing
the quantities

RuL+; = ~ cx . ~ uL
J

(19a)

=QP; u';„, (u =O, u, x,y), v ) 0 .
J

(24b)

it is physically reasonable to restrict the canonical out
modes u,„,; to satisfy

u,„, , (u =O, v, x,y) = uL+; (u =O, v, x,y), u ) 0 .

(20a)

When applied to an observer who enters the interaction
region from the Oat region III, moving "leftward" on a
timelike geodesic initially given in region IV by
u = cu —uo (with c » 1 and uo & 0), the above argu-
ment yields

In practice, the calculations involved in the computa-
tion of y;j. , il,j, and P; from Eqs. (22) and (24) are rather
tedious and difficult. Even for the Khan-Penrose space-
time, the results cannot be obtained in exact analytic
form without approximations. In the following, we give
the final results of our computations for the Khan-
Penrose background, but we do no discuss the intermedi-
ate steps. All results below are valid in the long™
wavelength limit (coke'ab ) « 1.

Using Eqs. (16a) and (17a) and assuming a = b for sim-
plicity, Eqs. (22) give
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3 kk' Ik'k

477+cokci)k

'ia
exp

2

k„—k„ +
ct) k kz

k'

k' —k'
x

cog +k', cos ma +
Q)k k

k'

cok +k

X cos ma +
co kk z cOI ~+i z

cos [ —,'a (co„+cok. +k', —k, ) ], (25)

m =—[(co„+k', )(co„—k, )]'~ (25a)

When inserted into Eqs. (24) together with Eqs. (8), Eqs.
(25) yield

thermal distribution with temperature

1

24 sr &ab
(30)

or, in cgs units [and since the dimensionless part of the
phase-space term (ab) ~ remains uncertain within our
approximation],

I kk'
4rc2 Q~„~k, k„+k

' ~„+lk',
l 1

Xln (26)

Ac geometric factor
ks v'ab (30a)

The number density of created particles' in the out region
I,

IN-VACUUM GREEN'S FUNCTIONS
IN THE INTERACTION REGION

nk = (o, in
l
a".„,„a.„,„ lo, in )

= J d'k IPkkl (27)

The most reliable way to obtain information about par-
ticle creation is to determine the response of a particle
detector "moving through the out region. This requires
[see Eqs. (3.54) and (3.55) of Ref. 1] the calculation in the
interaction region of the in-vacuum Green's function

is quadratically divergent (in k) with pkk. given by Eq.
(26). Introducing a high-frequency cutofF kF [in an "actu-
al" physical collision we expect kF —(A, , A,z) ', where
A, , and A,2 are the wavelengths of the colliding waves], we
obtain

G (x,x')—:( 0, in
l P(x ) P(x')

l 0, in )

uini + u ini (31)

(a =b)
nk

a kF

2477 CO I

k —kx y

k +k
(28a)

and consequently of the in-mode solutions u;„, (x ).
After introducing the separation of variables

In the general (aWb) case the result is

a+b (ab)'kF' k„'—k '
nk 4a j7 24~

[(a b)cok + (a +—b)k, ]
(a+b)cok + (a b)k, —

We can rewrite Eqs. (28a) and (29a) in the form

n '="' = a'(ak ) (ak )k
k '+k'

x y

(29a)

(28b)

uink =—
1

[(2') 2cok]'~

X exp [i(k x + k y )] (1 —u 2 —
U 2) '~2 fk (u, U)

(32)

f„„,+ 6k(u, u) f„—0, (33a)

k k
f„(u =O, U)=exp +

2 kz+ cog 1+v 1 —v

and using Eqs. (7), (1), and (8), the initial-value problem
for the in modes in the interaction region reduces to

nk = (ab) (&ahkF) [—,'(a —b)cok + —,'(a+b)k, ]~

co& + k,
(29b)

where the last factors are consistent with the long-
wavelength [(cok&ab ) (( 1] limit of a (Bose-Einstein)

l 1
fk(u, U =0)=exp

2 k, —
coj,

where

k
+

1+u
k

u
1 u

v~0,
(33b)

u~0,



QUANTUM FIELD THEORY IN A COLLIDING' PLANE-WAVE. . .

2[( 1
r 2)l/2 r ]2 [(1 g 2)l/2 Q ]2 + k 2[( 1

~ 2)1/2+~]2 [( 1
r 2)1/2+r ]2

5„(u,v) = +
gg ( 1

~ 2 ~ 2)2 4(1 Q
2 g 2)3/2 (1 ~ 2)1/2 (1 ~ 2)1/2 [~+(1 ~ 2)1/2( 1

r 2)1/2]2

Equations (33) and (34) cannot be solved exactly (no Riemann function is available). Nevertheless, by a careful pertur-
bation analysis using the method of strained coordinates, it is possible to obtain the following result which is exact
along the boundaries Iu =0, v ) 0I and I v =0, u ) 0I, but which is accurate only to first order in the displacement
away from them (i.e., along these boundaries the true u;„1, have the same values and the same normal derivatives as the
functions below; from here on we will refer to this kind of accuracy as "first order"):

u;„t, u, v,, x,y) —= 3»2 exp [i(k„x + k y)](1 —u —v )
[(2n ) 2cok]'/

r

i 1X exp
2 cok+k,

k k
+

1+v 1 —v

l, 1
v

2 cok k
L

k +
1+0

(35)

Inserting Eq. (35) into Eq. (31), we obtain an expression for G+(x,x') with the same first-order accuracy as the above
u;„1,. Obviously, this G (x,x') is not accurate enough to calculate the response of a particle detector in the interaction
region, so we will not need its explicit form. However, the Green s function

G"'(x,x') = G (x,x') + G+(x', x)

will be useful in the next section. Its first-order expression according to the above computations is

(36)

(1 ~ 2 r 2) —1/2 (1 i2 g i2) —1/2
G"'(x,x') =—

2 772

1 —D„ /b, „—D, /b, ,
1/2

1 + D„/6„+D„/6,
1 + D„/6„+ D, /b, , (x —x')
1 —D„ /b, „—D, /6,

(37)

where

a (1+uu ') (u —u ')

(1—u )(1—u' )

b (1+vv ') (v —v ')

(1—v )(1—v' )

a (u+u ') (u —u ')

(1—u )(1—u' )

b (v+v ') (v —v ')

(1—v ') (1—v ')
(37a)

THE RKNORMALIZED IN-VACUUM STRESS-ENERGY TENSOR

For notational convenience, in this section we rename the coordinates u and v as u and v (i.e.,u:—u = u /a, v —= v = v /b), and express the interaction-region Khan-Penrose metric (1) in the form

g, = e Mdu dv —e U( e'dx' + e 'dy'),

where

(38)

( 1 2 2)3/2
M = —In aQ

( 1 2)l/2 (1 2)1/2 [ + ( 1 2)1/2 (1 2)1/2 ]2
(39a)

U = —ln(1 —u' —v'), (39b)

(1 —u )'/2+ v (1—v )' +uV=ln
(1 —u )'/ —v (1—v )'/ —u

(39c)
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According to the Hadamard-Wald point-splitting renor-
malization, ' the Anal renormalized in-vacuum expecta-
tion value ( 0, in

~

T'f'„~ 0, in ) =—( T'f'„„) of the
stress-energy tensor

(40)

G'"»(x, x') == [—detg(x)]
4~

X ———a, (x,x') (y+ —,
' in~(T

~ )
0

—
—,
' a2(x') 0 (y —

—,'+ —,
' In~cr ~)

(41)

where y is Euler's constant, 2o. is the proper geodesic dis-
tance between x and x', and in a normal coordinate sys-
tem y centered at x',

for a massless, scalar field in a vacuum spacetime is ob-
tained by the following procedure.

First, by acting on the renormalized Green's function
G' "(x,x ') —G' "»(x,x ') with the appropriate (sym-
metrized) difFerential operator [cf. Eq. (40)] and tak-
ing the limit x ~ x', the quantity
( 0, in

~

T'"'"'„~0, in ) = ( T'""'„,) is constructed (see
Chap. 6 of Ref. 1). Here G'" is the exact in-vacuum
Green's function and

with the interaction region, but in a more general collid-
ing plane-wave solution it may be smaller. Note that in
the coordinate system t = —,'(u+U), z =——,'(U —u), the
condition (44) is equivalent to (T' '„) = 0; hence our
assumption means that there is no momentum fiux in the
z direction after the passage of the colliding waves. (This
clearly will not be the case if the colliding waves are not
identical. ) We also assume that the algebraic structure of
(T'f'„) respects the symmetries of spacetime; in the
specific case of the Khan-Penrose solution, this means

( T(f) ) —( T(f) ) —( T(f) ) ( T(f) )

(45)

( T(f) ) —( T(f) )X X

where e and e are the orthonormal vector fields in the x
and y directions. [Eq. (46) implies the same relation for
( T'""'„,); cf. Eq. (43).]

We turn now to the analysis of ( T'f'„) on the boun-
daries of the interaction region. From this point on, we
restrict our attention to the conformally coupled /= —,

'

case, but observe that since spacetime is vacuum (R —= 0),
g' enters the analysis only through Eq. (40), i.e., only in
the computation of ( T'""'„).Since in the conformally
coupled (massless) case ( T'""'„) is traceless, ' Eqs.
(46) and (43) give

a, (x,x')—:—
—,
' a t)(x')y y~,

A,pKa p
—= —, R R~„p.

az(x')—:—,
' a i(x'),

(42)
( T(ren) ) —2 eMe V —U ( T(ren) )XX QV

(47)

Next, the final result ( T'f'„) is computed by the rela-
tion

(T'f'„, (x)) = (T'"'"'„.(x)& —,a, (x)g„.(x) .1

64~

(43)

and

( T(ren) ) 2 eMe —V —U ( T(ren) )yy e 8
QV

(T(f) ) —2 v —U M(T(f) )XX QV
64m

( T(f) ) —( T(f) ) (44)

In the Khan-Penrose spacetime, this subset coincides

Since the exact in-vacuum Green's function G'"(x,x')
is not available in the interaction region, the above pro-
cedure cannot be straightforwardly applied to compute
( T'f'„,). Nevertheless, the first-order result Eq. (37) al-
lows us to compute ( T'f'„) exactly along the boundaries
of the interaction region. Before discussing this result,
however, we will make a number of physically plausible
assumptions on the form of (T'f'„, ) throughout space-
time, which will eventually allow us to compute it every-
where for the conformally coupled case g= I/6.

First note that, as is proved in detail in Gibbons, '

( T'f', ) vanishes throughout spacetime for a single
plane wave, consequently, in a colliding plane-wave
spacetime it vanishes everywhere except in the interac-
tion region. We assume that in the subset of spacetime ly-
ing after the passage of both waves,

(48a)

e

( T(f) ) —2 e
—v —U M ( T(f) )yy

— e e Qv
64 2 2

throughout the interaction region.
Now, before carrying out the actual computation, it is

possible to guess the value of ( T'""'„,) along the boun-
daries of the interaction region using the following argu-
ment: From Eq. (35), it is seen that the in modes and their
first derivatives are continuous across the surfaces
Iu =OI and Iu =0]. [This is true only in the massless
case; for a massive (m %0) scalar field the in modes are C
but not C along the boundaries. ] In principle, this
should imply that the Green's functions G'" and G"'~z
and their first derivatives are also continuous across these
boundaries. [For the explicit expressions (37) and (41) this
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is not the case, presumably since the evaluation of the
Green s functions involves infinite summations over the
in modes. However, these discontinuities should not be
manifest in physically observable quantities; we expect
them to cancel in the renormalization process. ] Since the
actual renormalization through Eqs. (40)—(43) involves
only first-order di8'erentiations of 6' "—G' "D&, and
since before the boundaries [u =Oj and Iv =OJ
(T'"'"'„) = (T' '„) —= 0, we must have

(T'""'„,& = 0 on Iu=OIUIv=OI . (49)

The above result is verified by explicit computation using
Eq. (37), Eqs. (40)—(43), and the standard prescription for
point-splitting renormalization as described on p. 195 of
Ref. 1. We will not display these calculations here, but in-
stead go on with the analysis of ( T(~)„,) in the interior of
the interaction region,

In any spacetime with the metric (38)

R»~ R»rs = 16e [2(M „,) + (M „V„+V„„—V„U„)(M,V„+ V„—V, U, )] .

When combined with Eqs. (39) and (42), for the Khan-Penrose spacetime Eq. (50) gives

a, =——„',Z»~'Z ~, = 64 1 g4

180a b a [(1—u ) (1— )]'
X(28 —80uv +6(9uv —8uv +38uv —2uv ),

(50)

(51)

where

a=1 —u —u 8 = uv + [(1 —u )(1 —v )]'~ (52)

In particular, on the boundaries Iu =0, v ) 0) U Iv =0, u ) OI of the interaction region

az(u =O, v, x,y) =

az(u, v =O, x,y) =

128 1

180a b (1 —v )

128 1

180a b (1 —u )

v ~ 0,

u & 0. (53b)

Combined with Eqs. (49) and (53), Eq. (43) now implies that the final, renormalized stress-energy tensor ( T(~)„) on
these boundaries, given by the expressions

(f)
U & l(|, =o)u)U=o( =

~
e az(x),

128 m

u + 0, v ~ 0, (54a)

u ) 0, v ~ 0, (54b)

and

yy& ~( =o)U( =o) z64m
u ~ O, v) 0, (54c)

for (((,v A uv, vu, xx, or yy, u ~ 0, v ~ 0, (54d)

has a Casimir-type form, ' with a negative energy densi-
ty ( T' )„) (that diverges to —co near the singularity),
and positive (anisotropic) pressures ( T' '„)
= —( T' '«), ( T' '„„), and ( T' ' ) (that diverge to
+ Do near the singularity).

To calculate ( T(~)„,) in the interior of the interaction
region, we use the conservation equations

where the functions P ( u, v) and Q ( u, v ) are defined by

( T(f) ) ( 2U —MP

(T(f) ) —(T(f) ) ( eUQ
(57)

In terms of P and Q, the only remaining nonzero com-
ponents of ( T'I'„) are

T)'. =T(' +r T»+r(' T~—= 0. (SS);P,P pP pP

When applied to the tensor ( T(~)„)using Eqs. (38), (39),
(44)—(46), and (48), Eqs. (55) reduce to the system

(T''
&

=-'e e' P+ a1
XX 16~

(58a)

e Q„+e P, =

eUP „+eMQ. =

1
e U, a&,

16m

1
e U„az,16~

(56a)

(56b)

(T' ' ) = —'e U e UP+ a . (58b)
1

3'3' 16

Using Eqs. (57) and the boundary values given by Eqs.
(54), we can rewrite Eqs. (56) in the form of a well-defined
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initial-value problem: The evolution equations for P and
Q in the interaction region are

and the initial values are

1

32 F2

1

32 ~2

(59a)

(59b)

P(u =O, U) =—

P(u, u =0) =

1 1

45m ab 1 —
U

1 1
u ~ 0,2a2g2 1

2 '

(60a)

(60b)

Q(u=0, U) = Q(u, u=O) —= 0, u ~ 0, u ~ 0.
(60c)

The initial-value problem (59) and (60) cannot be solved
in closed form. However, it follows from Eqs. (59) that

( M —
Ug ) (eM —

Ug )

, [(e ' ),a, „—(e )„a, ,].
32 ~2

(61)

P(u, u) = 1 1
[ —,', [1—(1—2u ) ]

45m ab 1 —2u

+u +u —4u

+2u I
—1 . (62)

Although initially it is negative, P(u, u ) rapidly changes
sign and diverges to + ao as u ~ 1/&2, i.e., as the world

Therefore, if the quantity a2 [Eq. (51)] were a function of
a = e only [cf. Eq. (52)], then the right-hand side of
Eq. (61) would vanish identically, and combined with the
initial data (60c) this would imply Q = 0 throughout the
interaction region. But a2 clearly does depend on 0 as
well as on a [Eqs. (51) and (52)], hence Q cannot be iden-
tically zero. Nevertheless, our analysis in Ref. 15 shows
that as a ~ 0, i.e., near the singularity [u +U = 1},az
asymptotically is a function of a only, i.e., as a ~ 0
R" R~ zs is asymptotically independent of 8. [See Secs
III and IV of Ref. 15, especially Eqs. (2.19), (3.23),
(3.33)—(3.35), (3.38), and (4.7). Also observe that
R" R„&& = 32%'2 + 16 %o%'4 in any para11e1-
polarized colliding plane-wave spacetime. ] We conclude
that Q is asymptotically negligible compared to P near
the singularity [a=0].

To obtain some information on ( T'f'„) near the
singularity, we compute P on the central timelike world
line u =U, using the ordinary differential equation along
this world line to which both Eq. (59a) and Eq. (59b)
reduce when Q is neglected. The final result is

line u =U approaches the singularity [u +U = 1I. This
means that deep inside the interaction region, away from
the initial null surfaces [u =OI and [U =OI, (Tl '„) no
longer has the Casimir-type form (54), but instead has an
anisotropic "inAationary" form where the energy density
as well as the two pressures along the Killing x, y direc-
tions are positive, while the pressure along the inhomo-
geneous z direction is negative [Eqs. (57) and (58)]. In
other words, (T'f'„) near the singularity has a form
that introduces a positive, effective cosmological constant
"in the z direction"; it is reasonable to expect that this
would tend to smooth out the z-dependent inhomo-
geneities of the Khan-Penrose spacetime when the back
reaction of ( T'f'„) on the geometry is taken into ac-
count.

Although our method of computing ( T'f'„„) for the
Khan-Penrose spacetime is unlikely to be adequate in
other colliding plane-wave solutions, we speculate that, at
least in its qualitative aspects, the information obtained
through our calculations in this paper is applicable to
more general colliding gravitational-wave spacetimes. In
particular, for a highly inhomogeneous and anisotropic
initial singularity which can be modeled by a time-
reversed colliding gravitational-wave spacetime (see Fig.
2 and the discussion in the introductory section of this
paper), we speculate that ( 0, out

I T„ I 0, out ) near the
singularity will have an inflationary form, and will tend
to dissipate the initial inhomogeneities by causing a local
de Sitter-type expansion through its back reaction on the
geometry. [Here IO, out) is the vacuum state which is

gravitational
wave

nearly Minkowskian region
in the far future:
IO,out )~ IOM)

gravitational
wave

highly anisotropic and
inhomogeneous initial
singularity

FIG. 2. Although our method of computing ( T'f'„,, ) for the
Khan-Penrose spacetime is unlikely to be adequate in other col-
liding plane-wave solutions, we speculate that in its qualitative
aspects the information obtained through our calculations is
applicable to more general colliding gravitational-wave space-
times. In particular, for a highly inhomogeneous and anisotrop-
ic initial singularity which can be modeled by a time-reversed
colliding gravitational-wave spacetime (see the discussion in the
introductory section), we speculate that ( 0, out

I T„, I0, out).
near the singularity has an inflationary form, and tends to dissi-

pate the initial inhomogeneities by causing a local de Sitter-type
expansion through its back reaction on the geometry. Here
IO, out) is the vacuum state which is nearly Minkowskian
throughout the nearly-flat, out-region in the far future. With the
reversed time orientation, this state is analogous to the in vacu-
um which we use throughout the paper.
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nearly Minkowskian throughout the nearly Aat out re-
gion in the far future (Fig. 2); this state is the time-
reversed analogue of the in vacuum which we have used
throughout the paper. ] If it is granted, either on the basis
of the anthropic principle or of quantum cosmology,
that quantum fields initially start out in a vacuum state
close to ~0, out), then the above result (if true) might
have interesting consequences for cosmology. Our specu-
lations are consistent with the results of previous

particle-production computations for anisotropic cosmo-
logical models, but they must be verified with further
calculations along the lines of this paper.
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