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We show that, in the path-integral formalism, anomalies can arise from the discrepancy between
classical field equations and quantum field equations. With a suitable regularization for the func-
tional derivative, this discrepancy leads to an expression identical to that obtained from Fujikawa’s
anomalous Jacobian, for the U(1) and the non-Abelian anomalies, respectively. This approach pro-
vides an alternative interpretation for the origin of anomalies in the path-integral formalism, which
is more closely related to the conventional one in the operator formalism.

I. INTRODUCTION

A decade ago, Fujikawa' studied in a series of papers
the origin of anomalies in the path-integral formalism.
There he revealed that anomalies are caused by the Jaco-
bian factor, which arises from the noninvariance of the
path-integral measure under infinitesimal transforma-
tions. He also evaluated the anomalous Jacobian and re-
lated it to the local version of Atiyah-Singer index
theorem. Since then, his approach has been studied ex-
tensively, and has become a standard method valid for all
the known anomalies related to infinitesimal transforma-
tions.?

In this paper we show that there is an alternative inter-
pretation for the origin of anomalies in the path-integral
formalism, which is more closely related to the one in the
operator formalism: namely, the discrepancy between
classical field equations and quantum field equations. In
classical theories, (classical) field equations are derived
from the variational principle, i.e., the variation of the ac-
tion 81 /8¢ should vanish. On the other hand, in the
path-integral formalism of quantum theories, (quantum)
field equations are derived from the fact that the func-
tional integral of functional derivative vanishes identical-
ly.> This guarantees that (8I/8¢) vanishes also in
the path integral. However, when this is multiplied
by a functional F[¢] to be a composite form as
(F[$]8I/8¢), it is not clear whether or not it vanishes.
These field equations are crucial to conserve the Noether
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where I = [dx L, N = [d¢ e is a normalization fac-
tor, and j* is the Noether current. Here we consider a
linear transformation 8¢ < a¢ with an infinitesimal con-
stant parameter a. (Euclidean prescription is always as-
sumed for the path integral, although it is not explicitly
stated.) If one is allowed to exploit the classical field
equation 81/6¢=0 in (1), then the Noether current is

40

33,4

current in classical theories. Thus, if they do not hold in
the path integral, the current is no longer conserved and
anomalies may arise. This interpretation of anomalies
has also been suggested by Fujikawa,? and Joglekar and
Misra.*

"From this point of view, we examine Noether’s argu-
ment in the path-integral formalism, and acquire
anomalies directly as a breakdown of the argument for
the current conservation associated with global sym-
metries. Then we illustrate it by the case of the U(1) and
the non-Abelian anomalies. With a suitable regulariza-
tion for the functional derivative, we derive an expression
identical to that obtained for the anomalous Jacobian, for
both anomalies, respectively. It is shown that this is not
an accident but, on the contrary, Fujikawa’s anomalous
Jacobian is a different manifestation of the discrepancy
between classical and quantum field equations. We also
briefly discuss how the origin of anomalies in the path-
integral formalism is understood in the operator formal-
ism.

II. BREAKDOWN OF NOETHER’S ARGUMENT
AND ANOMALIES

To see why Noether’s argument in classical theories
may break down when one goes over to quantum
theories, we will examine it in the path-integral formal-
ism. Let .L[#] be a Lagrangian for a generic field ¢,
which is invariant under a global infinitesimal transfor-
mation ¢—¢’'=¢+8¢p. Then, for the path integral, we

have
’euw]
[

conserved. However, this is not allowed in quantum
theories, because we have a slightly different quantum
field equation:

=_lﬁfd¢%(g¢ei1[¢])=<8(§’:p )>+i<§—;s¢>. @

‘S¢+a# [%S«p

(1)

This gives
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ti ith t =a°T*?):
(8,j*)= . < (85;) > ‘ 3) ion (with parameter a=a?T*?)

Although the right-hand side (RHS) of (3) contains an
ill-defined divergence 6(0), which implies that the above
manipulations are formal, this relation indicates that we
cannot take for granted that the Noether current is con-
served in the path-integral formalism.

To be specific, we will consider the Yang-Mills theory
governed by the Lagrangian

L=1trF, F*+JiDy , (4)

where P =g+ A. Under the infinitesimal global axial
U(1) transformation,

Sy(x)=iay P(x), §P(x)=P(x)iay®, (5

the Lagrangian .£ in (4) is invariant. To evaluate the fer-
mionic path integral, we will expand ¥ and ¥ in terms of
eigenfunctions ¢, of iD as

Yx)=3 a,6,(x), Px)=3b,él(x), (6)

where the ¢, (x)’s satisfy

Do, (x)=Mh,8,(x), [dx(x)p,(x)=5,,
(7)
z¢" =8(x =) .
Formally, the fermionic measure is defined as

dydy=[], da,db,, which yields detiP = [[, A,. Then
the path integral may be given meaning in terms of, for
instance, the {-function regularization. We also define a
regularized functional derivative as

o) Afl /M? +
Sx)  wm, 2 ¢ o5
-2 /M2 d ®

Ee 2 (x)

One can check that (8) leads to the usual functional
derivative, 83(y)/8(x)=8¢(y)/8¢(x)=8(x —y), in the
limit M — . Then, from (3), the divergence of the
axial-vector current j# =y"y>y reads

0b,

BJ(x) M

_ =i S(SJ(x))> <8(S¢(x))>
(8,j4(x)) - < 5300) + 50x)
=2 Jim 6l g, 000 L)

Equation (9) is an expression identical to that obtained by
Fujikawa for the regularized anomalous Jacobian,' which
gives the axial U(1) anomaly

(9,/5(x))= 16172 €Y PtrF , F op(x) . (10)

For the non-Abelian anomaly, we will consider a chiral
gauge theory where the gauge field couples only to a left-
handed fermion 1(1—y°)y. Then, the Lagrangian is
given by (4) with =3+ A1(1—y°), and is invariant un-
der the following infinitesimal global chiral transforma-

8Y(x)=—ar(1—y )(x), BP(x)=(x
45 (x)=[4,(x),al*.

(1+7/ ),
(11)

Proceeding in accordance with (1), we have

0=(50)
=—(5580) + (5720 ) + (2 Ban ) + (@,
H

where j! is the Noether current given by
= =iy 1=y W+ 4,,F*],
=Ji+04,,F*¥], . (13)

Since the last two terms in (12) can be combined to give
(D, J¥)a’ one ends up with

L. a -2 /M2
(D, Jix)) =i lim tr§¢i<x>T Y ha(x)e

— i vap,
= a7 e T, 4,8, 4,

+1A,4,45)(x), (14)

a result analogous to (9). [We note that (14) gives the
consistent anomaly that is not covariant, because we em-
ploy eigenvalues A, of the gauge-noninvariant operator
iD in (8) for this case.’]

III. THE ORIGIN OF ANOMALIES

Our results, (9) and (14), strongly suggest that the ori-
gin of anomalies, i.e., the RHS of (3), may be equivalent
to Fujikawa’s anomalous Jacobian in general. Now we
show that this is indeed the case.

If we consider the change of variables in the vacuum
functional, we have

=-}V—fd¢’e”[¢']—-117fd¢e”[¢]

:%fdd)eil[qﬁ']_i_ln]_%fd¢ei1[¢]
=——fd¢zfdy
—tfdy

where InJ represents Fujikawa’s anomalous Jacobian
which arises from the noninvariance of the path-integral

a¢+a j*a) |eT®l+1ng

< 8¢>+(6 (j )} | +InJ , (15)

measure. We note that (15) holds for an arbitrary
infinitesimal parameter a which may be local. Thus,
when we localize o at x as a—€d(x —y), we get

[ &I <

t<g$8¢>+anlloca=O , (16)

since the total derivative term in (15) vanishes under the
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space-time integration.® [Notice that this term does not
necessarily vanish for any a, because it contains topologi-
cal information. It yields, for instance, the index for the
Dirac operator after integration with constant a in the
case of the U(1) anomaly.] Since it is InJ with the local-
ized limit in (16) that gives the anomaly,’ the result (16),
with (2), establishes the expected equivalence. Further-
more, by choosing a global « in (15), we recover the rela-
tion (1), which follows from the fact that InJ vanishes for
constant a due to the consistency required in evaluating
the anomalous Jacobian.

This equivalence can also be seen by comparing two
ways to derive the quantum field equations. The first
J

—l—f ¢+aF[¢])e'1[¢+aF[¢]]___fd¢e¢1[¢]

[l—l—tfdy

2

_1 8F
=¥ {l—i—fdya&b

~<|(s¢) ri{rta1gs) |

5

aF[¢]—+a

way, by which we derived (2), is to utilize the fact that
the functional integral of functional derivative vanishes
identically:

=ifd¢-i

(&) ufrearts).

where F[¢] is an arbitrary polynomial functional. The
second way,3 analogous to (15), is to consider a change of
integration variables, ¢—¢+aF[4], with an infinitesi-
mal parameter a in the vacuum functional:

(F[¢]e”[¢])

OF-

_—Mrb H ]euw]__]l\_rfd(,,eum

(18)

where a is localized, as we did in (16), in the last line. Then one realizes that the first term in the last line of (17), which
arises as the Jacobian factor in (18), results in the anomaly on the RHS of (3) for F[¢]=38¢. In other words, Fujikawa’s
anomalous Jacobian is an integral form of the discrepancy between the classical and quantum field equations. This
again proves the equivalence stated previously.

Our approach differs from Fujikawa’s by the way the regularization is introduced. We have introduced it by defining
the functional derivative in (8), not in the course of evaluating the Jacobian factor as he did. However, since the func-
tional derivative should be defined in accordance with the path-integral measure to derive the field equations consistent-
ly, both regularization procedures should also be related to each other. As a consequence, the above equivalence may
remain true after the regularization.

Our origin of anomalies, the RHS of (3), can be interpreted along the line of the conventional viewpoint in the opera-
tor formalism.” Let us illustrate it for the case of the non-Abelian anomaly. The essential ingredient which causes the
anomaly is the ill-defined term, (81 /8¢)) [or {(8I/8)¥)], that appears in (12). Noticing that, in the path-integral

formalism, derivatives always operate outside the T product, we may recast the term into

<¢( 51/1( )> <¢ 'E'p(y)):aﬁ(()'T‘Z(")"V”'/’(J’)|0>+<0lle(x)iA(y)%(1—ys)z/z(y)!o)

=—i{0|{¢1(x),%(»)}]0)8(x°—y°) + (0| TP x)iPY(y)|0)

=id(x —y) .

Therefore, the singularity in the limit y —x stems from
the equal-time anticommutator in the operator formal-
ism, and is intrinsic to local quantum field theories. Our
approach simplifies the process of deriving (19) by ex-
ploiting the quantum field equation (2), and gives mean-
ing to the term by introducing the regularization for the
functional derivative.

IV. CONCLUSION

We have seen that, in the path-integral formalism, the
classical field equations disagree with the quantum field
equations and, as a result, anomalies may arise. With a
suitable regularization for the functional derivative, we
get the same expressions as the anomalous Jacobian
gives. The origin of anomalies is shown to be equivalent
to Fujikawa’s anomalous Jacobian, and is also related to

(19)

the conventional interpretation in the operator formal-
ism. Remarkably, by the direct use of Noether’s argu-
ment, anomalies manifest themselves as a breakdown of
the current conservation associated with global sym-
metries, as expected. This is not the case for the anoma-
lous Jacobian which is trivial for global transformations.

Although we have considered only linear transforma-
tions in this paper, our approach will be valid for more
general (nonlinear) cases because the regularized func-
tional derivative (8) satisfies the usual Leibniz law. Fur-
ther, it is also valid when symmetries are expressed by in-
variances of the action, not of the Lagrangian. In this
case, the Lagrangian changes in (1) by a total divergence
of a term, which is accordingly absorbed into the Noeth-
er current. Thus the classical field equations are still cru-
cial for the current to be conserved, and no essential
change is needed for our argument.
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Interestingly, our approach is applicable even to the
conformal anomaly in string theory, where the trace part
of the classical energy-momentum tensor vanishes trivial-
ly without using any field equations. In this theory, we
may redefine the string coordinates so as to preserve the
reparametrization invariance in the path integral. This
redefinition modifies the classical energy-momentum ten-
sor,”% and the modified part gives a similar expression as
the RHS of (3), which leads to the conformal anomaly.
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