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Nontopological solitons can be formed during a phase transition in the early Universe as long as
some net charge can be trapped in regions of a false vacuum. It has been previously suggested that
a particle-antiparticle asymmetry would provide a source for such trapped charge. We point out
that, for the model and parameters considered, statistical Auctuations provide a much larger con-
centration of charge and are, therefore, the dominant source of charge fluctuations in solitogenesis.

I. INTRODUCTION

Nontopological soliton solutions in classical field
theories have appeared in many forms since they were
first introduced by Rosen' and by Friedberg, Lee, and Sir-
lin. Examples include Q balls, quark nuggets, cosmic
neutrino balls, and soliton stars.

The simplest nontopological soliton (NTS) solution in-
volves a real scalar field o and a complex scalar field P
with the Lagrangian

a =a„y(a~y)'+-,'a„aa~a U(~y~, a), —

k]
U(~g~, cr)= (o —oo) +h~P~ (cr —cro)

8

3+ ( cr —o o ) cr o+ A,

where the constant A is adjusted to give U(0, o )=0 at
the global minimum of the potential. The classical poten-
tial for o. has two local minima. At the global minimum,

E= + 'n.AR +O(—R A,
'i o ) (2)

where Q =
~N&

—N-~ is the "charge" contained in the
spherical NTS of radius 8, and A is given by
A = —A, i(o —pro) /8 —

A,2(cr —ac) ere/3. The three
terms in Eq. (2) represent the kinetic energy of the
confined massless P field, the false-vacuum energy of the
NTS, and the surface energy of the wall separating the in-
terior NTS region from the true vacuum. We will ignore
the wall contribution in our analysis.

Minimizing the energy of the NTS configuration
results in an NTS of mass and radius
M =(4m/3)&2Q A' and R =(Q/4A)' . This mass
should be compared to the mass of Q free P's in the true
vacuum Mf Qtn p

=Qh '
~
o —o o~ . The NTS

configuration will have a lower mass and hence be stable,
for charge Q greater than some minimum charge, given
by

separated from the true vacuum o. =o by a wall of
thickness -o.

o
'. The energy of the NTS configuration

1s

~=cr = —I(1+212/A, , )/2

+[(I+2k,2/1, , ) +8k,2/1, , ]'~ /2Iao,

1231 A

h (cr —cro)
(3)

the P field has a mass m& =h (o —crc), while at the lo-
cal minimum (cr =oo) the field P is massless. The nonto-
pological soliton solution describes a configuration of
massless P particles trapped inside a region with cr =oo,

In this paper we will study in detail the case A, 2/A, , =0.15.
For this choice of Az/A, „A=O 6A, cr cQ.;„=, 18K,, /h,
and M ;„m= 64(A. , /h )cro.

A scenario for the cosmological origin of NTS was pro-
posed by Frieman, Gelmini, Gleiser, and Kolb (FGGK).
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p(op)
=exp( b,F/To ) =—exp( —A V /To )p(o

(4)

[recall that U(o )—:0 by the addition of A]. If
p (crp)/p (cr ) ~ 0.3 then only finite regions of the "false"
vacuum will be populated. If the regions of the false vac-
uum contain a net charge Q:—~N& N&~ &—Q;„, false-

vacuum regions can be stabilized and evolve to nontopo-
logical solitons.

The probability that a false-vacuum region contains a
charge Q & Q;„ is the subject of this paper.

In the FGGK scenario, there is a critical temperature,
T, =2o o, below which the Universe divides into domains
of true (cr =o ) and false (cr =o p) vacuums. The
characteristic size of these domains is determined by the
correlation length g of the o field at the transition. At
high temperatures thermal fluctuations can cause a corre-
lation volume to make the transition between the two
minima. These Auctuations freeze-out at the "Ginzburg"
temperature T&. FGGK estimate TG by the criterion
that TG is equal to the maximum free energy of the corre-
lation volume in the transition F~=UMV& (UM is the
maximum value of the potential in the region
o ~ o ~ op). For A2/A, , =0.15 To =1.30'p/A, } . Of
course, TG can never be larger than T, =2cro.

At TG, the probabilities of being in the false vacuum

p (o p) and true vacuum p (o ) are Boltzmann distributed
according to the difference in free energies of a correla-
tion volume in the different minima:

will also be Gaussian distributed; with means
N=N&+N&, Q=~N& N—&~=gN; and variance o =N.
Therefore, the probability of finding a charge Q in a
volume containing a mean number N of (P+P)'s is

P ( Q, N ) = exp[ —( Q —qN ) /2N ] .
')/ 2mN.

As described by FGGK, below TG the Universe
divides into cells of correlation volume V&-—(4'/3g. '

Adjacent cells of false vacuum form "clusters" with a
density per unit cluster of

f (r) —br 1.5e cr—

for volume V =r V&. The constants b and c are unknown.
Scaling arguments imply that c ~0 as p ( o p )~p, (where

p, is the critical probability for percolation, p, —
—,
'

) and
b ~0 as p (op) ~0. It is expected that b and c are of or-
der unity otherwise. The number density of r clusters
produced in the transition is simply n (r) =f (r) V& '. In a
volume V =rVe, the mean number of (P+P)'s is
N=rN&, where N& is the mean number of (P+P)'s in a
correlation volume.

The number density of false-vacuum domains with
charge Q is simply given by

ng= g n(r)P(Q;N=rN(),

where n (r)=f{r)V&
' as before, with f (r) given by Eq.

(9). Approximating the sum over r by an integral, '
n&

becomes

Il. CHARGE FLUCTUATIGNS

FGGK assumed that the net charge in a region was
proportional to a cosmic asymmetry, such as baryon
number, between P and P. This cosmic asymmetry can
be expressed in terms of an asymmetry parameter q:

V n = J dr r exp[ (r) N /2—+c)rb exp( r))

+2~N P

—Q /2N~r]

2b exp(Q ) ( N /2+ )in
71 g

c

[n~ —
n~/

ny+n~
(5) XK, [(&2QIN~ )(g N~/2+c)' ], (10)

In this paper we demonstrate that if q ~ 0.5, Poisson Auc-
tuations will dominate the probability distribution, and
the number density of NTS's produced will be indepen-
dent of g, even in the limit g —+0.

We will denote by N& the mean number of P's in some
volume. The probability of finding the actual number N&

of P's is Poisson distributed: P(N&,'N&)=e ~N&~I
X&.. In the limit of large X&, the distribution will be
Gaussian, with mean and variance p =o =N&.

P(N~, N~)= exp[ (N~ N~) /2N~]—. —
7T

We will later discuss the validity of the Gaussian approxi-
mation. An expression similar to Eq. (6) obtains for the
probability of finding a number N- of P's if the mean is

¹& The total number N and charge Q defined as

N=—N, +N,—, Q—= iN, —N,-i

Xexp[Qg —Q(r1 +2c/N&)'~ ] .

The expression for V&n& can easily be converted into
the ratio of the number density of Q's to the entropy den-
sity, s =2m g, T /45. Using /= A, i 'To ', the correlation
volume is V&=4mg~/3=4m/3A, , T&. Assuming the P's
are relativistic at T = To, n

&
=n

&
=g( 3 ) To Ivr, and, at

T TGy

N~=(n~+n-)V = 8$(3) (12)

Since V&
= 8m g, /135k, &s,

where E, (z) is a modified Bessel function of the second
kind of order 1. For a large argument, the expansion
K, (z)~e '&~/2z gives' '"

~ 1/2

V~ng =b
3~2 (r1 +2c/Nr)'~



BRIEF REPORTS 3531

0
0—2—

I
I

I
I

I
I

I
I

I
I

I
I

I

—2—
X ~

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

w 8
-10—

Cg0 —12

I
II

~
~

8 ox

0 g=0.0 [Poisson]

X
0 X
~ 0

0
0

X
X

~ 0 x~ 0
~ 0

I

X
X0

~ 0

-10—
8

Cgo —12—

X
X ~

X
x ~

x
X

X ~
X

X

This Work

X
X

X
X

X

—14 — ~ g=0.5 [Gaussian]

—16 — x g=0.25 [Gaussian]

-18—
-20

0

~ g=0.0 [Gaussian]

I I I I I I I I I I I I I I I I

2 4 6 8 10 12 14 16
Q

I

18 20

-14—
—16 — a
-18—
-20 I

0 2

q=0.50

g~0.25

I ) I

4 6

FGGK

I I L I I

8 10 12 14
Q

I I I

16 18 20

FIG. 1. A comparison of Poisson (Ref. 9) and Gaussian prob-
abilities [Eq. (10)] as a function of Q. Nt=b =c= 1 was as-
Sullled.

FIG. 2. The result of the large-z expansion of the Bessel func-
tion in Eq. (11) is shown by the points marked This Work.
Comparison of these points with the corresponding points in
Fig. 1 shows that the large-z expansion is a good approximation.
Also indicated by the points marked FGGK are the results of
FGGK (Ref. 8) which ignored statistical fluctuations.

n&
Yg =

s

135K,,b 8P 3)
8rr g, g 3rrA.

1/4
37TX]c

q + expI gal —Q[vP+3rrA|c/4g(3)]'i I4((3)

0.54b A,

g Q3n (q +1.96K, , )'i exp[grI —Q(rt +1.96k, ,c)' ] . (13)

There are two interesting limits of Eq. (13). In the limits rj «1.96K, ,c, and g ))1.96yii, ,c, Y& becomes

(0.64bA, , /g Q )exp( —1.4QA, , c' ), g «1.96K,,c,
(0.54b'yi &i ri'i /gng i )exp( —0.98K&gcr) '), g ))1.96K,c . ,

(14)

y

Since Y& decreases exponentially with Q, the most abun-
dant NTS will be the one with the smallest allowed
charge, Q =Q;„.

Note that in the "large"-g limit, we essentially recover
the results of FGGK. However, this case is only relevant
for g larger than of order unity Amuch mo. re likely pos-
sibility is that the "small"-g limit is the relevant one, and
that Y —10 g ie —Q

Q min

III. NUMERICAL RESULTS AND CONCLUSIONS

In the previous section, three approximations were
used: (1) Gaussian rather than Poisson statistics; (2) the
sum over r clusters was replaced by an integral; and (3)
the large-z expansion of the Bessel function K&(z) was
used. In this conclusion section we present some numeri-
cal results and discuss the range of validity of the above
approximations.

Clearly for "large" Q, Q) 10—20, Gaussian statistics
will be a good approximation. In Fig. 1 we compare an
integration over r of Gaussian statistics, Eq. (10), to the
more accurate sum over r of Poisson statistics. The
Gaussian results are presented for g=0, 0.25, and 0.5,
while the Poisson results are given for q=O only. It is
clear that the Gaussian approximation is an adequate
one. Integration over r rather than summing also intro-

TABLE I. Values of Q;„and A, , /h necessary to result in
the indicated values of Q»sh o, for two values of o.o.

&NTsho

0. =10' GeV
A, i /hQmin

oo= 1 GeV
Qmin

10
1

60
55.5

3.3
3.1

17
12.5

0.94
0.7

t

duces only a small error.
In Fig. 2 we present the large-z expansion of the Bessel

function in Eq. (11). Comparison of Figs. 1 and 2 shows
that, for i/2QN&

' (t) N&/2+c)' )2, the expansion is
accurate. In Fig. 2 we also show for comparison the re-
sults of FGGK for n V&. Clearly it is a serious underes-
timate for n& unless g &)1.96k, &c.

We conclude by illustrating the importance of the cal-
culation of Y&. We use the example discussed in the In-
troduction, A2=0. 15K,„which gives Q ;„m=1 A8,

&
/h, and

M ( Q;„)=46k;crc /h =, 2.5Q;„h ' i o 0. Assuming that
the contribution to 0 from NTS's is dominated by those
with Q =Q;„, YNTs ——10 Q;„e '", the present
NTS energy density is pNTs YNTs~NTsso where so is
the present entropy density, so=2800 cm . Compar-
ison of pNTs to the critical density, p, =1.88X10 ho
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QNTsh 0
= 10 h

GeV
e &min

1/2
Q min

(15)

For NTS's to be dynamically relevant today, QNTsh 0
should be in the range 10 ~ QNTsh o

+ 1. Relevant
values of Q;„, or equivalently, A, t/h, are shown in
Table I.

The conclusion of this paper is that statistical Quctua-
tions are the dominant source of charge fluctuations in

gem, where ho is the Hubble constant in units of 100
km s ' Mpc ', gives

solitogenesis, not a cosmic asymmetry as assumed by
FGGK. The resulting QNTs is independent of g, so long
as g~0. 1. Finally, reasonable values of Q;„give QNTs
in a dynamically interesting range.

ACKNGWLKDGMKNTS

This work was supported in part by the DOE and
NASA (Grant No. NAGW-1340). E.W.K. would like to
thank Alex Szalay for his hospitality at Eotvos University
where this was written.

G. Rosen, J. Math. Phys. 9, 996 (1968).
2R. Friedberg, T. D. Lee, and A. Sirlin, Phys. Rev. D 13, 2739

(1976); Nucl. Phys. B115, 1 (1976); B115,32 (1976); R. Fried-
berg and T. D. Lee, Phys. Rev. D 15, 1964 (1976)~

S. Coleman, Nucl. Phys. B262, 263 (1985).
4E. Witten, Phys. Rev. D 30, 272 (1984).
58. Holdom, Phys. Rev. D 36, 1000 (1987).
T. D. Lee, Phys. Rev. D 35, 3637 (1987); R. Friedberg, T. D.

Lee, and Y. Pang, &bid. 35, 3640 (1987); T. D. Lee and Y.
Pang, ibid. 35, 3678 (1987); R. RuKni and S. Bonazzola,
Phys. Rev. 187, 1767 (1969).

~In general, one should include a term in the potential propor-
tional to ~P~ . Inclusion of this term will not substantially
alter our conclusions.

8J. A. Frieman, G. B. Gelmini, M. Gleiser, and E. W. Kolb,

Phys. Rev. Lett. 60, 2101 (1988).
When g =0 the corresponding formula using Poisson statistics

is P(Q, N)=e I&(N), where Itt is a modified Bessel func-
tion of order Q. Turning the sum over r into an integral,
V&n& =N& (z I)'~ I (Q——

z )P&zg(z(z —I) '~
) where

P, z(t is an associated Legendre function of order —', I is the

gamma function, and z =c+N& =c+A,&.

The validity of this approximation will be discussed in the
final section.

'We will only be interested in volumes much smaller than the
horizon. The expression becomes more complicated for
volumes larger than the horizon. See, e.g. , P. J. E. Peebles,
The Large Scale Str-ucture of the Unt'Uerse (Princeton Univer-
sity Press, Princeton, NJ, 1980).


