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The structure and stability of static spherically symmetric solutions in the SU{2)-Higgs theory are
examined using both analytic and numerical methods. Accurate results are presented for the energy
and instability growth rates of the "sphaleron" solution as a function of the Higgs-boson mass. The
sphaleron is shown to undergo an infinite sequence of bifurcations as the Higgs-boson mass is in-

creased, starting at MII =12M~. New "deformed sphaleron" solutions emerge from each of these
bifurcations. These deformed sphalerons are not charge-conjugation invariant, have non-half-
integral winding numbers, and are lower in energy than the original sphaleron. Hence, for
sufticiently large Higgs-boson mass, minimal-energy paths connecting inequivalent vacuum states do
not pass through the original sphaleron configuration.

I. INTRODUCTION

The existence of a static spherically symmetric solu-
tion, commonly called the "sphaleron, " in the SU(2)
gauge theory with a fundamental-representation Higgs
field has been known for many years. ' A plausible inter-
pretation of this solution was provided by the suggestion
that the sphaleron describes the top of the potential-
energy barrier separating gauge-inequivalent classical va-
cua. (More precisely, the "top of the barrier" means the
highest-energy configuration on a minimal-energy path
connecting inequivalent vacua. ) This interpretation
underlies the recent discussion of electroweak baryon-
number violation produced by thermally activated forma-
tion and subsequent 'decay of sphaleron configuration
(for example, Refs. 5—7).

The exact structure of the sphaleron solution cannot be
determined analytically. Nevertheless, numerous people
have used numerical or variational techniques to estimate
various properties of the sphaleron. ' ' However, the
small fluctuation spectrum of the sphaleron has not yet
been computed and, in particular, the number of instabil-
ities of the sphaleron has not been fully determined. This
is an important question as it bears directly on the inter-
pretation of the sphaleron as the top of the potential-
energy barrier. The highest-energy point on a minimal-
energy path connecting inequivalent vacua must be a
classical solution with a single direction of instability, i.e.,
a saddle point at which the curvature has a single nega-
tive eigenvalue. (If more than one negative mode exists,
then the putative minimal-energy path could be deformed
to produce a new path with a smaller maximal energy—
contradicting the original assumption of minimal energy. )

Hence, if the sphaleron has more than a single unstable
direction, then it is not the correct solution to use in the
semiclassical calculation of finite-temperature baryon-
number violation.

This paper examines static, spherically symmetric solu-
tions in the SU(2)-Higgs theory using both analytic and
numerical methods. In particular, accurate results for
the energy and instability growth rates of the "sphal-

eron" solution are presented as a function of the Higgs-
boson mass. The sphaleron is found to undergo an
infinite sequence of bifurcations as the Higgs mass is in-
creased, starting at M~=12.03M~. Below this mass,
only a single direction of instability exists (for spherically
symmetric deformations). ' A second instability devel-
ops when M~ exceeds 12.03M~, and further instabilities
appear above M~ =138M+. For a large Higgs mass, the
number of negative curvature eigenvalues is proportional
to In(MIt /M~).

Each passage through zero of a curvature eigenvalue
indicates a bifurcation of the sphaleron from which new
"deformed sphaleron" solutions emerge. These deformed
sphalerons are not charge-conjugation invariant, have
non-half-integral winding numbers, and are lower in en-
ergy than the original sphaleron. The nth bifurcation
generates a branch of deformed solutions having n direc-
tions of instability. Solutions on the first branch of de-
formed sphalerons are lowest in energy and correctly
characterize the top of the potential-energy barrier when
the Higgs mass exceeds 12M~. The fact that these solu-
tions are not charge-conjugation invariant implies that
there are two distinct minimal-energy paths (related by
charge conjugation) connecting neighboring vacuum
states.

The remainder of this paper is organized as follows. "
Section II introduces our notation for the SU(2)-Higgs
theory and summarizes the relevant topology for four-
dimensional gauge fields. The general ansatz for spheri-
cally symmetric configurations is reviewed, and the
restriction to static field configurations is described.
The spherically symmetric subspace of the (3+1)-
dimensional theory may be viewed as a (1+1)-
dimensional theory of a U(1) gauge field coupled to two
complex scalar fields;' this convenient form is used
throughout the paper.

The classic sphaleron solution is examined in Sec. III.
The sphaleron is a local minimum of the energy when re-
stricted to charge-conjugation-invariant configurations.
It may be viewed as a soliton of the etfective (1+1)-
dimensional theory. Analytic results on the asymptotic
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behavior and instabilities of the sphaleron are described.
Accurate numerical results are presented for the form,
energy, and negative curvature eigenvalues of the sphal-
eron as a function of the Higgs mass.

Section VI is devoted to the "deformed" sphaleron
solutions. Numerical results are presented for the struc-
ture, energy, and negative curvature eigenvalues of the
first two branches of deformed sphalerons.

The extension of the spherically symmetric ansatz to
include fermions, and a brief description of the numerical
techniques used, are contained in two appendixes.

II. SU(2)-HIGGS THEORY

The SU(2)-Higgs theory may be defined by the action

S= f d x[ ,'tr(F„—F—")+(D„4) (D"4)1

+(&/g')(@ @——'g'U')'] (2.1)

The scalar field @ is an SU(2) doublet with covari-
ant derivative D„—:(t)„+A„), where A„—= A „'(r'/2i).
Fz, ——[D&,D „] is the SU(2) field strength. We use
a spacelike metric in Minkowski space,
=diag( —,+, +, + ). Hence, the definition (2.1), as well
as our subsequent equations, are valid in both Minkowski
and Euclidean space. '

The action (2.1) generates the equations of motion

D"F„=—,
—'[(D C ) r'4 —C&tr'(D, C )]r',

D"D 4= (4 N —
—,'g u )&0

=2k
P 2

(2.2a)

(2.2b)

and

MH =&2kv,

(2.3)

respectively.
The topological charge of a gauge field configuration is

defined as

Q= — d x e" ~tr(F„F tt) .
1

327T2
(2.4)

This is an integer provided the field strength vanishes at
(spacetime) infinity. Since the charge density is the diver-
gence of the topological charge current, —

( ei' t /
32vr )tr(F„„F& ) =B„K"with

K"=— e" ~tr(A F t3 ,'A A Ati), ——(25)
1

(where D F„i=Bg„i+[A,F„i ]). The (semiclassical)
8'- and Higgs-boson masses are

M~ ——gu

charge equals the difference in the "winding number" of
the gauge field at t =+~,

Q = lim — lim q(A (t)),t~ oo f~ —oo
(2.6)

where the winding number q ( A ) of any three-
dimensional gauge field is defined as the integral of the
Chem-Simons density E:
q(A)= f d xK

f d x e '~"tr( A, FJk ——', A; A Ak ) . (2.7)
16~

q(A")=q(A)+v(Q) .

Here,

(2.8)

v(Q)= — f d x e 'J"tr[(Q B,Q)(Q 8 Q)(Q BkQ)]
1

(2.9)

is the integer which measures the homotopy class of the
gauge transformation A. Thus, the winding number q is
invariant under all "proper" gauge transformations
(transformations continuously connected to the identity),
but changes by an integer under topologically nontrivial
gauge transformations. When restricted to vacuum
configurations the winding number is quantized,
q(QBQ )=v(Q); however, for nonvacuum configurations
q may take on arbitrary real values.

A. Spherically symmetric configurations

In addition to the local SU(2) gauge invariance, the
SU(2)-Higgs theory (2.1) is also invariant under a global
SU(2) symmetry which mixes the doublet Higgs field 4
with its complex conjugate —i~24*. "Spherically sym-
metric" configurations are those for which an O(3) rota-
tion of spatial directions may be compensated by a suit-
able combination of SU(2) gauge and SU(2) global trans-
formations. ' A convenient ansatz for the most general
spherically symmetric configuration is given by' '

A o(x) = [ao(r, t)r x]/2i,

The winding number q may be regarded as a coordi-
nate in gauge-orbit space which measures the position of
topologically inequivalent vacua. Under an arbitrary
gauge transformation Q(x) (which approaches a constant
at spatial infinity), A; —+A; =QD;Q and the winding
number becomes

the topological charge may also be expressed as a surface
integral:

A.(x)= I[a(r, t) —1]ej'/r +/3(r, t)e /r

+a, (r, t)ej I/2i, . (2.10)

Q=fd xK + fdtdQr K"
r=0

C&(x)=[@(r,t)+iv(r, t)r x]g,

One may choose a gauge where the vector potential van-
ishes sufficiently rapidly at spatial infinity so that
r E"—+0 as r~~. In such a gauge, the topological

where the six arbitrary functions are all real and g is an
arbitrary two-component complex unit vector. The ma-
trix valued functions I e&" I are defined as
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e,'=(r x.r; —x;)/i =(e; kxk)r y~e' y, P~e' ~2/, A„~~a +() tv . (2.12)

e; =r —r xx =(5"—x.x )r

e, =r.xx;=(x;x )r

where x is a unit three-vector in the radial direction. It
will be convenient to introduce (1+1)-dimensional com-
plex scalar fields y —=a+i P and P =p+ i v, and the
(1+1)-dimensional field strength f„=Ba, —B,a„(with
p and v now two-dimensional indices). Two-dimensional
covariant derivatives will be defined as

—foie 2l

1 18; = ,'e;JkF—&k= ——Im(D, y)e +—Re(D, y)e,r r

Using this ansatz, the SU(2) electric and magnetic
fields are

E, —:F,o= ——Re(Dog)e, ' ——Im(Dog)e,
1

r r

D„y=(B„ia„)g—, D„P=(B„ia„/—2)P . (2.11)

This ansatz preserves a U(1) subgroup of the SU(2)
gauge group consisting of the transformations
[ Q =exp[iso(r, t)~ x/2] ) . Under these transformations,

2l

The action, restricted to this ansatz, equals'

, I«« ,'r'f„.f" + I—D, '+r'ID&I' Re(x*4—')+, (Ixl' —1)'+-,'(Ixl'+I) lgl'+, r'(l4 ' —
—,'g'v')'

2r

(2.13)

Varying the reduced action (2.13) generates the (1+1)-
dimensional field equations 32~2

8"(r —f„)=21m(y*D y)+r Im(Q*D P), (2.14a)

(2.14b)

1 e" [f„(1—ly ) —2i(D„y)*(D„y)]
16~ r

(2.16)

and the topological current is

2D"r'D, + ,'(ly—I'+1)+, r-'(2141 —g v ) 4=XI* .

(2.14c)

and (2.15a)

D„y~O, r D„Q~O, f„,~O,
as r~ ~. (Finite-action Euclidean solutions must also
satisfy these boundary conditions as t —++oo.) At short
distance, finiteness of the energy, the SU(2) field strength,
and the gauge current requires that

lxl 1, xlyl' O', D„x o (2.15b)

as r —+0. These conditions on the short-distance behavior
imply that the r =0 singularities in the gauge potential
and Higgs field may be removed by a suitable gauge
transformation.

The topological charge density of configurations in this
ansatz is

[These equations can also be derived by substituting the
ansatz (2.10) directly into the (3+1)-dimensional equa-
tions of motion (2.2).]

Finite-energy solutions must satisfy

y~e', P~e'"~ (gv /&2), a„~B~ro,

ICO= — e ' a, —ImB,y+ —.[y*(D,y)
8772r 2

—(D X)*X]

I

K'= e ao —1mB~+ —[y*(Dog)—(Dog)*y]
8m. r 2l

Hence, the topological charge equals

Q = — Idt dr e""[f„(1—lyl )
—2i(D„y)*(D,y)],I

(2.17)

and the winding number q = f d x Ko is

' f dr e" a, —1m', g

+
2,.

[X*(Di X)—(D i X)*X]

(2.18)
The boundary conditions (2.15) ensure the quantization

of topological charge for finite action Euclidean
configurations, and cause the (3+1)-dimensional topo-
logical charge to reduce to the simple Aux integral which
gives the usual topological charge in a (1+1)-
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dimensional Abelian Higgs theory,

Q = — f dt dr e"'f„1

or the equivalent form which measures the winding in the
phase of the Higgs field:

Q =
4 f dr e '[y'(BA) —(B,y)*y]

gauge transformations of this state, (2.19). If the phase
difference of y(r) between r =0 and oo is fixed at zero,
then there is an infinite set of topologically inequivalent
vacuum configurations distinguished by the winding
number of the phase of the complex scalar field y,
(i /2) f o dr[(B„g)*g—g*(B„g)]=2m.n, or equivalently by
the line integral of the gauge field, Jo dr a

&
=2m n. These

are just the classical "n-vacua" of an SU(2) gauge
theory ' '

f dt e '[g*(Bog)—(i3 y) g]
r=0

III. THE SPHALERON

B. Static con6gurations

Arbitrary (spherically symmetric) field configurations
which are static [up to a U(1) gauge transformation,
(2.12)] may be expressed as a gauge transform of a strictly
static configuration with a

&
=0:

The sphaleron solution may be easily found by impos-
ing charge-conjugation invariance on the static ansatz
(2.19). Charge conjugation (or CP) transforms the scalar
fields y and p into their complex conjugates and changes
the sign of a„. Hence, static, spherically symmetric,
charge-conjugation-invariant solutions are completely de-
scribed by two real functions y(r) and P(r) The .energy
of such a configuration is

y(r, t)=e' '"'"y(«),

p(« t) —e!co(l', f)/ 2$(r)

ao(r, t) =Bozo(r, t)+ao(r),

a, (r, t) =B,co(r, t) .

The energy of such a static configuration is'

(2.19)

E= f dr (B„j)+r (B„p) +
2 (y —1)

2r

+ 1 (~ 1 )2P 2+ «2($ 2 j g2u2)2
2 2 l 2 2 2

(3.1)

E =
2 f dr ,'r (B„ao) +a 0(—lyl +—'r lpl )

and the equations of motion reduce to the pair of coupled
equations:

—$2+ (y2 1)+ 1/2 j—1/2
r

(3.2a)

(2.20)

The field equations (2.14) reduce to Gauss's law

(
—B„r 8„+2Ijl + —,'r lgl )ao=0 (2.21a)

and a pair of coupled equations for the scalar fields:

—8„+a + (l~l' —I)+-,' lyl' i=-,'y', (2.21b)

—B,r 8„+—,'r a 0+ —,'(lyl +1)

+,«'(2IWI' —g'u') P=xg * . (2.21c)

[The remaining gauge field equation in (2.14a) becomes a
requirement of vanishing charge current, 21m(&*0„g)
+r Im({I) *B„P)=0. This, however, is an automatic
consequence of the scalar equations (2.21b) and (2.21c)
plus the boundary conditions (2.15b).] Since the linear
operator in (2.21a) is strictly positive, Gauss s law re-
quires the gauge field ao to vanish for all static solutions.

The lowest-energy state is obviously P=gu/&2 and
y = 1. Vacuum configurations are given by arbitrary

2 2 2 2—B„r 8„+—,'(j—1) + r (2(h —g u ) /=0 . (3.2b)

(These are equivalent to the equations of Ref. 2.)

For charge-conjugation-invariant static configurations,
the boundary conditions (2.15) imply that y= 1 at r = oo

and g=+1 at r =0. The sphaleron is the lowest-energy
configuration in which y moves from —1 at r =0 to + 1

atr=~.
To calculate the winding number of the sphaleron, one

should choose a gauge in which y(0)=y(oo). (Other-
wise, field configurations which interpolate between a
classical n vacuum and the sphaleron will have nonzero
topological current Aowing in from the spatial boun-
daries. ) Since g(0)= —g(oo), a suitable gauge transfor-
mation will change the phase difference between y(0) and
g( oo ) by 2n(n +—,

' ). The resulting winding number,
(2.18), simply measures this phase difference q, h

=n +—'.
Hence, sphaleron solutions sit "midway" between adja-
cent classical vacua.

A. Sphaleron structure

It does not appear possible to solve the coupled equa-
tions (3.2) analytically. However, the asymptotic behav-
ior of the sphaleron solution at short and long distance
may be easily determined.
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As r approaches 0, y(r)~ —1 and P(r) ~-0 y may be
expanded in an even-power series,

y(r)= —I+a2r +a~r +
while P has an odd expansion:

P(r)=b, r+b3r +
Inserting these expansions into the sphaleron equations
(3.2) yields recurrence relations which may be used to ex-
press all power-series coefficients in terms of the lowest
two coefficients az and b&. These two coefficients, howev-
er, can only be determined by integrating the solution
from r =0 to r = ~ and using the large-distance bound-
ary conditions.

As r~oo, y(r)~1 and P(r) +gul&2—. To find the
precise asymptotic behavior it is convenient to write

1.0

0.5

0,0

—0.5

—1.0
0

a)

gu g(r)
v'2 r

(3.3)

and to reexpress (3.2) as

—i)„+ (g+ 1)y+M~(1 q/r) (y ——1)=0,
r

In this form, one can readily show that

g(r)= [I+O(1/MHr )]+O(e /MH),g(r) 1]—2 2 ™a"
2M~r

(3.4a)

[ —8„+MH( I g/r)(1 —g/2—r)]g= (y —1) (1 g/r) . —

1.0

/
/

0.8 — j
/

I
f

0.6 —f
f /

f
/

f
/

0.4 g
/

f

l

0.2 4// .'
l /. .'
f

/

)!.'

pp I' I I )

0 1 2

(b)

—M~r 1
g(r) = 1 —ce 1+

M~r
[1+O(e,e )] .

(3.4b)

FIG. 1. Radial dependence of the fields y and P in the sphal-
eron. p and r ' are measured in units of M~. Shown are re-
sults for M& =0.1M~ (dotted curves), MB=M~ (short-dashed
curve), MH = 10M~ (long-dashed curve), and M& = 100M~
(solid curves).

B. Sphaleron instabilities

The sphaleron is a local minimum of the energy func-
tional (3.1) describing spherically symmetric, charge-
conjugation-invariant configurations. It is, however, only
a saddle point of the complete energy functional; perturb-
ing the sphaleron by a charge-conjugation-odd Auctua-
tion may lower its energy. This is easily shown by exam-
ining the second-order variation of the energy (2.20) ex-
panded about the sphaleron solution. Since any gauge
transformation of the sphaleron is also a solution, the
small fiuctuation describing a linearized U(1) global
gauge transformation 5g =ig and 5$=i P/2 (with
5a„=0) is guaranteed to be a zero mode of the second-
order small Auctuation operator 5 F.. This zero mode has
one node in 5y since y(r) changes sign. Consider modify-
ing the fiuctuation to remove this sign change, 5j =i ~y~

and 5/=i//2. Insertion of the absolute value sign only
makes a diff'erence in the single term of the energy (2.20),

(c is an undetermined constant. ) The deviation of P(r)—M~r
from its vacuum expectation value is O(e /MHr) if

MH (2M', and O(e /MHr ) if MH )2Mii.
To determine the structure of the sphaleron complete-

ly, one must minimize the energy functional (3.1) numeri-
cally. This is fairly straightforward. Figure 1 is a plot of
the solutions y and P for several values of the mass ratio
MH/Mii . Note that the diameter of the sphaleron is 2—3

times Mii ' (using the surface where g=0 as the "edge"
of the sphaleron).

The energy of the sphaleron solution as a function of
the Higgs-boson mass is shown in Fig. 2. The depen-
dence on the Higgs mass is rather weak; if M~ lies be-
tween —2Mii and 5Mii, then E,~h=4Mii, /aii, to within
—15%. Table I shows a selection of this data in tabular
form. As MH ~~, the sphaleron solution approaches
a solution of the massive SU(2) gauge theory. In this lim-

it, P(r) is fixed to its vacuum expectation value ~22M~,
y(r) is the solution to [—t)„+(y+ I)ylr +M~](y 1)—
=0, and the energy approaches E,~h=5. 410Mii /aii.
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6.0 TABLE I. Sphaleron energy and negative curvature eigenval-
ues for different values of the Higgs-boson mass.

5.0

Esph

Mw/a w

CO
2

Mw

Mw/nw

4.0

3.0
10 10 100 101

MH /M~

102

FIG. 2. Sphaleron energy (in units of Mw/nw) as a function
of the Higgs mass.

which is strictly negative. This proves that the sphaleron
has at least one direction of instability. '

To determine if multiple instabilities exist, one must di-
agonalize the curvature 6 E. Spherically symmetric in-
stabilities can only appear in the subspace of charge-
conjugation-odd, time-reversal-invariant Auctuations de-
scribed by Im5y(r) and Im5$(r). In this sector, the cur-
vature has the form

Im5y Im6y5E= fdr — JR

where

—2 Re(5g *5/ P ) = —g ~ P . Consequently, this Auctua-
tion produces a second-order change in the energy,

5'E =—,f«(IXI —&0'

0.00
0.01
0.02
0.05
0.07
0.1

0.2
0.3
0.5
0.7
1.0
1.5
2.0
3.0
4.0
5.0
7.0

10.0
15.0
20.0
30.0
50.0
70.0

100.0
150.0
200.0
300.0
500.0
700.0

1000.0
1500.0
2000.0

3.0405
3.0517
3.0624
3.0926
3.1115
3.1384
3.2188
3.2892
3.4099
3.5121
3.6417
3.8151
3.9532
4.1633
4.3179
4.4375
4.6115
4.7805
4.9450
5.0417
5.1504
5.2473
5.2919
5.3267
5.3545
5.3687
5.3831
5.3948
5.3998
5.4036
5.4065
5.4080

1.318
1.338
1.356
1.408
1.440
1.486
1.626
1.752
1.979
2.182
2.460
2.877
3.257
3.967
4.667
5.405
7.176

11.21
23.43
42.80

101.1
291.8
579.5

1 192
2 694
4 798

10 811
30054
58 920

120 259
270 603
481 084

0.947
2.018
3.229
4.740
6.206
9.304

19.18
35.81
87.10

256.0
511.3

1 055
2 389
4257

0.402
1.667
2.996
4.485
5.809
8.418

16.51
30.49

0.040
1.377

—8„+(y —1)/r +P/r— —Plr
—8„+(y+1) /2r +A(2(t —g v )/g

(3.5)

Each eigenvector of Ai with a negative eigenvalue,

Im5g Im6g= —cor Im5$ r Im5$
(3.6)

—82 —2 r /2(+y 1+) /2r +A, (2$ —g v )/g
+A,0

generates an exponentially growing instability, 5y, 5$ ~ e
Accurately diagonalizing the curvature operator is somewhat more difficult than just solving for the sphaleron solu-

tion; however, it may be performed using standard numerical techniques. (See Appendix B for details. ) Figure 3 plots
the negative eigenvalues of the curvature as a function of Higgs-boson mass. For sufficiently small Higgs mass, only a
single negative mode exists. However, a second negative mode appears at MB=12.03M~, and further instabilities ap-
pear at MH =138.3M~ and 1490M~. This is the beginning of an infinite sequence; for a large Higgs mass, the number
of instabilities is proportional to ln(MH /M~).

These instabilities at a large Higgs-boson mass arise from the behavior of the curvature operator Jk when
MH

' « r «M~'. To see this, first write the curvature operator as
—8„+(y —1)/r 0
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1O4 5.5

103

2

Mw'
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101

E
5.0

Mw ~w

1O'
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100 1000

M~/Miv

FIG. 3. Curvature of the unstable directions about the
sphaleron as a function of the Higgs mass.

where

FICi. 4. Deformed sphaleron energies as a function of the
Higgs mass. The solid lines show the energies of the first two
branches of deformed solutions, while the dotted line indicates
the original sphaleron energy.

U(r)= —,'p +(g+1) /2r +A(2p —g U )/g . (3.7)

In the region M~ ' (&r &&M~', we have g = —1,
/=i/2M~(1 2/MHr —~, and

u (r) = — +Marr2
(3.8)

One may easily show that the number of bound states in
an attractive 1/r potential (with coefficient greater than
—'), confined to a region r;„&r &r,„,depends logarith-
mically on the ratio r,„lr;„. Since the 1/r form of
the potential (3.7) is cut off at distances smaller than MH '

and larger than M~', one finds that the number of nega-
tive eigenvalues of Afmust grow lo, garithmically with in-
creasing Higgs mass. A semiclassical calculation of the
number of bound states in the potential (3.8) predicts that
each increase in MH/M~ by a factor of e" =9.2 will
lead to the formation of one new negative eigenvalue.
This agrees remarkably well with the numerical results.

—P/r 2lr
and note that the eigenvalues of A are 0 and —,'P +2/r .
If W were replaced by its largest eigenvalue (times a 2 X 2
identity matrix), the number of negative modes could
only decrease. Consequently, the number of negative
modes of AL is bounded below by the number of negative
eigenvalues of the Schrodinger operator —8„+U(r),
where

have fewer directions of instability, and are lower in ener-
gy than the original sphaleron. The energy of these de-
formed sphalerons is shown in Fig. 4. The deformation
of the sphaleron leading to the new solutions causes only
a small change in energy (at most 8%%uo); however, it pro-
duces a large change in the small fluctuation spectrum.
The first branch of "deformed sphalerons" (starting at
12Mir) is the lowest in energy and, as shown in Fig. 5,
has a single negative eigenvalue of roughly constant mag-
nitude. Each succeeding branch has one more direction
of instability, so the nth branch of solutions has n nega-
tive eigenvalues.

Figure 6 shows the winding number of these solutions.
The two outer branches of each "pitchfork" represent de-
formed solutions related by charge conjugation. For the
first bifurcation, the deviation of the winding number

16

12—

—QJ
2

8—
M~2

IV. DEFORMED SPHAI. ERGNS

Each passage through zero of a small Auctuation eigen-
value of the sphaleron (at MH= 12.03Mir, 138.3M',
etc.) signals a bifurcation in the sphaleron solution. New
branches of classical solutions appear at each bifurcation;
the new solutions are not charge-conjugation invariant,

0
10

I I I I I

100

FIG. 5. Curvature of the unstable direction about the
lowest-energy deformed sphaleron as a function of the Higgs
mass.
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FIG. 6. %'inding number q of sphaleron solutions as a func-
tion of the Higgs mass. Solid lines indicate solutions with a sin-
gle direction of instability, dashed lines correspond to doubly
unstable solutions, and dotted lines to triply unstable solutions.

from —,
' grows from zero at the bifurcation to +0. 124 as

MH —+ ~.
The fields of the deformed sphalerons on the first two

branches are shown in Fig. 7. The lack of charge-
conjugation invariance in the deformed solution allows
the Higgs field P(r) to remain nonvanishing at the origin.
This decreases the potential energy in the Higgs field,
while increasing the kinetic energy due to the variation in
phase of the Higgs field. For a sufficiently large Higgs
mass, the loss of potential energy outweighs the increased
kinetic energy; this is the basic mechanism causing the
instability which leads to the formation of deformed
sphalerons.

Tables II and III contain a selection of data on the first
two branches of deformed sphalerons. The magnitude of
the negative curvature eigenvalues monotonically de-
crease with increasing Higgs mass along both branches,
and no additional bifurcations appear. In the limit of
infinite Higgs mass, M~ /Mii ~ oo, the SU(2)-Higgs
theory reduces to a gauged nonlinear sigma model and
each deformed sphaleron becomes a classical solution of
the gauged sigma model. The energy and negative curva-
ture eigenvalues are finite and nonzero in this limit, and
the deformed sphaleron fields remain nonsingular (even

1.0 1.0

0.9

Ixl o 5

0.0
0

0.7
0

I

0.5

vr/2 .

(c)

0

Arg P

—it /2

0'
0

I

0.5

FlQ. 7. Radial dependence of the fields j and p in the deformed sphaleron solutions. Shown are results for the lowest-energy de-

ormed sphaleron at ~ =20M~ (solid curves) and for the second branch solution at MH =200M~ (dotted curves). The first pair of0 —1

plots shows the magnitude of the fields, while the second pair shows their phases. ~tI) ~
and r are measured in units of Ms .
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TABLE II. Energy, winding number (q), and negative curva-
ture eigenvalue (co ) for various values of the Higgs mass along
the 6rst branch of deformed sphalerons.

CO
2

Mw

12.04
13
15
20
30
50
70

100
150
200
300
500

1000

4.8598
4.8890
4.9333
4.9927
5.0357
5.0580
5.0642
5.0675
5.0693
5.0699
5.0703
5.0705
5.0706
5.0707

0.495
0.455
0.428
0.402
0.387
0.380
0.378
0.377
0.376
0.376
0.376
0.376
0.376
0.376

15.235
11.871
8.439
6.093
5.201
4.873
4.793
4.752
4.731
4.723
4.718
4.715
4.714
4.714

TABLE III. Energy, winding number (q), and negative cur-
vature eigenvalue (co ) for various values of the Higgs mass
along the second branch of deformed sphalerons.

~w~& w

CO

Mw

138.3
140
150
200
300
500

1000

5.3498
5.3505
5.3544
5.3660
5.3747
5.3792
5.3811
5.3817

0.499
0.495
0.487
0.475
0.468
0.465
0.464
0.464

2285
2187
1719
804.3
502.4
410.5
379.6
370

16.22
15.45
12.07
7.009
5.673
5.260
5.116
5.07

at the origin). The limiting energy of the first deformed
sphaleron, 5.0707Mii, /aii„agrees with earlier work on
classical solutions in the gauged nonlinear sigma model.

The presence of a unique direction of instability in the
first branch of deformed sphalerons justifies their physical
interpretation as the highest-energy configuration on a
minimal-energy path connecting inequivalent classical
vacua (assuming that no spherically asymmetric instabili-
ties exist). The fact that the deformed sphaleron is not
charge-conjugation invariant means that there are actual-
ly two distinct minimal-energy paths (related by charge
conjugation) connecting neighboring classical vacua
(when MH ) 12M', ).

Note added. The existence of deformed sphaleron solu-
tions was independently discovered by Kunz and
Brihaye. However, these authors did not study the neg-
ative eigenvalues of sphaleron solutions and mistakenly
suggest that deformed sphalerons cannot be the
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APPENDIX A: FERMIONS

Fermions may be added to the SU(2)-Higgs theory
without destroying the global symmetry which permits
the existence of nontrivial spherically symmetric
configurations. Adding n& left-handed SU(2)-doublet fer-
mion fields I %L I (I = 1, . . . , n& ) with action

1
(A 1)

produces a theory which is identical to the full
SU(2)L XU(1)r electroweak theory in the limit in which
0~=0 and all Yukawa couplings are set to zero. In this
limit, the U(1)r gauge field and the right-handed SU(2)
singlet fermions decouple and hence may be neglected.
(The spatial components of the 2X2 spin matrices o" are
ordinary Pauli matrices and the time component is
defined to be —1 in Minkowski space, or —i in Euclidean
space. )

Spherically symmetric fermion fields are described by
the ansatz

O'L(x)=[f (r, t)+ig (r, t)r x]:-, (A2)

maximal-energy configurations on noncontractable loops
(i.e., paths connecting inequivalent vacua) because the
Higgs field in these solutions is everywhere nonvanishing.
This is incorrect. When the original sphaleron has multi-
ple negative modes, deforming a noncontractable loop
whose highest-energy point is the original sphaleron, in
the direction of the second negative curvature mode, will
decrease the maximal energy of configurations on the
loop. At least in a neighborhood of the first bifurcation,
the lowest-energy noncontractable loop produced by such
a deformation will be one whose highest-energy configu-
ration is the deformed sphaleron solution. A simple con-
tinuity argument, combined with the fact that the first
deformed sphaleron is always the lowest-energy deformed
sphaleron, then implies that deformed sphalerons on the
first branch must continue to represent maximal-energy
configurations on a noncontractable loops provided no to-
tally new classical solution appears in a disjoint region of
configuration space. (More picturesquely, the deformed
sphaleron always represents the lowest-energy "pass" in
the potential-energy barrier separating inequivalent va-
cua, provided this lowest-energy pass evolves continuous-
ly as the Higgs mass increases. However, if a new
"mountain range" appears in the configuration space as
the Higgs mass increases, then the maximal-energy
configuration might jump discontinuously away from the
known deformed sphaleron solutions. ) No evidence sug-
gesting the occurrence of such a discontinuity is known.
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where = is the constant two-component spinor satisfying:-:-= 1 and (o +r):- =0 (which implies that = r= =0).
The complex functions f and g may be conveniently

combined to form (1+1)-dimensional Dirac fermions:
where (y'0„+j'/r) ii~o(r) =0. This has a normalizable
solution,

lucio(r)
= exp —f dr', gati(ro ),, X(r')

0
(AS)

The fermion action then reduces to

St„= f dt dr f y"D„+ (—Rey+iy5Imy)P

with y&gati(ro):—lii(ro). The sphaleron asymptotics (3.4)
implies that lucio(r)

—r as r +0 and—po(r) —1/r as r ~ oo.

(A3)

where we have defined the two-dimensional gamma ma-
trices y:——io. , y' = —o.3, y—:y y' =o.2, and use
g—= le (iy ). In this form, the one-dimensional fermions
have an axial gauge coupling, D„t/i= (B +ia„y /2)g,

lN /2and transform as ~e '"r I
it~ under the U(1) gauge

transformation (2.12). Because of the factor of 1/r in the
coupling to the Higgs field y, finiteness of the energy re-
quires that the fermion field i(i vanish as r ~0.

The fermion-number current Jp—:—O'L o "O'I is givenIt; I

by

JO —qpIt@I — t
q IyOql

r
P

Ji @It iilil i q Iy 1qI
r2

(A4)

When quantized, the (1+1)-dimensional theory
(A3) has anomalies in the fermion-number current
jj'=4~if y"—g caused by axial-vector coupling to the
two-dimensional (2D) gauge field:

2

Bpj'= — e" f„, . (A5)

This does not equal the reduction of the four-dimensional
anomaly equation,

2

B„Jj'=— e ~""tr(F tIF„), (A6)

since the right-hand side of (A5) difFers from the four-
dimensional topological charge density (2.16). This is be-
cause nonspherically symmetric components of the fer-
mion field contribute to the local form of the anomaly.
However [given the boundary conditions (2.15) in Eu-
clidean space], the integrated forms of the 4D and 2D
anomalies are identical:

b% —= f d x B„JP= f d x Bpf=g .
g'

(A7)

This confirms the expectation that in spherically sym-
metric gauge fields, anomalous production of fermions is
confined to the spherically symmetric partial wave.

In the field of a sphaleron, the Dirac equation,
[yi"D„+(Rey+i Imyys)/r]itI =0, has one static zero
mode for each fermion species. ' The zero mode has
the form

APPENDIX 8: NUMERICAL METHODS

The approach used to find static solutions and deter-
mine their instabilities was quite simple. To reduce the
problem to a finite number of degrees of freedom, the ra-
dial integral and spatial derivatives in the energy func-
tional (2.20) were discretized. The gradient and curva-
ture of the discretized energy were computed exactly and
a quadratically convergent Newton minimization pro-
cedure was used to locate stationary points of the energy.
Explicit diagonalization of the curvature matrix yielded
the small fluctuation frequencies. Using the result of a
minimization at one value of the Higgs mass as the input
to the calculation at a nearby mass value allowed solu-
tions to be easily followed as MH/Mii was varied. Cal-
culations with different numbers of points in the discreti-
zation, ranging from 20 to 240, were used to control the
systematic error of the discretization.

The only major subtlety concerns the choice of discret-
ization. The sphaleron solutions depend on two length
scales Mw' and MII '. When these two lengths are very
different, the differential equations (3.2) satisfied by the
sphaleron become quite stiff. Furthermore, when
M~ ))Mw, instabilities develop on length scales ranging
between M~' and Mw'. Hence, to obtain accurate re-
sults for the curvature eigenvalues, variations in the fields
on all length scales between MH

' and Mw' must be well
described. The best results were obtained using a uni-
form discretization of the transformed radial variable:

1+MHr
s =ln

1+Mwr
J

ln(MH/Mii, ) .

This transformation maps the semi-infinite line 0+ r ( ~
to the unit interval 0 & s & 1. Since ds/dr ~ 1/[(r
+M~')(r +M~ ')], when MH ))Mii, this transforma-
tion leads to a discretization in which the density of
points is approximately uniform in r when r & M~, uni-
form in ln(r) when MH ' & r &Mii, ', and uniform in 1/r
when r )Mw'.

With this choice of discretization, the numerical re-
sults converge quite rapidly as the number of points in
the discretization is increased. For M~/Mw close to
one, a 40-point discretization yields values for the energy,
or negative eigenvalues, accurate to about one part in IO,
while 80 points are needed to achieve comparable accura-
cy when MH equals 1000 Mw. All digits of the results
shown in Tables I—III are accurate.
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