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In a previous paper we introduced a method for obtaining exact solutions to the operator
differential equations of quantum mechanics. In that paper we showed how to solve some simple
quantum-mechanical models and we suggested that the method could be used to obtain exact solu-
tions to the operator differential equations of more complicated models, such as the anharmonic os-

1

cillator whose Hamiltonian is H = 7p2+ %q“. In this paper we further sharpen the formalism and

introduce the concept of a minimal solution. We then obtain the exact minimal solution to the
operator differential equations arising from two different anharmonic-oscillator models whose Ham-

iltonians are H=1p?+1g¢*and H=1p*+ 1¢*

I. INTRODUCTION

In a recent paper! we suggested that it may be possible
to obtain exact closed-form solutions to an extremely
wide class of operator differential equations. We con-
sidered the Heisenberg operator differential equations of
motion for quantum Hamiltonians H =H (p,q) describ-
ing quantum-mechanical systems having one degree of
freedom. These operator differential equations take the
form

g=—[q,H],

!t—-

(1.1a)

—

(1.1b)

In the past, equations of this kind have been regarded as
intractable except for the one special case of the harmon-
ic oscillator, H=1p?+1q? where Egs. (1.1) are linear
and therefore the operator properties of p and ¢ do not
pose any difficulties. Indeed, the harmonic-oscillator

operator differential equations

q9=pr, (1.2a)

pP=—q (1.2b)
have the explicit solution

q(t)=¢q(0)cost +p (0)sint , (1.3a)

p (t1)=p(0)cost —q (0)sint . (1.3b)

Observe from (1.3) that the explicit solution to the
Heisenberg differential equations (1.1) consists of giving
the operators g (¢) and p (¢) in terms of the operators g (0)
and p (0) and time ¢.

Note that ¢ (0) and p (0) satisfy the commutation rela-
tion

[¢(0),p(0)]=i

and that the exact solutions ¢ (¢) and p(¢) satisfy the

(1.4a)
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equal-time commutation relation
[g(t),p()]=i .

Our idea for solving the Heisenberg operator
differential equations (1.1) is to find a quantum analogue
of the classical action-angle variable. Consider briefly the
case in which the Heisenberg equations of motion are
classical:

(1.4b)

q= —5 ) (1.5a)
__9H
Y (1.5b)
We use the fact that the energy
E=1pX1)+V(q(2)) (1.6)

is a constant of the motion. Solving (1.6) for ¢ =p gives

g()=V20E—-V(q)]. (1.7)
Thus,

t=f(q(t))—f(q(0)), (1.8a)
where

flg=['—% (1.8b)

0o V2[E—V(2)] °

Solving the algebraic equations (1.6) and (1.8) simultane-
ously gives the solution to the classical Heisenberg
differential equations (1.5). In some cases this algebraic
procedure poses no difficulty and an explicit solution for
g (t) and p(?) is obtained. In other cases it is not possible
to carry out the algebraic solution of these equations and
in such cases the solution to the Heisenberg differential
equations can only be given in implicit form. However,
we emphasize that whether or not the solution can be
presented explicitly or implicitly, once the Heisenberg
differential equations have been integrated and replaced
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with a pair of simultaneous algebraic equations, we re-
gard the equations of motion as solved.

The procedure for solving the quantum Heisenberg
differential equations (1.1) is a simple generalization of
the procedure used to solve the classical equations of
motion (1.5). Our objective is to find a pair of simultane-
ous algebraic equations involving the operators q(?),
p(t), q(0), and p(0). The first such equation expresses
the fact that the Hamiltonian is time independent, wheth-
er or not the system is classical or quantum:

H(p(1t),q(t))=H(p(0),q(0)) . (1.9

The second equation is the analogue of (1.8a). We will
construct a function F which depends on both operators
g and p and satisfies an equation like (1.8a):

F(p(1),q(t))—F(p(0),q(0))=1¢ . (1.10)

Constructing such an F amounts to integrating the opera-
tor differential equations. We regard the algebraic equa-
tions (1.9) and (1.10) as the solution to the operator equa-
tions of motion. In Ref. 1 we examined some elementary
examples where these two equations can be solved explic-
itly for the operators ¢(0) and p(t). As in classical
mechanics, there are models whose explicit solution may
be difficult or even impossible to obtain. We have thus
reduced the problem of integrating the quantum Heisen-
berg equations of motion to finding the function F(q,p)
in (1.10). Such a function F must satisfy the commuta-
tion relation

EHI=1. (1.11)
This is clearly a quantum analogue of the familiar
action-angle variables approach to classical
mechanics?’— H plays the role of the action variable and
F the role of the angle variable. The rest of this paper is
devoted to the solution of this commutation relation
(1.11) for F. However, before proceeding to the solution
of this equation it is important to point out that the solu-
tion is clearly not unique; obviously, any two functions
F, and F, satisfying (1.11) must differ by a function of
the Hamiltonian H: F,=F,+¢(H). In our quest for the
function F we will find it convenient to introduce the con-
cept of a minimal solution F. A precise statement of
what we mean by a minimal solution will be given in Sec.
I1I.

This paper is organized as follows. It is necessary to
define an operator basis in terms of which the solution for
the operator F will be expressed. These operator basis
elements form an algebra whose detailed mathematical
structure is described in Sec. II. In Sec. III we show how
to use this operator basis to solve (1.11) for the
harmonic-oscillator Hamiltonian H =1p?+1g% The
operator differential equations for the Hamiltonians
H=1p?+1g* and H=1p*+ 14" are solved in Secs. IV
and V, respectively.

II. ALGEBRA OF THE OPERATOR BASIS ELEMENTS

We will solve for the function F(p,q) defined by the
commutation relation (1.11) by expressing it as a sum
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over operator basis elements T, ,:

Fpg)=3 a, T, , » (2.1)
m,n

where «,, , are c-number expansion coefficients which
must be determined. In this section we define the
mathematical properties of the operator basis elements
Tpin-
We define T,,, (m =0, n=0) as the Weyl-ordered
form of the classical function p "q":

n
mon n
2" =0

The Weyl-ordered product can be rewritten using the
commutation relation [g,p] =1, as

n k. m_n—k
k .

apq (2.2)

m .
m=—j

j (2.3)

p'q"p

Tp=— 3
m,n om =

It is interesting to note that 7, , may also be expressed
as the totally symmetrized form containing m factors of p
and n factors of g, normalized by dividing by the number
of terms in the symmetrized expression. For example,

T, ,=Xpq+agp), T,,=1(pg’+gpq+q°p),
T,,=Yp*q*+q°p*+papq +apap +pg’p +ap’q) ,
To,4=q4 .

The Weyl-ordered form of T, , has the advantage that it
allows us to define in a natural way the basis elements
T, , where m <0, n Z0 or m 20, n <0: In the first case
we use (2.2) and in the second case we use (2.3). In fact, it
is possible to define T, , where both indices m and n are
negative integers, or even complex numbers (see Ref. 1). -
However, in the quantum models considered in this pa-
per, the minimal solution for the function F can be ex-
pressed entirely in terms of the basis elements T, ,,
where m and n integers such that » =0 and m <0 (Ref.
3). Some examples of these basis elements represented in
Weyl-ordered from are

T—11:% §q+q’% ,

T—z,lzz #44‘4;1{ )

T—1,3=% %q3+3q—;qz+3qziq+q3% ,

T—4,0=;)17 )

T—24=1—16 #q“+4q—q3+6q2#qz+4q3#q
+q4;17

The basis elements T, , form an algebra closed under
multiplication. All the properties of this algebra stem
from a single product formula
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n!

18

r! s!

(n—k) (m +k = (r =k (s +k—j)!

+
mtr—jnts—j MLELSELT .

(2.4a)

When m,n,r,s are not positive integers this product formula generalizes to

J

i
= 2] J x| L(n +1DT(m + D0(r +D0(s +1)
= — 1)k T _ s
T Trs jéo j! ,EO( Yk Tk F DT +k —j+D(r—k+1)(s +k —j+1)  mHrpnts=i
(2.4b)
Using (2.4) it is easy to see that the basis elements T, , satisfy the following commutation and anticommutation rela-
tions: '
L2+l
L
[T, T, 1=2 S _i.___”z“(_l)z 2j +1 C(m +1(n + DI(r + D(s +1)
mn s <o j+Dr S ) Iim —1+1)(n+1—=2/)(r+1—2)'(s —1+1)
XToptr—2j—t,n+s—2j—1> (2.52)
. )%
L
i A 2j C(m +1D(n + DE(r +D0(s +1)
Topns Ths )+ =2 —1)
(Lo Trs )+ EO (2j) EO( "1 T m =1+ DT +1—2j + DD +1—2j + DI —1+ 1)
XT oy gr—2jm+s—2j - (2.5b)
f
Some interesting spécial cases of these commutation and 1 w 1 m!
anticommutation relations are —Tpyn | =0 j§0 ~2 m
, T, =imT, _ s
[q m,n] m—1,n X Tm 22 - 2.7)

[P; Tm,n]: —inTm,n——l ’
{q’ Tm,n } +:2Tm,n+l ’

{p’ Tm,n } +=2Tm +1,n *

Thus, commuting with g and p has the effect of a lower-
ing operator, and anticommuting with g and p has the
effect of a raising operator, in the appropriate index.

Further special cases of the commutation relation
(2.5a) which will be used later in this paper to evaluate
the commutation relation (1.11) are

[¢% T, ,1=2imT, |, 41 » (2.6a)
p3Tpn1=—2inTy 11—y > (2.6b)
[q4»Tm,n]:4ime—1,n+3

—im(m—1)(m—=2)T, 3,4+, (2.6c)
(P4 Ty )= —4inT,, 13,

Fin(n —1)n —=2)T,, 41,3 - (2.6d)

A more elaborate example of a commutation relation
yielding an infinite sum of basis elements is

III. MINIMAL SOLUTION OF THE HARMONIC
OSCILLATOR

To illustrate the technique for determining the func-
tion F we consider the harmonic oscillator with Hamil-
tonian H =1p*+1q°. Having expressed F(p,q) as an ar-
bitrary sum over basis elements T, , as in (2.1) we substi-
tute (2.1) into the defining relation (1.11) and use the re-
sults (2.6a) and (2.6b) to find

1=2am,n(nTm+1,n-—1_me-‘l,n+1) . (31)
m,n

Hence, assuming completeness, we determine that the
coefficients «,, , satisfy the linear partial difference equa-

m,n

tion

(n+Day, 1~ (m+Da, 41 ,—1=8,08,0 - (3.2)
This partial difference equation relates pairs of

coefficients «,, ,. If we represent the coefficients «,, ,
(for all m,n) as dots on a integer planar lattice then it is
clear that next-to-nearest-neighboring points on a diago-
nal whose slope is —1 are related (see Fig. 1).
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FIG. 1. The partial difference equation (3.2) for the harmonic
oscillator relates the coefficients a,, —1 ,+1 and @&, +1,,—1. The
minimal solution consists of all «,, , =0 except a5, —1,2m +1»

m =0,1,2, ..., as indicated by crosses.

The simplest solution to (3.2) consists of taking as
many a,, ,’s as possible to vanish. Of course, it is not
possible for all the coefficients a,, , to vanish because of
the presence of the inhomogeneous term on the right-
hand side of (3.2). We construct what we call the
minimal solution by starting with the partial difference
equation with m =n =0, in which the inhomogeneous
term is present, and deduce the smallest set of «,, ,’s
which are nonvanishing as a consequence of this partial
difference equation. All other &, ,’s are set to zero. For
the harmonic oscillator, with partial difference equation
(3.2), the minimal set of nonzero a,, ,’s lies on a diagonal
line, passing through the origin, in the m <0, n >0 qua-
drant in Fig. 1. Specifically, the minimal solution to (3.2)
is

(=™

Aom—tom+1= 57 m=0L .,

(3.3)
with all other «,, ,’s vanishing. Thus a function F(g,p)
satisfying (1.11) is

_ o ( _ 1 )m

F(p,q)= 2 mT—2m~1,2m +1 -

m =0

(3.4)

It is interesting to note that this is in fact the Weyl-
ordered form of the classical function

9

6=arctan , (3.5)

where 0 is the angle of a point on the classical trajectory
in phase space. This result clearly illustrates that the
operator methods used in this paper generalize the notion
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of classical action-angle variables to the realm of quan-
tum mechanics. i

In the case of the harmonic oscillator, we can also use
the exact solution (1.3) to find another function F(p,q)
satisfying (1.11). As shown in Ref. 1, (1.3) implies that
q()[1/p ()] is a function of ¢(0)[1/p(0)] and we can
further deduce that

F(p,q)=arctan (3.6)

PE
p

satisfies the commutation relation (1.11). Since both F
and F satisfy the commutation relation (1.11), they must
differ by a function of the Hamiltonian H. We have
verified this by a lengthy calculation in which we have
shown that F —F can be expressed as a series in inverse
powers of the Hamiltonian H whose coefficients are Euler
numbers:*

~ i 2 1
F(p,q)—F(p,q)=—— > E, ——
(P~ Flp,g)=55 ,,‘S;:o 2 o

e"S

=t re
=g J s (3.7)

h
cosh | =

IV. MINIMAL SOLUTION FOR ANHARMONIC
OSCILLATOR H = 1p?+1g*

To find the function F(p,q) satisfying (1.11) for the
anharmonic-oscillator Hamiltonian H =1p2+1g* we
substitute the general form for F in (2.1) into the commu-

n
0 0,0 OL0\0 O O O 0409 © O ©
~
\}
oo\oojx\ o o o o o o
~
o\o\o\o/c/o\oo o o o o
SO\ s
%oo\x\oo\:\ooo o o o
N\~
o\o & o\o ™ o\o o o o o o
\\\/ \\\
o x_o o o o>x o o o o o
~ 7\
o o o™ o\o o o\o o o o o

FIG. 2. Triplets of points related by the partial difference
equation (4.2) for the anharmonic oscillator with
H=1p>+1g* The minimal solution consists of nonvanishing
values of a,, , indicated by crosses; all other «,, ,’s vanish.
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tation relation (1.11). Using (2.6b) and (2.6c) we find the
analogue of (3.1),

1=2 am,n[ nTm +1,n‘l—me—l,n+3
m,n

+%m(m—1)(m _Z)Tm_3’n+1] , 4.1)

from which we deduce the partial difference equation
satisfied by the coefficients c,, ,:

(n+Day, —pr1—(mtDay, 11,3
+3m +1)(m +2)m +3)a,, 13,170,000 -
4.2)

This partial difference equation relates triples of points on
the integer lattice in Fig. 2 whose points correspond to
coefficients «,, ,. A careful analysis of (4.2) shows that a
minimal solution exists consisting of certain nonzero
values of @, ,. These nonzero values of a,, , correspond
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to points in Fig. 2, lying in the quadrant m <0, n >0, and
forming a triangular network as indicated in the figure.

A first step in solving (4.2) involves mapping the tri-
angular network of nonvanishing values of a,, , onto a
triangular domain. On this domain the partial difference
equation (4.2) works in much the same fashion as the
difference equation that generates the binomial
coefficients in Pascal’s triangle. The relevant transforma-
tion of the independent variables is

M=—L(n+2m), N=Ln—m). 4.3)
We define a new dependent variable 4,, 5 by
AMNT AN — M — 14N —2M +1= o —1,n +1 > (4.4)

along with the constraint that 4,, =0 for M <0, N <0,
and for M > N. v
The advantage of the M, N variables over the m,n vari-

ables is that the partial difference equation is first order:

(4.5)

A further transformation, this time of the dependent variable, reduces the partial difference equation to one whose

coefficients are linear functions of M and N. We define
5 27 M(4)
MNZ T AN +1) MmN

and thus the partial difference equation becomes

(4N—2M+1)‘BM,N+BM,N—1—(N+M_I)BM—l,N~1=-8M,08N,O N

(4.6)

4.7)

In Table I we list the values of B, y for the first few rows of the triangular network. It is not hard to derive simple
closed-form expressions for special elements in this triangular array:

3 _(=DM(3) “s)
oO,N 4N(N+%) ’ .
1
= >
Byn=75ns7 NZ0, 4.9)
_ —(2N +7) S
By-1w 32N +1)(2N +3)° N=1, (4.10)
- (N —1)(4N>+34N +105) >
Bv-avTsoN DN +heN T N s N2 @10
—(N —2)(8N3+ 120N %+ 808N +2517)
By_in= > 12
N=38""27(2N —1)(2N +1)(2N +3)(2N +5)2N +7)’ N=z3, @.12)
—_— . 4 3 2
By_on= (N —2)N —3)(16N*+368N>+4052N2+26 224N + 83 289) N>4. @.13)

6X81(2N —3)(2N —1)(2N +1)(2N +3)(2N +5)(2N +7)(2N +9)’

However, the simplest way to express a general element B, y of this array is in terms of a generating function; to wit,

we define the generating function

© N
§3)= 3 3 Byax'y?.
N=0M=0

(4.14)

From (4.7) we can derive a first-order linear partial differential equation satisfied by g (x,y):

—x(2+xy)g, +y(4—xy)g, +(1+y —xpy)g=1.

(4.15)
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Using the method of characteristics we can find the unique solution to this partial differential equation that satisfies the

initial condition [from (4.8)]

0 < Yy v F(%) —y/4 ld u4y/4
gl ,y)—szo " m—e fo ue . (4.16)
The solution is
3/2 2
1 d¢ 1 2 C (I—xp)xyE—%)
(x,y)= exp|— | T —x . (4.17)
g)= [ 2VE(1—xp€) plxzy Ia Y (1—xp€)3”2
l
In terms of the generating function g, The polynomials P;(N) do not satisfy a simple recursion
) 3 N relation. However, they do satisfy a functional equation
By v = 2 2 . easily derivable from (4.7) and (4.20):
MmN N |ax | |3y | €Y ey @.18)

Using this expression for the coefficients B, » in the for-
mula (2.1) for F(p,q) gives a complete and exact minimal
solution to the Heisenberg operator differential equations
for the anharmonic oscillator with the Hamiltonian
H =1p?+1g* The operator F(p,q) satisfying (1.11) is

DM +N+1)

© N
F(p,q)= 2
22t T T

XBynT-av-2m—-1,4v—2m+1 - (4.19)

Before concluding this section, we point out that there
is an interesting transformation that converts the array
By, y into a set of polynomials P;(N) all of which have
positive integer coefficients. The relevant transformation
is
—4

3
By _jn= 7

(N +INN —J)!
(N —=W2N +2J +1)!

The first six such polynomials are
Py(N)=1, P(N)=2N+7,
P,(N)=4N?+34N +105 ,
P,(N)=8N3+120N%+808N +2517 , 4.21)
P,(N)=16N*+368N>+4052N*+26224N +83289 ,
P5(N)= 32N°+1040N*+ 16 600N *+ 168 460N 2
+1089498N +3 513915 .

P,(N) . (4.20)

TABLE I. Nonzero values of By .

M=0 M=1 M=2 M=3 M=4 M=S5
N=0 1
NeLop
N=2 3 ~ o5 3
N=3 -5 W T 7
N=4 99_145 132501235 773’?)52_7 _’953 %
N=5 —_1 353 2 100 _ 7 1

208 845 3357585 19 305 11585 429 11

0= (2N —J)P,(N)—3J (2N +2J —1)P,_ (N —1)

—2(N —=J)P;(N—1), J<N. (4.22)

V. MINIMAL SOLUTION OF THE OSCILLATOR
H= 1p4 -+ 1,4
P T34

In this section we consider the model Hamiltonian
H=1p*+14* This Hamiltonian is the natural next step
in our program of solving increasingly complex systems
of quantum operator differential equations:
H=1p2+14? gives rise to a two-term partial difference
equation for the coefficients a,, , in (2.1), H=1p*+14*
gives rise to a three-term partial difference equation, and
H =%p4+ %q“ gives rise to a four-term partial difference
equation.

To find the function F(p,q) satisfying (1.11) for this
anharmonic-oscillator Hamiltonian, we substitute the
general form for F in (2.1) into (1.11) and use (2.6¢) and
(2.64d) to find the analogue of (3.1) and (4.1):

1=3 ap [ 0Ty 43,—1—mMT 543
n,m

—n(n—1)n—2)T,, 11,3

+%m(m_l)(m _2)Tm—3,n+1] . (5.1)

From this we deduce that the coefficients a,, , must satis-
fy the partial difference equation

(n+1D)apy 3 5+1—(m+Day 1,3
—in+1D)(n+2)n+3)a, _,+3
+‘1‘(m +1)(m +2)(m +3)am+3’n_1=8m’08n’0 .
(5.2)

This partial difference equation relates quartets of points,
which lie at vertices of rectangles, on the integer lattice in
Fig. 3 whose points correspond to coefficients a,, ,. Ex-
amining (5.2) we see that a minimal solution exists with
nonzero values of a,, , lying in the quadrant m <0, n >0,
and forming a wedge-shaped network as indicated in Fig.
3.
To solve (5.2) we use the transformation
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TABLE II. Nonzero values of Dy, y.
M=0 M=1 M=2 M=3 M =4 M=35 M=6 M=17 M =38
N=0 1
N=1 -3 2 3
N=2 z ~1 0 630 945
N=3 - L — 438 630 186 165 1559250 2338875
N=4 2_727T - 1130%014 %‘3 - &1139 —716 625 73284750 2125101 825 14 898 633 750 22 347950625
N =g3(n —m), =—zn+m), (5.3) CMN=A oy 4N -3 4N —2M+1= Oy =30 1 > (5.4)

which maps the points in the m,n plane for which the
coefficient a,, , is nonzero into a triangular lattice for
which N runs from O to infinity and M runs from O to 2N.
We then define a new dependent variable C), y by

]

along with the constraint C,, =0 for M <0, N <0, and
M >2N. Observe that the partial difference equation for
Cpy, y is first order:

202N —M +1)Cpy v — (2N —M +L)4N —2M +2)2N —M +3)Cpy_; y+22N +M —L)Cypy

_"(2N +M_‘;‘)(2M +4N—2)(2N +M—%)CM—1,N—1=6M,08N,O .

We can transform this partial difference equation into
one with linear coefficients by defining

riv-243 |p|v-M43

u 2 4 2 4
Dy y=4 3 IV Cun -

r N+—M+— T|IN+—+—

2 4 2 4

(5.6)

n
0000000000000 0000O0O0O0 02000 0
0000000000000 000000O000O0O0O
QOO0000000000000000000O0O0O0O0
OX0000000D0O0OO0O0O00OOO00O0VOO OO
00D 000000000D00000000QYOO0O0D0
0000000000000 000000000000
0000QO00000000000000000000
00 000X00000000000000Q0000
0000 000000000000000000
O0O0OX0000O0D0O0O0O0O00OO0OO000O0YOO0OO
Q0,00 000Q00000000000 10000
0X0000000X00000000OOO0MOOOO0
oob\ooo\o\o/dob\ooooooooo ocooo
©0000000x00000000000000000
0000Q000V000QO00000000000
070000 x0000000X0000000000O0
ooo\o;/o\o\oooo\o;{o\o\ooooo ocooo
000 x000%0000x©00000000¢0000
Qo 00000Q0H 00000QO00Q000O0
0x0000000xXx0000000X00OOO0O0O
OO O~ O0—- 00— 000000000000 Oo—~O—-0O-0O

-200000000004000000000000004M

0000000000000 O0000O00O0MOOOO

FIG. 3. Quartets of points related by the partial difference
equation (5.2) for the anharmonic oscillator with
H=1p*+1lg* The minimal solution consists of nonvanishing
values of a,, , indicated by crosses; all other &, ,’s vanish.

(5.5)

[
The partial difference equation becomes

M 1 M 1
Nttt |Pun= [N=+5 [ Dy—yy
M 1
+ [N“T—Z Dy n—
M 1
— [N+7_E Dy, n-1=30m,0n0 - (5.7)

In Table II we list the values of D, y for the first few
rows of the triangular array. Some simple closed-form
expressions for special elements in this array are

_(=DM(N(N +3)
Dov="Torw+n
T(2N + 10N +L2T(3)032)
[(L)’T2N +3)T(2N +3)

(5.8)

Dyyn= (5.9)

A general element D), y of this array can be expressed in

terms of a generating function A (x,y):

© 2N

h(x,y)= 2 z DM,NxMyN .
N=0M=0

(5.10)

From (5.7) we can derive a first-order linear partial
differential equation satisfied by & (x,y):

X | 1+x 1+y 143y —4xy
2 1= | =y | sty
1
=— 5.11
41—x)1—y) ( )

The unique solution to this partial differential equation
that satisfies the initial condition
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o [(3)L(N +3) solution to the Heisenberg operator differential equations
rOp)=3 (—=y¥ TONN +2) for the anharmonic oscillator with Hamiltonian
- T T —1,4 4 . .
N=0 4 4 H =1p*+1q®. The operator F(p,q) satisfying (1.11) is
=F(3,1;3;—y)
riv+My3p v+ 842
_— do (5.12) & X m 2 4 z ¢
0 V(1+yP—dyw* Flpg)= 3 X 4
; veom=0 ply M 3 \ply M 3
18 2 4 2 4
1 do
h(x,y)= . (5.13) XDy nT —opf—an—3 a8 — .
fO ‘/(1+y)2___4yw4(1+x _xw2)2 M,N 2M —4N —3,4N —2M +1
In terms of this generating function, (5.15)
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