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By resumming the Feynman graphs which contribute to any gauge-invariant process we explicitly
construct, at one-loop order, a three-gluon vertex for QCD which is completely independent of the
choice of gauge. This vertex satisfies a Ward identity of the type encountered in ghost-free gauges,
relating the vertex to the proper self-energy of a previously constructed gluon propagator, also
found by resumming graphs; like the vertex, this self-energy is completely gauge invariant. We also
derive the gauge-invariant propagator and vertex via a second related technique which minimizes

the dependence on embedding these objects in a gauge-invariant process; the same results are found
as in the first technique. These results motivate a toy model of the nonlinear Schwinger-Dyson
equation satisfied by the exact gauge-invariant three-gluon vertex. This model is nonperturbative
and has infrared singularities, which we can remove via gluon mass generation; it shows many in-

teresting features expected of QCD, such as a P function which is not Borel summable in perturba-
tion theory.

I. INTRODUCTION

In lattice gauge theory one is under no compulsion to
fix a gauge, and so no gauge-dependent quantities need be
calculated. It seems to be quite the opposite in the con-
tinuum, where even gauge-independent objects (e.g., the S
matrix) are conventionally put together from gauge-
dependent propagators and vertices. If one could con-
struct these propagators and vertices exactly from their
Schwinger-Dyson (SD) equations in some gauge, this
would be no problem in principle; the resultant S matrix
would still be exactly gauge invariant. Unfortunately, in
a strongly coupled gauge theory such as QCD, one is
forced to make approximations, and this usually results
in uncontrollable gauge dependence which infects even
ostensibly gauge-invariant quantities.

Some time ago a program was proposed' to deal with
this dilemma. In essence, the Feynman graphs contribut-
ing to a given gauge-invariant process are resummed into
new propagators and vertices where the gauge depen-
dence has been reduced to ari absolute minimum —that
of the free gluon propagator. The proper self-energy of
the new propagator, and the new vertex, are themselves
gauge independent, as are the SD equations which govern
these new Green's functions. To be sure, the new SD
equations are more complicated than the usual ones be-
cause they have extra terms which enforce gauge invari-
ance; nonetheless, it is possible to truncate the SD equa-
tions (usually by keeping only a few terms of a dressed
loop expansion) and maintain exact gauge invariance,
while at the same time accommodating nonperturbative
e6'ects. Qne essential aspect of gauge invariance in the
SD equation context is that the new proper self-energy
and vertex obey Ward identities: the proper self-energy is
conserved, while the divergence of the vertex is expressi-
ble in terms of this proper self-energy alone (with no
ghost contributions).

The new propagator and vertex constitute a generaliza-

tion of the running charge g(k), which is defined by the
renormalization group. However, the usual construction
of g can only deal with the ultraviolet properties of the
gauge theory, and o6'ers no help in understanding the in-
frared singularities and their cure. That is why the new
propagator and vertex are important. They are deter-
mined by SD equations which (in principle, at least) are
not restricted to the ultraviolet domain, and can te11 us
how the infrared singularities are removed.

So far the program of finding the new propagator and
vertex is incomplete, although useful results have been
obtained [e.g. , nonperturbative gluon masses for T=O
(Refs. l and 2) and finite-T (Ref. 3) QCD; plasmon decay
rate at finite TJ. These earlier works have concentrated
on the new propagator, either in perturbation theory or
with the gauge technique as a substitute for the new
vertex. (The gauge technique expresses part of the vertex
in terms of the propagator in such a way as to satisfy the
Ward identity exactly; the omitted transverse vertex part
is unimportant in the infrared, but essential ' to cure
overlapping ultraviolet divergences. ) Past the gauge
technique, which is incomplete, nothing has been said
about the new vertex, even in perturbation theory, much
less about the SD equation it satisfies.

In this paper we construct the new gauge-invariant
three-gluon vertex at one-loop order in perturbation
theory. This is no trivial task, because the algebra is
complicated and there are more graphs than for the con-
ventional vertex. ' We also show that this vertex satisfies
the desired Ward identity in terms of the new gauge-
invariant proper self-energy. The resummation algo-
rithm we use for the construction is not the one originally
proposed in Refs. 1 and 2, although that would work per-
fectly well and would give the same results; instead, we
resum graphs contributing to the S matrix" for the on-
shell scattering of three test quarks of diA'erent masses.
The resummation process identifies longitudinal momen-
ta in numerators which act as divergences on vertices.
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By a Ward identity the vertex divergence is expressed as
a diA'erence of inverse propagators, which "pinch" lines
in the graph which carry these propagators (see Fig. 1).
The S-matrix pinch technique, as we call it, is slightly
easier to follow than that of Refs. 1 and 2, because cer-
tain contributions vanish by virtue of the on-shell condi-
tion for the test quarks. We use the S-matrix pinch tech-
nique to show directly that the Ward identity is satisfied,
and a yet more streamlined algorithm to construct the
vertex itself. This second algorithm we call the intrinsic-
pinch technique, because it deals with the off-shell vertex
graphs themselves, with essentially no reference to any
gauge-invariant process in which these vertices might be
imbedded. The intrinsic-pinch technique is just another
(but quicker) way of saying exactly the same thing as does
the S-matrix pinch technique, in which certain cancella-
tions between graphs which occur in the latter technique
are anticipated; therefore, the terms to be canceled need
not even be written down.

These algorithms are efficiently stated in terms of a
decomposition of the bare vertex first given by 't Hooft'
and later used' in eikonal summations of graphs in
QCD. This decomposition singles out one part of the
three-gluon vertex, which we call I, to satisfy a simple
Ward identity on one line; the other part, called I, both
generates pinches and cancels ghost numerators. The
new gauge-invariant vertex and propagator have quite
simple expressions in terms of the I vertices, which
makes the Ward identity relating them very simple to see.

T(s, t, M, , M )=

We emphasize again that this Ward identity makes no
reference to ghosts; the only ingredients for constructing
any Green's function are gluon propagators and vertices.

The point of doing such one-loop calculations is to
look for guidance in devising truncated but still nonper-
turbative SD equations, making use of the dressed-loop
expansions, which are gauge invariant. As mentioned
earlier, some progress has been made for the new propa-
gator with the help of the gauge technique, but we are
not aware of any analogous investigations for the new
vertex. In this paper we discuss a toy model of the SD
vertex equation which is drastically simplified, but retains
some features of real QCD: asymptotic freedom, scale in-
variance at large momentum, and a cubic nonlinearity,
corresponding to a one-dressed-loop graph. We concen-
trate on only one of the several scalar functions which ap-
pear in one form of the three-gluon vertex, and retain
only terms which couple this function to itself; thus most
of the complications due to spin are bypassed. The ver-
tex function of interest is not the proper vertex, but rath-
er this quantity multiplied, on each leg, by the square
root of q d(q), where d(q) is the gauge-invariant propa-
gator as defined in Sec. II. This vertex vanishes at large
momentum because of asymptotic freedom, and we can
write down a homogeneous SD equation for it, since no
counterterms are necessary. '

In spite of the absence of counterterms and integrals
which need regularization, our toy SD equation has all of
the properties that one would expect from perturbative
QCD (as well as new nonperturbative phenomena). For
massless gluons, the vertex obeys a renormalization-
group equation with a P function of the usual form

13(g)= bg X bivg
1

(a) (b) (c)

(e)

FIG. 1. Graphs (a) —(c) are some of the contributions to the S
matrix T. Graphs (e) and (f) are pinch parts which when added
to the ordinary propagator parts (d) give a gauge-invariant
effective propagator.

Here b is precisely' the usual one-loop coefficient
[b= 11K(48m ) 'j. Normally one would associate the
bz with graphs having two or more loops, and so it is
somewhat of a surprise that they appear in our one-
dressed-loop model. But the b& are there, and they accu-
rately reAect the qualitative properties expected of them
in perturbation theory. All are positive, and they show
factorial growth at large N. The coefficient b& of g is
80% larger than the exact value, reminiscent of what
happens for the coefficient of g in the gauge technique. '
The positivity of the b& prevents Sorel summation of the
factorial growth, as long as there is no infrared cuto6' for
QCD (Ref. 16), that is, as long as the gluons are massless.

As far as strict QCD perturbation theory goes, these is-
sues are somewhat delicate, since one can always' find a
renormalization scheme such that bz —=0, n ~2. In our
toy model no ultraviolet-infinite integrals are encoun-
tered, and it is very natural to use the specific P function
that we give in Sec. IV. We can, in fact, characterize
/3(g) for all g not by the divergent power series (1.1), but
by a first-order nonlinear difFerential equation for P.
Study of this equation shows that P(g) actually has a
singular fixed point at g=5. 3 (a, =2.2), where P ap-
proaches zero with infinite slope. This singularity is asso-
ciated with infrared divergences of massless QCD, which
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lead to singularities in the vertex function itself.
It has been argued' that QCD heals these infrared

singularities by a self-consistent process of gluon mass
generation, in which the gluon mass m is induced by soli-
ton condensates in the vacuum; in turn, these solitons ex-
ist as nonlinear solutions to the field equations with a
(gauge-invariant) mass term added. Evidence for a con-
stituent gluon mass has also been found by lattice gauge
workers, ' of about the value predicted in Refs. 1 and 2.
We study this in our toy model for the vertex by chang-
ing the massless gluon propagators to massive ones.
Singularities persist until the gluon mass m passes a criti-
cal value; roughly m/AzG must be of order unity or
greater (ARG is a typical renormalization-group mass) for
the singularities to disappear. This threshold mass is
consistent with earlier studies' of the gluon propagator
equation with the gauge technique. For m /ARo-—2.5 we
find a, (0)=0.5, a value typical of fits to quarkonium
spectra. For the same value of m/ARG, the running
charge as found from the toy model of the vertex equa-
tion is about the same as found from the gauge techriique
for the propagator, ' so there is rough consistency be-
tween these two approximations.

We do not expect to find direct evidence for
confinement at this level of approximation, even though
we are certainly dealing with nonperturbative effects
when we add a gluon mass. However, confinement is
connected to mass generation, via the vertices which ex-
ist' for massive gluons. These vertices have long-range
pure-gauge parts which confine quarks, but are invisible
to gluons, which are screened rather than confined.

For the reader who wishes a quick tour through the
paper, the key equations are the Ward identity (2.20) re-
lating the new vertex and the new propagator; (3.9) giving
the new propagator; and (3.18) giving the new vertex.
The toy model for the vertex SD equation is in Sec. IV.

But the usual propagator graphs [Fig. 1(a)] are gauge
dependent because the proper self-energy depends on k.
At the one-loop level, this dependence is canceled by oth-
er graphs [e.g., Figs. 1(b) and 1(c)], which do not seem to
be of propagator type at first glance. In fact, such graphs
(and others, if A,X1) do have propagatorlike parts, which
we call pinch parts. That this must be so is evident from
the form of T:

T(s, t,M„M2)= A(t)+B(t, M, ,M2)

+ TR(s, t, M„M~), (2.2)

where (except for trivial external wave functions) the
function A depends only on the Mandelstam variable
t =(p, —p i ), and not on s =(p, +p2) or on the external
masses. ' The function 3 (t) is unique and gauge in-
variant, and represents the contribution of the new prop-
agator.

We can construct the new propagator Z~ (q) directly
from the Feynman rules. In doing so it is evident that we
can use any value for A, in (2.1), since A, B, and Tz are all
independent of A, . The choice A, = 1 (Feynman gauge)
simplifies the calculation enormously, since only the
graph of Fig. 1(b) (and its mirror image) contribute in this
gauge. The pinch part (or propagator part) of this graph
arises as follows: up to a group-theoretic factor, the
three-gluon vertex in Fig. 1(b) has the expression

I „(—k, —q+k, q)=l +I ~,

I „,=(2k —q) g„,+2q„g —2q g„
r„'„.= —k„g..+(q —k)&„. .

(2.3)

(2.4)

(2.5)

This decomposition gives a specia1 role to the q-leg in the
three-gluon vertex, and provides for I „ to satisfy a
Feynman-gauge Ward identity:

II. THE S-MATRIX PINCH TECHNIQUE
q I „=[k —(q —k) ]g„ (2.6)

Here we review this technique as it applies' to the
effective propagator, and then —a very much more com-
plicated exercise —apply it to the gauge-invariant vertex.
In each case, the idea is to begin with something known
to be gauge invariant (the S matrix) and extract from this
the corresponding gauge-invariant Green's function.
Note that it is the proper self-energy and the proper ver-
tex which will be gauge invariant; the propagator has a
trivial gauge dependence through the free propagator and
this induces an equally trivial dependence in the improp-
er vertex, which is not directly related to the Smatrix.

A. The propagator

Consider the S-matrix element T for the elastic scatter-
ing of two test quarks of masses Mi and M2 (see Fig. 1).
Evidently, to any order in the coupling g, T is indepen-
dent of the gauge parameter A, , defined by the free propa-
gator

—g, +(1—
A, )

pqv
pv 2

where the right-hand side (RHS) is the difference of two
inverse propagators. The first term in I is a convective
vertex; the other two terms come from gluon spin or
magnetic moment. As for I (P for pinch), it has the
property that k„or (q —k) pinches out the internal
quark line in Fig. 1(b) in a Ward identity such as

k"y„=S '(p, +k) —S '(p, )~S '(p, +k), (2.7)

where the last form fo11ows because p] is on shell. Thus
the contribution of I is of the form shown in Fig. 1(e)
[and similarly in A,A1 gauges, Fig. 1(c) has a pinch part
as shown in Fig. 1(f)]. One can check that I F does not
lead to pinch parts.

It is elementary to add the pinch parts to the usual
graphs, but one ambiguity needs resolution. Because we
are working with the on-shell S matrix, any terms -q„q
in the pinch parts do not show up in this quantity [i.e., in
A(t)]. We define uniquely the proper self-energy associ-
ated with the pinch parts by demanding that it be con-
served. This means that if the pinch-part proper self-
energy has the form

b.„(q)=
q +re

(2.1)
II„(q)=g„ II (q)+ -q„q (2.8)
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we define H„as
II„=(g„„—q„q,q )II (q) . (2.9)

2X
qln( —

q /p),
16m

(2.10)

where in the second equality we give the renormalized
version of the integral. The factors in front of the in-
tegral are a group-theoretic factor —,'X [%=number of
colors in SU(X)]; one factor of 2 for the two terms in I
of (2.5); another factor of 2 because the graph of Fig. 1(e)
has a counterpart with the bubble attached to the lower
line. We add II to the usual Feynman-gauge proper
self-energy

II' "(q)=——X q ln( q /p )—5

16m.

to find the gauge-invariant—bg q ln( —
q /p, ), where

11%
48m'

is the coefficient of —g in P (g).
We define the new propagator A„„(q)by

8 „,'(q) = b, „',' '(q) —ft„(q),
'(q)= —

q g„+q„q (1—k '),
ft„(q)=II„,(q)+ II„,(q)

=(g„,—q„q q )ft(q) .

(2.11)

combination

(2.12)

(2.13)

(2.14)

(2.15)

Here H„ is the sum of the ordinary proper self-energy
graphs and H„ is the pinch part. Each of these self-
energies is separately conserved, which has the well-
known consequence that A„has only a trivial gauge
dependence:

+ 2

)
gpv qI qvq ql qv

(2.16)
q' —ft(q) q'

since ft is independent of A.. For notational convenience
we define

P„„(q)=—g„+q„q q

d(q) =[q —ft(q)]

(2.17)

(2.18)

so that

qpqv
pv p,v 4

q
(2.19)

with d '=q [1+bg ln( —
q /p )] at one-loop order.

This conserved form is, in fact, automatic in other forms
of the pinch technique, e.g. , the o6'-shell approach of
Refs. 1 and 2 or the intrinsic pinch discussed below. At
one-loop order, we find

~ 2 d"k
II (q)=( —,'N) X2X2X I(2m) k (q+k)

B. The gauge-invariant vertex

This calculation is much more tedious than that for the
propagator, and for the most part we will only give the
reader a roadmap of the way the vertex is constructed
and the proof that it satisfies the needed Ward identity.

Our calculations, although they begin with an improp-
er vertex (with b, attached to the legs), will eventually
lead us to a proper vertex f'„(q„q2,q3), which at the
tree level is the usual vertex (2.3) (from which we omit a
group-theory factor iE,b, ). We will construct f' at the
one-loop level and show that it obeys

q", f'„(q „qz, q, )

=P (q, )d '(q, ) —P, (q, )d '(q, ) (2.20)

with similar Ward identities upon multiplication of f'„
by qz or q3. Note that (except in ghost-free gauges'2) the
RHS of (2.20) is not the difference of two inverse propa-
gators, because the projection operators P„have no
inverses. Note also that (2.20) makes no reference to
ghost Green's functions, as the usual covariant-gauge
Ward identities do; (2.20) is completely gauge invariant.

As with the propagator b „by far the simplest case is
the Feynman gauge A, =1, since the fewest number of
graphs contribute. This is no loss of generality, since we
always work with an S matrix which is known to be A, in-
dependent.

The S-matrix element in question is the connected S
matrix for scattering of three test "quarks" of arbitrary
mass, and the graphs which are relevant in Feynman
gauge are shown in Fig. 2. In this figure the quark mo-
menta p; and p; —

q; are on shell. We can extract an im-

proper vertex by identifying the parts of these graphs
which are independent of the quark masses M, , that is, by
finding the pinch parts identified in Fig. 3. Figure 2(c)
contributes to the pinch part of Fig. 3(a), and Figs. 2(g)
and 2(h) yield the pinch part of Fig. 3(b).

The sum T of ordinary (including improper) vertex
graphs and pinch parts is of the form shown in Fig. 4,
and is gauge invariant. From it we define the proper ver-
tex via

(2.21)

where the propagator 6 are the new ones as given in
(2.19). Now 1' is gauge invariant, and the trivial gauge
dependence of the b, in (2.19) does not appear in T of
(2.21) because the test-quark legs are on the mass shell. It
follows that we can recover f' from T by stripping off the
b,„as if they had no q„q terms at all, and that f' so
defined is gauge invariant. Just as for the propagator 6,
there remain ambiguities about possible longitudinal
terms (e.g. , -q", ) in f' which will not contribute to 1; we
resolve these ambiguities by insisting on full Bose symme-
try of f' as well as the satisfaction of the Ward identities
(2.20). As also happens with b;, other off-shell techniques
(Refs. 1, 2, and Sec. III of this paper) automatically
resolve any longitudinal ambiguities.

Before diving into the complexitities of the full calcula-
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tion of f' we give a quick and simple version which illus-
trates many of the main issues. In this version we save
only ultraviolet-divergent terms, i.e., those which after
renormalization depend on the renormalization mass p,

(a)
(three graphs)

(b)
(three graphs)

FIG. 3. Pinch parts of the graphs in Fig. 2.

(a) (b)
(three graphs)

and assume that the index structure of various terms
comes out right. By saving only ultraviolet-divergent
terms we need not consider the graphs of Figs. 2(g) and
2(h) which are finite (except for infrared divergences
when certain momenta vanish). Spin structure aside, the
Born graph of Fig. 2(a) is normalized to 1, and adding the
conventional proper vertex graphs Figs. 2(d) —2(f) yields,
in the Feynman gauge,

2' 2 2r=1+ g ln( —q2/p2) .
48~

(2.22)

(c)
{three graphs}

(d)
( twa graphs )

To this must be added three times the usual propa-
gator logarithms of Fig. 2(b), namely, —( 15/
48rr ) XNg ln( —

q /p, ), and three times the pinch part
of Fig. 2(c) [shown in Fig. 3(a)], which is —(9/
4&rr )Xg ln( —

q /p ). The overall sum is identified with
f' 5 (modulo inessential powers of q ):

(q, q2q3 )f'b, = 1 —2bg ln( —q~/p, 2) (2.23)

(e)
(twa graphs)

{t)
(three graphs)

with b from (2.12) the usual P-function coefficient. Since
q b, = 1 —bg ln(q /p ), we conclude that f'=1
+bg ln( q /p )=(q —b, ) '. This is, of course, gauge in-
variant as well as consistent with the Ward identity
(2.20), which says that the vertex behaves as an inverse
propagator.

There is no reason first to calculate f'5 and then to
divide by b, to get f'. This can be done instead by omit-

(g)
{three graphs)

(h)
{three g raphs )

FIG. 2. Some improper vertex graphs in the three-body S
matrix. Graph (e) is a ghost-loop graph.

FIG. 4. Graphical structure of the gauge-invariant S-matrix
part f'which is independent of external-particle masses.



GAUGE-INVARIANT THREE-GLUON VERTEX IN QCD 3479

B(1,2, 3)=(—,'N) f(2m) kik2ks
(2.25)

ting the normal propagator graphs of Fig. 2(b), and sub-
tracting the pinch parts of Fig. 2(c) [that is, Fig. 3(a)]
rather than adding them. The reason for subtracting
rather than omitting these pinch parts is that they con-
tribute with weight 2 to b,„„,because Fig. 1(e) must be
doubled as discussed in connection with (2.10), but with
weight 1 to f'b, via Fig. 3(a). Thus we must subtract
twice Fig. 3(a) from the sum of all graphs in order to
leave o8' the pinch parts of 6„,but the sum of all graphs
includes Fig. 3(a) with unit weight. It is easy to see how
this works in connection with (2,22): subtracting the
pinch parts adds (9/48m )g ln( —

q /p ) to this equation,
yielding the desired result for f'.

Now to the full calculation. In this section we derive
the Ward identity (2.20) by multiplying q", into the sum
of the graphs in Figs. 2(d) —2(h} minus the graphs of Fig.
2(c). The vertex itself will be displayed in Sec. III, and it
will be evident from its form that it satisfies (2.20). Fig-
ure 5(a) shows the vertex graph of Fig. 2(d) with all mo-
menta and indices labeled, and Fig. S(b) expands on Fig.
2(g). The notation of Fig. 5, plus the following remarks,
enable one to understand the results presented in Table I,
which shows how the various graphs add up to give the
Ward identity.

The notation of Table I is as follows.
(1) The vectors k„, (i =1,2,3) are defined in Fig. 5(a).
(2) I, etc. , are the ordinary vertices of Eq. (2.3);

their momenta can be read off from Fig. 5(a).
(3) P (3):Pz(qs—) (etc.) is the projection operator of

(2.17). The indices in parentheses do not refer to the k„;;
but to the q„;.

(4) As in (2.15), lloyd. is the conventionally defined prop-
er self-energy in the Feynman gauge.

(5) The quantities A ( i) and B(1,2,3) are defined by

d4k
A(i)=( —,'N} f, (2.24)

(2~) k (q;+k)

{k

(a)

(}

,
'(k-q, )

I}
}

(}

(k+ qa)

~( p -k-q

FIG. S. Some graphs of Fig. 2 indicating momenta and
Lorentz indices.

(6) The column labeled "3-gluon parts" in Table I sim-

ply means that the corresponding contribution to q", I „
involves B (1,2, 3) with three internal gluon propagators,
with an analogous interpretation of "2-gluon parts. "

(7) The propagators for the q, are omitted, as is an
overall group-theoretic factor of i e,b, .

The concise presentation of results in Table I conceals
a great deal of labor which goes into each entry, includ-
ing various rearrangements, shifting of integration vari-
ables, etc. As we will see in Sec. III the computation of
even unpinched graphs such as Figs. 2(d) —2(f) is material-

Graph

Fig. 2(d)

Fig. 2(e)
(2 graphs)

Figs. 2(g) and 2(h)
(2X3 graphs)

(pinch part only)
Fig. 2(f)

(2 graph)
Fig. 2(c)

(3 graphs)
(pinch parts only X —1)

SUM

2-gluon parts

—q,„(k~„k) k2 +k~„k~ kl )

Pp(2)(q[ I p+q3pk[)—P p(3)(q~~I ~ p+q2pk]-)
q[„(k~„k) k2 +k,„k~ kl )

P (2)(q/aI pao+q3 k]~)
+P (3)(q)gl q p q2pk) )

2H (2)—2H (3)
—2A(1)[P„(2)—P (3)]

2[P„(2)+P, (3)][A(2)—A(3)]

—II (2)+ II (3)

2[P„(2)—P„(3)][A(1)+A(2)+ A(3)]

P„(2)ft(2)—P (3)A(31

TABLE I. Numerators contributing to the Ward identity q", f'„„.
3-gluon parts [to be multiplied by 8(1,2,31]
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ly assisted by using the special vertex decomposition of
Eqs. (2.4) and (2.5) into a Feynman part of a pinch part.
In particular, this decomposition allows one to see explic-
itly the cancellation between the ghost graphs [Fig. 2(e)]
and the first line of the entry in Table I for Fig. 2(d), the
ordinary vertex graph. This part of the ordinary vertex
graph comes from the pinch-part vertex I of (2.5). Of
course, the I in Figs. 2(g) and 2(h) are what gives rise to
their corresponding pinch parts Fig. 3(b). We should
note, by the way, that the pinch parts of Figs. 2(g) and
2(h) are equal and opposite except for the overall group-
theory factor; thus this factor becomes a commutator giv-
ing rise to a factor of i(X/2)e, &, Fr.om Table I one sees
that these pinch parts are essential for the Ward identity;
they did not appear in our simplified analysis given ear-
lier because A(2) —A(3) in Table I is independent of the re-
normalization point p, and the three-gluon parts are con-
vergent also.

Although we have only presented here some of the de-
tails of how the Ward identity is satisfied using the S-
matrix pinch technique, we have also constructed the full
vertex (not just its divergence) with this technique. Since
the same answer is found with the intrinsic pinch tech-
nique of Sec. III we postpone recording the result for
I „ to that section.

III. THE INTRINSIC PINCH TECHNIQUE

d kk =0. (3.1)

In this section we complete the work of Sec. II by giv-
ing an explicit expression for the gauge-invariant proper
vertex I „as well as for ft„, using a technique which
avoids imbedding as much as possible. There is nothing
new in principle here; it is just another way of looking at
the calculation of the last section. From these expres-
sions it will be entirely elementary to check the Ward
identity (2.20).

The general idea is this. Note that the pinch graphs
[Figs. 1(e), 1(f), and 3(a), and 3(b)] are always missing one
or more propagators corresponding to the external legs of
the improper Green's function in question, e.g.,
These graphs, as we know, are essential to cancel the
gauge dependence of ordinary graphs, e.g., Fig. 2(a) for

It follows that the gauge-dependent parts of such
ordinary graphs must also be missing one or more
external-line propagators. So our goal is to extract sys-
tematically the parts of proper graphs which are missing
external propagator legs, and simply throw them away.
We do this by looking for inverse propagators in proper
graphs which arise from Ward identities such as (2.6).
[There is one important point to remember: as in the last
section, the proper vertex is defined as the sum of Figs.
2(d) —2(f) (the usual graphs), minus the pinch graphs of
Fig. 3(a).]

Throughout this section we use the dimensional-
regularization rules

A. The proper self-energy

The usual Feynman-gauge proper self-energy of Fig. 6
has the value [for gauge group SU(N)]

iNg d~k
II (q)= [I „qr~ —k„(k+q)

2(2m. ) k (k+q)
—k,(k+q)„], (3.2)

where we symmetrized the ghost loop of Fig. 6(b). Now
write the vertices as we did in (2.3), in such a way that
the external momentum q is singled out and a piece of the
vertex called I is constructed that carriers only longitu-
dinal (i.e., pinch) terms in the internal momenta:

r =r „(k,q, —k —q)=r~„~+rP

I z=(2k+q)„g z
—2q g„&+2qzg „,

I „z=—k g„&
—(q+k)zg

(3.3)

(3.4)

(3.5)

Of the four terms on the RHS of (3.7), the first is saved in
its entirety, as it generates no pinches; the second two
contain d '(q) terms which we will drop; the fourth
plays a role in canceling the ghost loop. We find, using
(3.6),

r r +r„r„=4d '(q)P„(q)

2P„,( k)d '( k)—
2P„(q+k)d —'(q+k) . (3.8)

The first term on the RHS will be dropped. Note that it
has precisely the weight 4 which we found for the pinch
graph of Fig. 1(e) [see Eq. (2.10)], and dropping this term
in (3.8) has the same effect as canceling it with the S-
matrix pinch technique.

After some algebra, and using the dimensional-
regularization rule (3.1) to drop terms such as g„k aris-
ing from (3.8), the final result is (including the ghost loop,
which gets canceled)

We used this decomposition earlier in the discussion of
the vertex graph Fig. 1(b) from which we extracted the
pinch part of Fig. 1(e). Now, however, we use it for the
normal graph of Fig. 1(a). The full vertex 1„&obeys a
Ward identity such as (2.20):

k I"„=d '(q)P„(q) d'(q +k—)P„(q +k) (3.6)

with d '(q)=q, etc. The rules of the intrinsic-pinch
technique are to let the pinch vertex I act on the full
vertex, and to throw out the d '(q ) terms thereby gen-
erated with the Ward identity (3.6). To this end, write

F F P P P PI p~gI /~g I p(A/I /~/+ I p(A/I /~/+ r/~/I p(yg I p~gI /~g

(3.7)

~ 2 d k
~~.(q)=,f, ;[I„"~r ~

—2(2k+q)„(2k+q)„] .
2(2~) k (k+q)

(3.9)
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This is the same A„, as given in Sec. II and it is automati-
cally conserved [because it differs from II„,by the con-
served terms dropped in (3.8)]. To see that it is the same,
just use the results

{0)

{q+k)i

I „" &r i= —8q P„„(q)+4(2k+q)„(2k+q)
d4kf, , (2k+q )„(2k+q ),

k (q+k)
4

] '2p
( )

d k

k'(q+k )'

B. The 3-gluon vertex

(3.10)

(3.11)

(b)

FIG. 6. Graphs for the ordinary proper self-energy H„; (b) is
a ghost graph.

Exactly the same principles apply as for the propaga-
tor. Rewrite the 3-gluon vertices appearing in the proper
vertex graphs in I + I form [always singling out the
external momenta q; of Figs. 5(a) and 2(fl for special
treatment]. Apply the I to the full vertices, generating
terms involving d '(q;); drop these. Note the cancella-
tion between the ghost graphs and the pure I contribu-
tions. Finally, remember to subtract the graphs of Fig.
3(a) to complete the definition of the proper vertex f'„

The contribution of Fig. 5(a) to the proper vertex I is

(5~) Eg X d k
42(2m ) k, k2k 3

(3.12)

In recording the numerator X„,we use a compressed
notation in which all I.orentz indices are suppressed:

X=r r I'+I'r, I,+r, I',I,+I,I,r' —r', r,'r,
(3.13)

Here each vertex labeled 1 carried the indices o.pi, , each

vertex labeled 2 carries indices Xvp, and each vertex la-
beled 3 carries indices pro', 1, 2, and 3 refer to the exter-
nal momentum labels. Thus the first term on the RHS of
(3.13) really means

r „(k,q, , —k )r„, (k, q, —k, )

X I (k],q3, k2 ) (3—.14)

using the notation of Eqs. (3.3) and (3.4). As with the
propagator, the first term on the RHS of (3.13) contains
no pinches, and is saved as is. Each of the next six terms
has pinches [i.e., terms in d (q)] coming from the action
of I on I, via the Ward identity (3.6). These d ' terms
can refer to an external momentum k, 2 3, in which case
they give rise to an integral with only two propagators,
such as occur in Figs. 2(f) and 3(a). The last term on the
RHS of (3.13), with three I 's, yields terms of this latter
sort as well as a contribution which just cancels the ghost
graphs of Fig. 2(e):

(I,I I )„=d '(k )(k „g +k, g „)+d '(k )(k „g, +k, g„,)+d '(k, )(k g„+k g„)
+k] k2 k3p +k'1 k2pk3 ~ (3.15)

Terms with one I and two I"s have no external pinches, e.g.,

(r;r, r3)„..=k][r..„(k],q3, —k2)+r„..(k3, qz, —k])]—ki.g.„d '(kz) —k].g„.d '(k»

+k$ k2 kpp+k] k3pk3 ~ (3.16)

So it is only the terms with two I 's and one I that have the external pinches that we drop, e.g. ,

—r', r,r, = —r...(k„q„—k, )d-'(k, )+k,.d-'(k, )+P.„(2)+k,„d-'(k, )P.„(l)+ (3.17)

where the omitted terms have factors of d '(q; ) and are to be dropped.
All that remains is to combine the terms from (3.15)—(3.17) that have only two gluon propagators with the other

two-gluon parts of Figs. 3(a) (with a minus sign) and 2(fl. The final result is

d kf'„, (q„q„q,)=r„, + 'g, f . . .[(r,r~rF)„„+2(k,+k, ) (k, +k, ) (k, +k, )„]
2(2m. ) k, k k

—8(q i.g „.—q].g„.) ~ (1)—8(q2„g..—q~.g„.) ~ (2)—8(q3.g„.—q3y g (3.18)
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where the integrals 3 (i) are defined in (2.24). This is the
major result of our paper. It is now rather easy to verify
the Ward identity (2.20), using the elementary Ward
identity (2.6) for the I; in this verification, the form (3.9)
for ft„,appears in a natural way.

We have calculated the integrals in (3.18) for those
terms which require regulation (that is, which depend on
the renormalization point p). They are of the form

f'& ~=I
& [1+bg ln( —

q /p )]+independent of p),
(3.19)

simply reduces |to an uninteresting quadrature, with no
possible nonlinear feature. Of course, (4.2) then does give
the correct one-loop result

f'(q)=1+bg ln(q /p ) (4.3)

but nothing else.
A more promising approach is to use as the subject of

the equation a half-proper vertex, defined by (for the mo-
ment reinstating the full momentum dependence)

C(qi, q&, q3)=[~(q&)Z(q, )Z(q, )] ' 1(q„q„q, ) .

where q is representative of any of the external rnomenta.
Of course, (3.19) is just what we expect; it shows f' hav-
ing the same renormalization-group properties as d (q).

IV. A TOY MODEL

We might then replace (4.2) by

2 d4k
G(q ) =2'[Z(q )] — I G (k),k'(q+k)

(4 4)

(4.5)

d(q ) '=q Z(q ) . (4.1)

According to the Ward identity (2.20) we might expect
f'=Z, which it turns out will thwart one obvious
simplification of the true SD equation. This is, in Eu-
clidean space,

2

r(q)=Z —", y, "",r"(k)Z —
(k)

k (q+k)
(4.2)

which represents a triangle graph such as Fig. 5(a) but
with dressed lines and vertices, and with two powers of
momentum in the numerator, coming from spin, cancel-
ing out a propagator factor. But if f'=Z, EQ. (4.2)

In the previous sections we have computed the invari-
ant vertex f' at one-loop order of perturbation theory. It
would be nice to have an analogous one-dressed loop re-
sult, which would amount to an SD equation with cubic
nonlinearity, analogous to the nonlinear one-dressed-loop
equation for A„of Refs. 1 and 2. Although we are work-
ing in this direction, unfortunately we have no progress
to report. Instead we consider a toy equation, which we
essentially pull out of the air, which incorporates some of
the essential features we expect from the as-yet un-
discovered real SD equation. These features include
asymptotic freedom and the renormalization group
correct to one-loop level, but in the context of an equa-
tion with cubic nonlinearity. It is the nonlinear features
which are of interest, and in spite of the largely ad hoc
nature of the mode1, these turn out to be interesting and
realistic.

We ignore all complications of spin, except for the
powers of momentum they induce. Thus we think of

as having one power of momentum multiplying a di-
mensionless function which we call f' [cf. (3.19)]. In prin-
ciple f' depends on three momenta, but we approximate
it by a function of only one momentum, presumably
representative of the case where all three mornenta are
more or less equal. Finally, the equation for f' will also
depend on 6„,which again we replace by a scalar func-
tion d(q) [see (2.19)]. In terms of d we define a dimen-
sionless (andyositive, in the regime of Euclidean momen-
ta) function Z(q ) by

where we have paid attention to (4.4) in deciding what
factors of Z are inside the k integral and what factors de-
pend only on external momenta. The Ward identity now
leads us to expect 0=Z '~, and so (4.5) is indeed an
equation for 0 with a cubic nonlinearity.

Unfortunately, this equation —while perfectly accept-
able at O(g )—leads to problems at higher orders, so we
modify it by changing the integral in (4.5) so as to ac-—3/2count correctly for the Z term at one-loop order.
Our almost-final toy-model equation is

2 d kG(q)=+, J, , G '(k) .
2~ k (q+k)

(The final step will be to remove the infrared singularities
coming from the massless propagators, but we defer that
step until later. ) Changing the coefficient of the integral
from bg /nto +b—g /(2n .

) accounts for dropping the
first term on the RHS of (4.5), at least at O(g ).

By introducing the variable G(q)=gC(q) it is clear
from (4.6) that G(q) is in fact independent of the coupling
constant g. This is the first step in finding a
renormalization-group (RG) equation for G, which is just
the usual running charge.

The simplest way to deal with (4.6) is to find an
equivalent differential equation in the variable

t=ln(q /p ), (4.7)

where p is an arbitrary mass scale. This difFerential equa-
tion is

~ ~ ~G+G= ——G
2

(4.8)

G=g(1+bg t)

the usual one-loop result for the running charge.

(4.9)

where overdots indicate derivatives with respect to t.
One boundary condition is supplied by the normalization
G(t =0)=g, and we also demand that G vanish as
t ~+ oo. (Of course, we choose p in such a way that G is
independent of g, in spite of the normalization condition. )
At large t the G term in (4.8) can be dropped and we im-
mediately find
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Even though the basic equation (4.6) would appear to
be justified only to O(g ), let us work out higher-order
terms. Write G=gL; it is elementary to work out
the expansion

L =1+bg t+ ,'bg—ln(1+bg t)+ (4.10)

Compare this to the solution of the RG equation for the
usual running charge, to O(G ):

b)p( ) G3 G5+
2 2

G =g [1+bg t + (b
&
/b )g ln(1+ bg t )+ ]

(4.1 1)

(4.12)

Our Eq. (4.6), even though "derived" from one-loop con-
siderations, has a RG and a p function to all orders in g.
Of course, one cannot expect a one-loop equation to
know about an O(g ) effect with quantitative precision,
but it does fairly well: for (4.6), the coefficient b, is clear-
ly 3b /2, while the exact two-loop result (indepen-
dent of the gauge group for a pure gauge theory) is

bi =102b /121. The toy model b, is thus about 80% too
large. One might compare this to other nonperturbative
approaches to QCD based on the gauge technique for the
propagator, ' which have RG's for which the O(g ) term
in p is given to this accuracy. In contrast, the present
model automatically gets this term right, and does as well
for the O(g ) term as the gauge technique does for the
O(g ) term.

We will now construct the exact p function for our toy
model. By taking the t derivative of (4.11) we can elimi-
nate G from the fundamental equation (4.8), and of
course (4.11) itself allows G to be replaced by (1/2)p.
Thus from these two equations we derive

plies that the running charge G, to which this p function
applies, is singular for some finite values of t, and that
nonperturbative effects [terms such as exp( —1/bg )] will
be important.

We have solved Eq. (4.13) for P numerically, using b
for QCD (Ref. 23) [b= 1 1(167r ) '], with results shown
in Fig. 7. In spite of the fact that all of the power-series
coefficients in p are negative, p turns around and has a
zero at g=5 [for SU(3)]. This is easy to understand.
From (4.13),

3
P'=2 —1+ & —2 (4.17)

which implies 0&p& —2g. Then (4.17) implies that as
long as p' ~ 0 it satisfies

~

p'
~

& 2 bg . —Thus p' will vanish
somewhere near g 5 (2/b)'~, and for larger values of g,
p' is positive. Equation (4.13) shows that the approach to
p=O is a square-root singularity: p-(g, —g)'~. For
g &g„p is imaginary and our equations make no sense;
we have reached an inescapable singularity of both p and
G.

This problem, and its singular behavior, has a mechani-
cal analog. Equation (4.8) is the equation of motion for a
particle of coordinate 6 in a potential -bG, with fric-
tional damping. The generic solution has the particle un-
dergoing damped oscillations about 6 =0, finally coming
to rest at 6=0 when t = 00. However, for QCD we re-
quire that p [and also G, from (4.11)] are always negative,
so that G reaches zero only once, at t=+~. This
nongeneric solution is singular su%ciently far in the past,
as can be seen directly from the perturbative solution
(4.10).

This singularity comes from having massless propaga-
tors. In the integral equation (4.6), if G is always of one
sign then the integral on the RHS is singular at least at
q=0 (t= —00). In fact, gluons do have a constituent

P(g) 1+— = bg—1 dP
2 dg

(4.13)

subject to P» bg as g»—0. This equation is easily
solved as a power series in g; the first seven terms are

p bg 3 g b g
2N + 3

1

b, =(—,')b, b2=6b
—

( 285 )b 4 b —
(

107l )b 5
3 8 & 4

—
(

37 989 )b 6 b —
(

47 835 )b 7

(4.14)

The leading term in the recursion relation is

bN+ ]
= (N + 3)bbN + (4.15)

where the omitted terms are positive; this shows that b&
grows factorially. A numerical fit shows that, for large -5

0

b =0.118 (1.26b) '(2V+2)! . (4.16)

Unfortunately this series cannot be Borel summed, be-
cause the signs do not alternate. The factorial growth
and uniform sign is just what is expected of QCD; it im-

FIG. 7. Massless P function as defined by the solution to
(4.13). Also plotted is the perturbative P function bg' which—
passes through the minimum of P.
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