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We describe in this paper the application of the theory of Yennie, Frautschi, and Suura (YFS) to
construct a Monte Carlo (MC) event generator with multiple-photon production for Bhabha
scattering at low angles. The respective generator provides the four-momenta of the electron and
positron and of all soft and hard photons with a proper treatment of the phase space and conserva-
tion of the total four-momentum. The final-state electron and positron are assumed to be visible
above some minimum angle with respect to the beams {double tag). The QED matrix element in the
algorithm is taken according to the YFS exponentiation scheme. The Monte Carlo program will be
helpful in luminosity determination at experiments at the SLAC Linear Collider and the CERN col-
lider LEP; it takes into account QED O(a) and the leading higher-order corrections. The impor-
tant difference with the existing MC procedures is that the minimum energy above which photons
are generated may be set arbitrarily low. Sample Monte Carlo data are illustrated in our discussion.

I. INTRODUCTION

The Bhabha-scattering process

e+(pi )+e (qi )~e+(p2)+e (q2)

at the scattering angle range 1 —40 mrad will be common-
ly used in all experiments at the CERN collider LEP and
the SLAC Linear Collider (SLC) as a source of data for
luminosity determination. The reason is that the cross
section at such low angles is large and it comes almost ex-
clusively from a pure QED source: namely, from t
channel photon exchange. The s-channel Z contribution
is below 3%, even on the top of the resonance.

Since the total cross section for all other processes will
be calculated using a luminosity deduced from Bhabha
event rates, any uncertainty in this measurement will
propagate to all of them. Absolute normalization of the
cross section is of particular importance for determina-
tion of the Z line shape and for calculating the number
of neutrinos using the total cross section at the top of res-
onance. It will be highly desirable to know the luminosi-
ty with l%%uo uncertainty. ' This means that the theoretical
cross section for the Bhabha process must be known with
even better precision. This goal requires very good con-
trol over radiative effects. Most probably inclusion of
O(a) radiative corrections is not enough and one will
have to include at least the leading 0 (a ) correction.

In the presence of the radiative effects it is practically
impossible to calculate the integrated cross section
without the help of the Monte Carlo method in the form
of an event generator. It is especially true for low-angle
Bhabha scattering due to the strong dependence on the

minimum electron-positron angle with respect to the
beam. Because of the sharp angular dependence of the
differential cross section even the smallest smearing of
the e —angles due to soft-photon emissions should be tak-
en into account.

In this paper we shall describe the application of our
recently developed Yennie-Frautschi-Suura (YFS)
Monte Carlo approach to SU2L X U& radiative corrections
to Bhabha scattering with the consequence of solving all
of the above problems. The present version of the pro-
gram provides an arbitrary number of soft and hard pho-
tons. The implemented QED matrix element is not
strictly valid, however, for two hard photons (above a few
GeV). The probability of such two-hard-photon events is
suSciently small that the program in the present form
can actually be used both for studies of topology of events
and for calculating the total cross section with —1% pre-
cision at low angles.

In the final version we plan to implement the QED ma-
trix element based on the YFS scheme which will be valid
for arbitrary number of soft photons and up to two hard
photons. It should be stressed that the YFS scheme is
rather well founded from the theoretical point of view
and it allows us to sum up in a consistent way the real
and virtual soft contributions in all orders of perturbative
QED. It can be exploited as a very efficient tool in sum-
ming up the leading higher-order contributions without
introducing theoretical uncertainties on what is actually
done.

We would like to mention that similar work for p-pair
and ~-pair production is in progress. ' The first version
of the multiphoton initial-state radiation is incorporated
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already in Ref. 5. For some details on the YFS approach
we refer the reader to Refs. 2—4. The work presented in
what follows is also related to another project for deep-
inelastic ep scattering (see Ref. 6).

Our work is presented as follows. In the next section
we give the respective representation of the differential
cross section and a discussion of the relevant aspects of
our Monte Carlo procedure for Bhabha scattering at low
angles (1—140 mrad). In Sec. III we present some sample
Monte Carlo data in comparison with the conventional
single-bremsstrahlung Monte Carlo event generator simi-
lar to that of Berends and Kleiss in Ref. 7. Section IV
contains our summary remarks.

II. DIFFERENTIAL DISTRIBUTIONS
AND MONTE CARLO METHOD

Since the main emphasis in this paper is on the Monte
Carlo procedure we start with a formula for the total
cross section which includes phase-space integrals in a
form ready for the Monte Carlo (MC) integration. The
differential cross section for the process

e+(p] )+e (q] )~ e (pz)+e (qz )+y(k] )+ ~ ~ ~

+y(k„)
is summed over n and integrated over the phase space in
the following way:

n=O ' q2 p2 i=1

d k, S(k;)8™(k;)5 p, +q, —
pz

—
qz

—g k,
i=1

Xexp 2aReB+ I 0 S(k)[1—0;™(k)]d3k—

X PQ(XPz %qz ) + y P](APz qz ] ) ( ] )
1=1

(2)

Let us explain the main ingredients in the above expression.
(a) The infrared singularity in the factors

2

S(k)= z4~' p k p I
q2

q, k+q, k

is excluded from the integration domain by means of the conventional energy cutoff in the center-of-mass system. This
is done with help of

8; (k)=8(2k /&s —e) (4)

which is equal zero for k (e&s /2.
(b) The integral includes hard photons all over the complete phase space.
(c) The explicit dependence of the integrated cross section in Eq. (1) on the infrared cutoff e (coming from the integra-

tion limits) is in fact completely counterbalanced by the Yennie-Frautschi-Suura form factor

FY„s(p;,q;, e)=exp 2aRe&+ J o S(k)[1—0;™(k)]d k—

R (p, q)=-EX

7T

=exp[&(p] pz)+&(q] qz)+&(p] q])+&(pz qz) &(p] qz) &(pz q])]

l 2pq
1 l

se' + ll 2pq

I, 4pq 2 I,

Neither the total cross section nor any other measurable
quantity depends on e. It plays only the role of a dummy
parameter introduced to limit the multiplicity of very soft
photons for the purpose of the numerical MC simulation.
(It should be noted that the above expression for FY„sis
written in the leading-log approximation. The precise
form is calculable and involves some additional diloga-
rithms. )

(d) The functions po, are infrared finite and are easily
calculable up to an O(a). For the purpose of the basic
Monte Carlo program we take the lowest-order version of

po only. It is up to a normalization constant equal to a
Born differential cross section. The meaning of Rpz and
Aqz is the following. Strictly speaking po, are defined
within the corresponding two- or three-body phase space
and if in formula (2) there are some additional photons
then in the arguments of Po, parameters the adjustment
pz~Apz and qz~%qz has to be performed. It is done
in such a way that one requires p]+q] =%pz+Aqz for
Po and p] +q] —~pz+~qz+k] for P](k] ) This pro-
cedure is related to the fact that in the YFS scheme in-
frared singular factors S are subtracted and the residua,
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2sa 1 1+
2 s

+
s

where t& =(Ap2 —p, ), ust = —s t&—, th'e A procedure
is specified in Ref. 5.

For completeness, let us recapitulate the discussion in
Ref. S concerning this A operation. Specifically, we
transform q2 and p2 to the rest frame p2+q2=0. In this
frame, q2 and p2 are scaled by a factor which corresponds
to exclusion of the additional photons (nz ~ 1 for 13o and

n~ ~ 2 for P„where n~ is the total number of photons in
the event candidate); the momenta are then boosted back
to the c.m. system with a boost parameter which takes
the respective exclusion of the additional photons into ac-
count. The resulting momenta then satisfy
%q, +Ap, =p, +q, foi I3p aild Aq, +%p, +k =q, +p,
for 13,(k). One may wonder how sensitive our numerical
work is to the precise realization of this A operation,
which was already anticipated in the original paper of
Yennie, Frautschi, and Suura. The situation is the fol-
lowing. If one sums to all n on P„,one can show that the
results of different A-operation realizations are identical.
If one stops to a finite number of P„,as we do, then one
can use the properties of the change in the 13 under a
change of %-operation realization to show that the net
change on our results will be of order (a/~)" +' if we
stop our P„sum at n =n'. For, if the additional photon
energies all vanish, the two A-operation realizations are
identical. Hence, the change in our results associated
with a change in the realization of % is infrared finite; it
therefore will generate a change in our numerical results
here of the order of (a/vr), since there are no additional
large infrared logarithms in Po and 13i independent of the
W-operation realization for low-angle double-tag Bhabha

equal to P, , are taken at the singularity position (k =0).
The A procedure concerns only I3, arguments and does
not disturb the phase-space integral or four-momentum
conservation. In our case we take

4

S(k; ) =Sq(k, )+S (k, )+S,„,(k, ),
where

r

S (k)
—a Pi P2

4~2 pk pk
r 2

S (k)=
4~' q 1 k q2k

S,„,(k) =2
4m

p2

plk p2k

ql q2

q, k q2k

we neglect S;„,. After this change our modified master
formula may be rewritten in the following way (we show
only /3O for the purpose of illustration):

scattering. We have found that such a change is general-
ly below the level of the pure weak radiative corrections
to Bhabha scattering at low angles.

We shall now introduce the reader to the method of
generating Monte Carlo events. The procedure of con-
structing Monte Carlo algorithms is generally the follow-
ing: we shall gradually simplify the integrand and the
phase-space limits such that at the end we obtain a simple
distribution which can be easily generated with the help
of the uniform random numbers. All these modifications
have to be corrected for by appropriate reweighting and
rejecting the events generated according to the simplified
distribution. At the end of this section we shall summa-
rize all weights which were introduced in the course of
the simplifications. The exact integrated cross section is
calculable numerically using the average weights from
the MC generation and may be obtained with the arbi-
trary precision, a precision which increases with the
number of generated events.

Let us first reject from the integrand all terms due to
interference of the real bremsstrahlung among the posi-
tron and electron lines. It means that in the infrared fac-
tors

3 3dq2 dp2 00 oo l pg pg

+vFs(p;, q;)lao(&p„Aq, ) g g, , ,
6 p, +q, —p, —

q2
—g k, —g k,'qz p2 o n!n'f

i =1 j=l
dk; ~' dk, '

X g S (k;)8 (k;) g, ' S (k,')8; (k,') .
i=1 i j=l

Now comes the most crucial step before the Monte Carlo algorithm can be set up. We are going to parametrize the
phase-space integral with a set of special variables which will be related in a straightforward way to inform random
numbers. The aim of this operation is the following: In the new variables we must entirely control the leading singular-
ity in our integral which is roughly X =(1/t )IIS(k; ). It means that with new variables we will be able to generate
phase-space points according to X or, even better, this factor will be canceled by the Jacobian of the transformation
from ordinary phase-space variables (four-momenta) to the new ones. In technical terms we are going to make impor-
tance sampling for the X factor. Needless to say, the total four-momentum-conserving delta function is the main obsta-
cle in this task.

There are two major steps in the process of reorganizing the phase-space integral. First, we split the integral into
a two-body phase space and two multibody subintegrals related to four-momenta II =p&+ g,",k, and
II~ =qz+g i kj' according to the kinematical tree depicted in Fig. 1:
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,
',

, f '""' f'"deaf",dM,'f",dM2fS4 11,—,—y k,

n n'

(k;)9;™'(k;)f 5 II —
q

—g k' g d (k')9;™(k')+„(p;,q; )p (Ap, Rq )6(,t, M2, M ),
i =1

where

(9)

d~(k)=, S(k), M'„=II'„,q=q, p, t =(p, —11 )'.d k—

The factor 6 keeps track of the upper limits on t, M, and M2, i.e., normally Q= 1 but if t, M2, M2 are outside phase-
space limits 8=0. In the MC program the variables t, M, M will be generated up to infinite limits and g will be im-
plemented by rejection.

In the second step we parametrize the two multibody subintegrals in (9) in terms of the light-cone-style variables. In
the case of the erst subintegral, related to H, we do it in the reference frame where p 1

—pz =0 and p, +p2=0. We call
it the QRS frame. The integral can be rewritten as

n d p n

fdW'"'=fdM fS' ll, —p, —y k, ,' gd (k;)e; (k )
i=1 P2 i =1

(10)

where tp
= 2p lp2 an

den; =den(y, , z, , P, )

a d4'i 1
dg; dZ;

27T uzi

f71
+y' z'

ff1 772e e

The new variables y;, z, , P, are related to k/' in the QRS
frame as follows: Let

The Sudakov variables a,. and p; are related to our vari-
ables y;, z; as

k; =(a;+P;)E, k = lkTlcosg, ,

k, =( —a, +P, )E, k,. =lkTlsing;,

lk, l =2E,&a,P, ,

where E is a solution of a simple equation
2

n n

t=Q+2Q gk;+ gk,

Q~=pz —p, =(Q,Q )—:(0,0, 0, 2E ) .

q&

(12)
0!;=EX; 1 —g Pg, a;=y, —

k=1

Ie

1 —g pk, p;=z, —
k=1

m e

Summarizing we have introduced a three-level change of
the variables

(1) (2) (3)
(kf') ~(a;,P;,P;)~(a;,P;, P;) ~(y;,z;,P;),

where the third transformation is rather cosmetic, for the
purpose of the MC program. It is quite remarkable that
for such a complicated change of the variables the Jacobi-
an factor is so simple (t !t); nonetheless, this is what
happens in (15). Finally, the phase-space limits in the
new variables are also very simple:

0&a, &1, 0&P, &l, 0&/;&2', g /3, &l.

FIG. 1. Kinematical tree for multiphoton Bhabha scattering.

From now on we incorporate the condition g,. p; & 1 into
e.

The completely analogous change of the variables
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1
o = g g, , , f dP —Q de;0;™(k;)

0 n!n'! s

n'

dco 8 ™(k)FvFspoe
j=1

(17)

(kj' )~(yj', z~', P~ ) is done in the second integral related to
II . In that case we work at the reference frame QRS,
where Q~=q, —q, =—(0,0,0, 2E ), q, +q, =0, »d
t =Q'= —4E'.

With these transformations our master integral
simplifies significantly:

and, in the same step, we also put

tp tq———+1 (19b)

(S2) The same is done with de~.
(S3) Next we enlarge the phase space limits with the re-

placement 8—+1. We recall that 6 takes care of upper
limits on M, M and of the conditions g; p; ( I and

g, P,' & l.
(S4) The new distributions dc@; and dc@,

' can be generat-
ed easily provided the lower boundary on y, ,z; is simple.
We replace, therefore,

n'

0' (e) 0~ '(6)= Q 0;(5) g 0,'(&), (20)

0'™(e)=—+ 0;™(k,)+ 0; (k,') (18)

which is a very complicated object in terms of them. The
reason is that the Lorentz transformations from QRS
and QRS to the laboratory are involved.

We shall eliminate the above obstacles and the other
ones and get a workable Monte Carlo algorithm by a
series of simplifications of the integrand in (17) andIor
enlargements of the integration domain. The resulting
distribution (integrand) is easy to generate and all
changes are properly countered later on by appropriate
reweighting and/or rejecting MC events.

(Sl) The first change is des; ~des; in which we replace
~t~ ~

with its maximum value s:

and the way to the Monte Carlo integration is open. The
singularity 1It is under control because the integration
over t is explicit and the infrared factors S(k;) are also
under control because the distribution des; =d lny;d lnz, .

will be trivial to generate.
It should be stressed that, apart from the one

modification, i.e., omission ofS;„„the formula (17) is pre-
cisely equivalent to our starting expression (2). The dis-
cussion of kinematics was far from complete, a lot of im-
portant details were omitted, and we will present them
elsewhere.

Although formula (17) brings us closer to the MC pro-
gram, there are still important obstacles on the way. Let
us list three of the most important ones. (1) The variables
t and t are not independent but they are very compli-
cated functions of all y, , z, , P, ,y', z', P' and t They e. nter
into der; and den' and, because of that, these distributions
cannot be generated in their present form. (2) The same
t and t and other dot products of fermion momenta
enter into Fv„s. (3) The generation of our new variables

y, ,z, , . . . (in terms of which the densities are so simple) is
also inhibited because the infrared singularity is eliminat-
ed out of the phase space with help of

n'

where

0, (5)= 0(max(y, ,z; ) —5)=0(max(y, , z, )
—5),

0'(5) =0(max(y', z~ ) —5) =0(max(y', z') —6) .
(21)

This modification is acceptable only if the new infrared
domain defined by 0't '(5) =0 falls entirely inside the old
one defined by 0' (e)=0. This may be always achieved
by taking 6 very small but the price may be high in terms
of excessive rejection. We find that for

~ t;„~Is = 3 X 10 one has to use 5= 10 e and the rejec-
tion rate is around 90%.

(S5) The Yennie-Frautschi-Suura form factor we re-
place simply with a constant

4u s 1
++Fs ++Fs 5

(22)

(S6) For the sake of completeness we include in this list
the modification

S;„,~0 (23)

which we have done earlier.
(S7) The next replacement, as the two previous ones,

concerns rather the scattering amplitude than the phase
space

Po(Ap„Aq, )+ g P, (&p, ,&q, , ki)S(ki) +
1=1

+ho = —. (24)t'

This is usually a good approximation, especially if some
(even mild) cutofF on the total photon energy is in place.

Altogether the approximate new distribution reads

I m dt J2m.

dP, dy, dz;
0 y,

—
7T 2 7T

m e
zt

s
t9 z-

l

Vl e

s
(19a)

oo oo
$

n

de, 0;(6)
n =On'=0 ' i =1

2 2m, m,
y, =a + p, , z, =p, + a;,

n'

X + dc@'0'(5) . (25)
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Using the identity

f den;0;(5) = ln ln-2cx s
m~

we find immediately

(26)

d a (1 loop) dop
p~p(p2I q2 ) = —2 Re(aB )

dQ

do do 0

dQdQ k dk dQ

(34)

(35)

4a m. 4a m
op= dt (27)

which is simply the lowest-order Bhabha cross section for

The Monte Carlo result for the integrated cross section
is given by

o =oo(w), (28)

where the average is taken over all events generated ac-
cording to the approximate integrand in (25). The weight
w consists of seven contributions corresponding to all
simplifications made on the way from Eq. (2) to Eq. (25):

S7
w= II w(k) .

k =S1
(29)

Let us trace back all these modifications giving explicit
expressions for the w (k) factors. The first weight is relat-
ed to de;~dS; and is given by

dco;
w(S1)= II

i=1 d~E

3'r ~i 1 me 1 1+
y,

2 z,
'

tp

(30)

and the second weight w(S2) is defined in a completely
analogous way for de';~de, '. The next three weights
are listed below

where do(1 loop)/dA is the one-loop differential cross
section in Eq. (2.8) of Ref. 7 with the soft photon part
omitted, do '/dQ dA&k dk is given in Eq. (3.1) of Ref.
7, and do.p/dQ is the respective Born cross section in Eq.
(2.1) of Ref. 7. [Note that the right-hand side (RHS) of
(34) can be obtained directly from Eq. (2.8) of Ref. 7 by
substracting (lnFY„s)dao/d0 from the RHS of the latter
equation. ] The virtual infrared function B is taken from
Refs. 2 and 3. Hence we see that (2)—(35) represent a
complete description of our YFS Monte Carlo approach
to higher-order radiative corrections to Bhabha scatter-
ing at low angles near the Z resonance.

In particular, the fact that do o/d fl in Eq. (2.1) of Ref.
7 does not include the Z exchange means that the result-
ing Pp, are only appropriate for small c.m. scattering an-
gles 8140 mrad near &s =M 0. It is, of course, pri-

marily for this reason that we refer to this initial Bhabha
program (BHLUMI) as a luminosity-monitor program, to
be used in the small scattering angle regime where the
QED t-channel exchange is dominant. Of course,
sufficiently far below the Z, the restriction to small an-
gles may be ignored; for, at such values of &s, the Z ex-
change is negligible for most practical purposes. The
effect of inclusion of the Z exchange in dop will be
presented elsewhere. (In fact, the A-Z interference
effects are already available in the most recent version of
BHLUMI FORTRAN; this version of BHLUMI is available
from the authors upon request. )

In the next section, we illustrate the results of this ap-
plication of our YFS Monte Carlo method with some ex-
plicit Monte Carlo data.

w(S3)=e w(S4)=0™(e)w(S5) FYFs/FYFs . (31) III. YFS MONTE CARLO RESULTS

n+n' S;„,(k; )
w(S6)= II 1+

S (k;)+S (k, )

Finally the last one is the model weight

1
w (S7)= Po(Rp2, &q2)

0

(32)

+ g P, (JPp~, Aq2, k, )S(k, ) '+ .
1=1

(33)

It is in this way that we realize the YFS theory, on an
event-by-event basis, for Bhabha scattering.

The description of our Monte Carlo procedure will be
complete if we specify the model weight in (33). We have
used the recipe in Ref. 3 together with the results in Ref.
7. Hence, we have, for our normalization in (6),

The next weight, attendant to our omitting S;„,at the
very beginning of our simplification procedure, is
equivalent to

In this section we wish to illustrate the type of results
which we have generated with our YFS Monte Carlo ap-
proach to Bhabha scattering at low angles. We recall
that the raison d' etre of this particular application of our
work is the use of such low angle scattering for the lumi-
nosity monitors at SLC and LEP near the Z resonance.
Accordingly, we immediately focus our attention on the
luminosity-monitor scenario for the Mark II detector at
the SLC; for the Mark II is currently in operation at the
SLC.

Specifically, we consider the MINISAM small-angle
monitor regime 15.2 ~ 8 ~ 25 mrad (16.2 ~ 0, ~ 24. 5

mrad) for the e (e) center-of-momentum scattering angles
8 (8, ). Further, we require Ef') 0.5+s /2 and we re-
quire E,'+E') 0.6&s, where Ef is the final-state energy
of f in the c.m. system, f =e, e. We impose this scenario
both on our BHLUMI YFs Monte Carlo program (the
round dots in Fig. 2) and on the familiar Berends-
Kleiss -type one-photon Monte Carlo program (the
crosses in Fig. 2) which the user can obtain from BHLUMI
as an option in its input file. (We have verified that our
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IVllNISAM CROSS SECTION

16.2 mrad &8 & 24.5mrad
15.2mrad & ee & 25mrod

300

x SINGL. E BREIVl

YFS (BHLUMI)

200

b
100

one-photon comparison Monte Carlo program agrees
with that of Ref. 7 below the level of 0.1%.) We see that,
while the two Monte Carlo programs are close
throughout the Z region, for high precision, the YFS-
type simulation is desirable. The statistical errors on the
points in Fig. 1 are of the size of the dots themselves.

One may wonder what would happen if we included
the collinear photons' energy with that of the e+ and e
in the energy cuts on Ef in Fig. 2. We have checked that
this does affect the results in Fig. 2 at the level of 1%.

The question then is does one need the multiphotons at
the level of 1% Z physics, presuming the systematic er-
rors will be at that level for the foreseeable future. What
our detailed simulations have to say about this can be il-

lustrated at the 92-GeV point in Fig. 2. For 6X10 1y
Monte Carlo events and 6X 10 YFS events, the respec-
tive total cross sections are 246. 8+0.3 and 246.4+0.7 nb.
[Here, we have restored the nonleading constant terms to
R (p, q) in (5)]. These numbers are less than la apart and,
further, they are less than 0.2%%uo apart. This is fortuitous,
however, because the 1y result depends on the famous ko
parameter, the soft-photon cutoff in units of v s /2. The
quoted result has ko =0.01, so that this 1y result is un-

certain at the level of ko=1%, on general grounds.
Hence, if one wants a ko-independent prediction of the
respective radiative corrections at the level of —1%, one
must include multiple-photon effects. Our main message
is that, prior to Fig. 2, there was no systematic calcula-
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tion, for a realistic detector scenario, of the size of the
multiple-photon effects in Bhabha scattering in the lumi-
nosity regime, although ad hoc naive exponentiation ex-
tensions of order-a calculations existed which only allow
for the produced final-state four-vectors to include at
most one real-photon four-vector. Hence, while these ex-
tensions gave a good qualitative guesstimate of the effects
of the higher-order radiative effects, their accuracy could
not be trusted at the level of —1%. BHLUMI (YFs) has no
naive ad hoc procedures in it so that it represents a truly
systematic and rigorous calculation of the higher-order
(multiphoton) radiative effects in Bhabha scattering in the
SLC-LEP luminosity scenario. It is pleasing that, on the
one hand, the total effects are small on an absolute scale
but, on the other hand, they are in fact necessary for cer-
tainty in the highest precision work.

Finally, let us give the reader a view of the total weight
w in (29) for the type of data in Fig. 2. Specifically, in
Fig. 3, we show a histogram for m for the BHLUMI YFs
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FIG. 2. Luminosity-monitor results for &s -M &.
. the dots

Z
'

represent our multiple-photon Monte Carlo result for po+p„
the crosses represent the one-photon Monte Carlo result of the
type of that by Berends and Kleiss (Ref. 7). The statistical error
is the size of the dot. The monitor configuration is that of the
MINISAM at the Mark II at the SLC: 16.2+0, ~24. 5 mrad,
15.2~ 0, ~25 mrad, where gf is the c.m. scattering angle of f,
f=e,e+; E,'+E~ &0.6vs and Ef &0.5v's l2 in the c.m. sys-

tem, where Ef is the final-state energy of f, f=e,e+.

FIG. 3. Histogram of the total weight WT in our Monte Car-
lo program BHLUMI at &s =92 GeV=M o for the kinematical

Z
restrictions on Ef' in Fig. 2. The ordinate is the number of
events, the abscissa is WT and is given in tens of bins, bins, and
the respective values of WT. Some statistics of the histogram
are also shown: the total number of events (1.2687X10 ), the
bin size (0.2), the mean value in bin units (0.5576},etc. The his-
togram explains our eSciency of 1/12.7. It also shows that the
weights are not Auctuating wildly.
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point at &s =92 GeV in Fig. 2. The statistics is
1.27X10 events. What we see is that m, referred as WT
in the histogram, is reasonably well controlled, with the
expected tail for rare con6gurations. The mean value of
m is 0.56 with a root-mean-squared fluctuation of 1.1, so
that, indeed, the fluctuations give an important tail to the
distribution which is otherwise primarily centered near
its average. We see, however, that the values of m do not
have wild excursions so that, indeed, our numerical work
does indeed converge at the level of -0.1% and, hence,
our approach allows an arbitrarily accurate simulation of
our model (33) in principle.

We conclude that the way to precision measurement of
the luminosities at SLC and LEP is open. In this way,
the high-precision checks of the SU2I XU, model are
made realistic after all. More detailed applications of
BHLUMI will appear elsewhere.

IV. SUMMARY, REMARKS, OUTLOOK

What we have shown in this paper is that the YFS
theory allows one to realize, in a rigorous theoretical
framework, an event-by-event description by Monte
Carlo methods, of the low-angle Bhabha scattering at
+s M p (we emphasize &s M o because of manyz z
reasons, the most technical of which is that BHLUMI is re-
stricted to low angles when &s -M o), the type of
Bhabha scattering which is crucial far the luminosity
determinations at the SLC and LEP experimental
scenarios. In this way, we feel that, in view of our previ-
ous work which realizes e e ~ff+ny, fXe, by simi-
lar methods, we now have software tools with a rigorous
basis which permit a realistic determination of the inter-
play between detector cuts on the one hand and higher-
order SU2L XU, radiative effects on the other at SLC and
LEP.

We would like to extend our results to wide-angle
Bhabha scattering near the Z in the not-too-distant fu-
ture. This work is in progress.

We would like to emphasize that, at energies of the
SLAC and DESY storage rings PEP and PETRA, the use

of our BHLUMI program would provide an independent
check of the luminosities used in the respective physics
scenarios. We understood that such a check is in pro-
gress.

Concerning the results of related works, we should also
note the work of Karlen in Ref. 10. He, however, has fo-

( —) ( —)
cused on an event generator for detected e y, y and e
final states in the process e+e ~e+e +(2)y, so that at
most two real-photon four-vectors are produced, with at
least one of Ie+, e I required to stay below a veto angle
of —15 mrad; it is therefore outside of the SLC-LEP
luminosity monitor regime. Hence, his kinematical re-
gime is orthogonal in this respect to the regime which we
have analyzed in this paper (and for which BHLU)vtl is op-
timized numerically). In a later work we plan to explore
also this single- or zero-tag regime in order to determine
in a precise way the effects of the final states with more
than two photons on single- and zero-tag physics.

In summary, the application of the YFS theory to the
Monte Carlo simulation of double-tag Bhabha scattering
at low angles for &s -M 0 has been achieved. Taken to-z
gether with our YFS (2) FORTRAN Monte CarlO program
in Refs. 5 and 8, our BHI.UMI FORTRAN program then
completes our Monte Carlo realization of the YFS ap-
proach to higher-order radiative effects in the SU2L X Uj
theory in a way which is then applicable directly to the
SLC and LEP scenarios.
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