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We discuss the phase diagram of Skyrmion crystals as a function of both density and pressure.
The use of symmetry properties of the various phases and of Fourier expansions tailored to fit these
symmetries facilitates our discussion. A simple cubic arrangement of half-Skyrmions is, almost
everywhere, the lowest-energy phase. At very high densities the simple cubic phase undergoes a
transition to a body-centered-cubic crystal of half-Skyrmions. The transition to a crystal of Skyr-
mions at low densities; that was previously suggested, is not accessible thermodynamically. A first-
order phase transition leading to a phase separation occurs before the previous transition can be
reached.

I. INTRODUCTION

The Skyrme' model describes nucleons as solitons in a
nonlinear theory of ~ mesons. In quantum chromo-
dynamics, when the number of colors becomes infinite it
was argued that baryons are indeed solitons in a mesonic
theory. The phenomenological apphcations of the
Skyrme model thus involve a double approximation,
changing N„ the number of colors, from infinity to three,
and using a theory containing only pions as a low-energy
approximation for a more complicated meson theory. In
spite of these rather severe approximations, the model
has been shown to give a reasonable description of
single-nucleon properties and of meson-baryon scatter-
ing.

In this paper we deal with the properties of nuclear
matter in the Skyrme model. In the classical approxima-
tion Skyrmions attract each other at large separations.
At zero temperature, where all kinetic energy can be
neglected, this attraction will cause the ground state to be
a crystal. A numerical calculation to determine the
whole structure of the ground state turns out to be too
dificult. Thus the usual approach is to assume a crystal
symmetry and to perform a numerical solution using this
symmetry as a constraint. We do not know of a simple
way to guess the symmetry of the ground state. Only ap-
proximate arguments based on the nature of the long-
range interactions between Skyrmions have served as
guidelines for finding the symmetry of the ground state.
This symmetry is described by a group that includes ele-
ments of space groups and isospin transformations.

The first guess for the crystal symmetry was made by
Klebanov who was the first to investigate this subject.
He arranged Skyrmions on a simple cubic lattice and
showed that the Skyrmions could be rotated so that every
Skyrmion is attracted by its six nearest neighbors. This
served as a starting point for a numerical relaxation pro-
cedure. Wust, Brown, and Jackson have investigated the
Klebanov lattice as a function of the baryon density.
They showed that, at densities close to the minimum of

the energy, the ground state does not resemble a crystal
of Skyrmions. If the density is decreased below its value
at the minimal energy a first-order phase transition was
claimed to occur and the low-density lattice resembles a
crystal of Skyrmions. These results were confirmed by
Walhout who also investigated finite-temperature effects
and quantum Auctuations in this model. Jackson, Wirz-
ba, and Castillejo have investigated the low-density
phase transition of Ref. 7 by discussing the interactions
of two Skyrmions on a hypersphere. A physical descrip-
tion of this phase transition was provided by Goldhaber
and Manton. ' They argued that at low densities the
crystal may be viewed as an arrangement of Skyrmions
whereas the high-density phase may be described as a
crystal of half-Skyrmions. These authors suggest that in
the high-density region, the simple cubic lattice of Skyr-
mions becomes a body-centered lattice of half-Skyrmions.
While the half-Skyrmion crystal was arrived at by consid-
ering the Klebanov lattice, it will be shown to have a
much wider range of validity. Other symmetries also
have an energy minimum which is well described by a lat-
tice of half-Skyrmions.

The Klebanov lattice, yields an energy per baryon of
1.08 (the units of energy will be discussed in Sec. II). In
the same units the energy has a lower bound of 1.0. The
symmetry of this lattice at the minimum of the energy, as
obtained at first was very close to the Goldhaber-Manton
suggestion. ' ' Two recent papers"' confirmed that the
lowest-energy state of the Klebanov lattice does indeed
have the half-Skyrmion structure.

It has been shown later that the Klebanov symmetry of
the ground state does not yield the lowest energy. Jack-
son and Verbaarschot" have shown that starting with a
cubic lattice of Skyrmions and an isospin rotation
different from the one used by Klebanov a lower ground-
state energy can be obtained. This state has a tetragonal
symmetry. In the units used above, the energy of their
arrangement is 1.07. At low densities in this symmetry,
as in the Klebanov arrangement, each Skyrmion has six
nearest neighbors, all in the maximum attraction
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configuration. The tetragonal symmetry has an extra ad-
vantage over the Klebanov ansatz of improving the next-
to-nearest-neighbor attraction.

In a recent paper we have shown that a configuration
with even lower energy exists. At low density, in this
configuration, Skyrmions are arranged in a face-
centered-cubic lattice, ' and each Skyrmion has 12
nearest neighbors all in ihe maximum attraction
configuration. This symmetry has also been discovered
by Castillejo, Jones, Jackson, Vebaarschot, and Jackson'
who also discuss the phase diagram of Skyrmion crystals.
In this symmetry the ground-state energy is 1.038. The
energy minimum is reached in a high-density phase,
which can be described as a simple cubic lattice of half-
Skyrmions.

We cannot prove that the new lattice is indeed the
lowest-energy of classical nuclear matter in the Skyrme
model. The fact that this energy is only 3.8% above the
lower bound which cannot be reached' suggests to us that
this is very likely.

In this paper we investigate the phase structure of the
Skyrmion crystal including the new symmetry
configuration that was described in Refs. 12 and 14. The
phase diagram of the crystal is studied as a function of
density and as a function of pressure. ' At very high densi-
ties the new, simple cubic crystal of half-Skyrmions un-
dergoes a first-order phase transition to the body-
centered lattice of half-Skyrmions investigated previous-
ly. At densities below those of the minimum of the ener-

gy the system becomes thermodynamically unstable. As
we increase the volume the crystal undergoes a first-order
phase transition that 1eads to a phase separation. Part of
the system remains ai the density which minimizes the
energy, and part of the volume is empty. Technically this
is due to the fact that the energy per unit cell of the crys-
tal is not a convex function of the energy. Thus the phase
transitio~ between a crystal of half-Skyrmions to a crystal
of Skyrmions that was investigated. in Refs. 5 —11 and 14
is not accessibl, it appears on a thermodynamically un-
stable branch of the phase diagram. A sign of this insta-
bility is that near the region of transition dPidV is posi-
tive corresponding to a negative compressibility, and
clearly the pressure cannot increase as the volume in-
creases. Earlier calculations did noi identify this instabil-
ity since they calculated the energy of a single unit cell,
where surface energies cannot be neglected and phase
separation does not occur.

Our method for dealing with the numerical problem of
finding the lowest-energy configuration once the symme-
try is assumed has already been outlined it is an adap-
tation of methods used in condensed-matter physics. '

We expand the field in a Fourier-type series that is con-
sistent with the assumed crystal symmetry. We then use
the expansion coef5cients as variational parameters to
find the minimum of the energy. This turns out to be a
rapidly convergent expansion. The first term alone gives
an energy within 3% of the minimum. Five terms suffice
to determine the minimum to a fraction of 1%. This
method has some clear advantages over the usual lattice
calculations. Since we use a Fourier expansion we can
perform integrations very accurately and it is easier to

obtain the energy with a higher accuracy than in the usu-
al grid methods, while the correct baryon number is as-
sured by construction. Since we are using a variational
method, our results can serve as upper bounds.

The program of our paper is as follows. In Sec. II we
review the Skyrme model and define the units used in this
paper. Section III is devoted to the symmetries of vari-
ous crystals used as ground states and to the Fourier ex-
pansions used. Section IV contains a description of the
variational procedure for obtaining ground-state energies,
the numerical results, and a discussion of their physical
interpretation. Conclusions are presented in Sec. V.

Il. THK SKYRMK MODEL

In the SU(2)-invariant Skyrme model, the order param-
eter is a unitary two-dimensional matrix U. Alternatively
this matrix may be described by a four-vector n that
satisfies

n n =1.

+
q g (8;n B~n~ B,n~—B~n ) (2)

where F and e are parameters to be fitted. This is a non-
linear o model with a fourth-order term added to stabi-
lize the soliton. ' In what follows it is convenient to use
the notation n =(o,n.„mz, m3). The interaction in Eq. (2)
is invariant under the global chiral O(4) that rotates the
components of n . We will use mainly isospin rotations
which act as an O(3) rotation on m';.

It is convenient to rescale the coordinates by

F e
+new - ~ +oldv2

and the energy by

eEnew 2 ~ Eold3~ ~2F (4)

In these units the energy of a time-independent solution
is given by

E=
z jd x g(B;n )

24m.

+ g (Bn B)n~ Bn~B n ) —. (5)

The baryon number in this model corresponds to the to-
pological charge. It is given in ihe above units by'

18= d xe;.ke&&n 8;n 8 n Bkn
12m

The above units are chosen so the energy is bounded
1

The energy of a time-independent state in this model is
given by

F2
E= Jd x g(Bn )

8
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E~B .

The above inequality cannot be saturated, for Bat space,
unless n is a constant everywhere and then both E and B
vanish. An identical inequality holds, locally, for the en-
ergy density and the baryon density. The energy of a sin-
gle Skyrmion' (8 = 1) in our units is E = 1.23.

The interaction of two Skyrmions has been studied in
this model by considering a state that is a product of two
single baryon solutions. In this product ansatz which is
reliable for large separations, but has dif5culties at short
separations, ' the maximum attraction is when one of the
solutions is rotated in isospin by an angle m around an
axis perpendicular to the axis separating the two Skyr-
mions.

As a starting point in constructing the ground state of
the Skyrmion crystal one uses the maximum attraction
configuration described above. The low-density con-
figuration is conjectured to resemble a set of Skyrmions
arranged on a lattice, and rotated in isospin so that as
many Skyrmions as possible are in the maximum attrac-
tion configuration. This arrangement of Skyrrnions
serves to determine the symmetry of the lattice. Such an
argument is only intuitive, since the minimum of the en-
ergy does not appear in the low-density configuration,
where the ground state resembles a crystal of Skyrmions,
but rather at a high-density phase where the picture of
distinguishable Skyrmions is not valid. The high-density
phase was conjectured to be a crystal of half-Skyrmions. '

Although this conjecture was not recognized in the first
numerical calculations, it turns out to be correct for all
the symmetries studied so far."' ' As will be shown
later, only the high-density phase is physical, whereas the
low-density phase which plays a major role in our intu-
itive picture and in guessing the lowest-energy state, is
not accessible thermodynamically.

III. CRYSTAL SYMMETRIES

In this section we describe various crystal config-
urations that were suggested for the ground state of Skyr-
mion matter and describe their symmetries. We also dis-
cuss the Fourier-type expansion that we use and obtain
the relations among Fourier coefficients for each symme-
try. Such relations are selection rules appropriate to the
symmetries investigated.

In order to classify the symmetries of the Skyrmionic
crystal one has to go beyond the standard list of space
groups. ' Space groups involve symmetry operations
which are due to translations and rotations in three-
dirnensional space alone. The baryon density and the en-
ergy density of a Skyrmion crystal can be classified by
these space groups. The Skyrme field n will have sym-
metry elements which involve simultaneous space trans-
formations and O(4) transformation acting on the inter-
nal degrees of freedom n . These new symmetries are
analogous to generalized space groups. ' We are not
aware of a complete classification of such groups or of a
standard nomenclature.

In the discussion that follows we will refer to various
symmetries by the standard name of the space group
which describes the symmetry of the component a. Note

that 0. has a larger symmetry than the space group; this is
a black and white symmetry involving sign reversal of o..
The symmetry of the complete fields n will be defined by
listing a set of transformations which serve as generators
of the symmetry. All symmetry operations can be ob-
tained by repeated application of the generators.

Once we have defined the symmetry of a configuration
we proceed by expanding n in a Fourier-type series that
is consistent with the crystal symmetry. Using a Fourier'
series for the field n is not convenient because it is a unit
vector. We prefer to expand an unnormalized vector n
in a Fourier series and then define n by

na
(n ~n i')'" '

where summation over P is implied. This normalization
procedure will not ruin the symmetry we impose, since
n has the same symmetry as n . To use this expansion
one has to make sure that there is no point where all
components of n vanish. There is no worry that such a
point will accidentally arise in our numerical search pro-
cedure. In the vicinity of such a point derivatives of n

will be very large and these will give rise to very large en-
ergies. %'e will return to discuss such points and their
physical significance when we discuss our variational pro-
cedure in Sec. VI.

We will discuss four crystal symmetries. Our notation
for the crystal symmetries are those of Ref. 17.

(A) The Klebanov low-density configuration. This is a
simple cubic lattice of Skyrmions, where u is invariant
under the space group P„3.

(8) The Goldhaber-Manton high-density version of the
Klebanov structure. This is a bcc lattice of half-
Skyrmions, where 0. is invariant under the space group
P—

pg 3777

(C) The new low-density structure. This is an fcc lat-
tice of Skyrmions where o. is invariant under the space
group F 3

(D) The new high-density structure. This is a simple
cubic lattice of half-Skyrrnions where o. is invariant un-
der the space group P 3

Consider a point in space x; =(x,y, z), where the field is
given by n =(o,mi, n2, nz) We .de.fin.e the symmetry of
the crystal by a set of operations which involve a change
in x; and an associated change in n . The changes of x;
are translations by an amount I, rotations, and
refiections. The changes in n are refiections and O(4)
transform ations.

The symmetry of configuration (A) is defined by the
following transforrnations:

(Al) x, =( —x,y, z) and n =(o, vr„mz, mi), —

(A2) x, =(y, z, x) and n =(o', m2, mq, rli),
(A3) x, =(x+L,y, z) and n =(o, n.„m2, —m~) . —

Symmetry (Al) is a refiection in real space coupled with a
refiection operation on n . Relation (A2) is a simulta-
neous rotation around a threefold axis in both spaces.
Relation (A3) is a translation by L along the x axis cou-
pled by a rotation by m around the 2 axis in isospin.
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Thus, if there is a Skyrmion centered at (0,0,0) there will
be a second one at (L,O,O) and it will be rotated by vr

around the 2 axis. The two Skyrmions will be in a max-
imum attraction configuration. For symmetry reasons
there will be Skyrmions at all corners of the cubic lattice
and all nearest neighbors will be attractive in the low-
density limit.

Using the definitions of the energy and the baryon den-
sity, Eqs. (5) and (6), and the symmetry (A3) we can see
that these densities are invariant under a translation byI. The same definitions when combined with the symme-
try (Al) show that the baryon and energy densities are in-
variant under inversions. The densities will thus have a
unit cell of size I, but the unit cell of the fields will be 2L.
Each cube of size I has Skyrmions at all its corners, each
contributing —,

' to the baryon number of the cube. The
cell of size L thus has one unit of baryon number and the
cell of size 2L eight units.

The symmetry of the high density, Goldhaber-Manton
structure (8) has three generators (Bl), (82), and (83)
which are identical to (Al), (A2), and (A3), respectively.
It has an extra symmetry:

( 84 ) x,. = ( L /2 z, L /2 y, L—/2 ——x )

and n = ( o, ~2, m „—m.
3 ) .

This transformation involves a rotation by ~ around an
axis going through the points (O, L/4, L/2) and
(L /2, L/4, 0) and an O(4) transformation.

In this symmetry, half-Skyrmions with o. near —1 are
centered at the points where Skyrmions were located in
the low-density phase. Half-Skyrmions with o. near +1
are located at the centers of cubes, e.g. , at the point
(L/2, L/2, L/2). This structure is a body-centered-cubic
lattice of half-Skyrmions. Both the density and field unit
cells of this structure are identical to those of low-density
limit (A).

The new structure (C) at low densities has two genera-
tors (Cl) and (C2) that are identical to (Al) and (A2). It
also has the additional generators

(C3) x;=(x,z, —y) and n =(cr, ~„~3 K2),

(C4) x, =(x+L,y+L, z) and n =(o, vr„m~, vr3—) . —

The symmetry (C3) is associated with a rotation around a
fourfold axis in space, combined with an isospin rotation.
The symmetry (C4) is associated with a translation from
the corner of a cube to the center of a face combined with
an O(3), isospin rotation acting on vr, . This is a rotation
by an angle of ~ around an axis perpendicular to the face
of the cube.

The unit cell of the baryon and energy densities for this
symmetry are identical to those of n, all have the size
2L. If the center of a Skyrmion is located at (0,0,0) then
symmetry (C4) will make sure that the face centers such
as (L,L, O) also contain the center of a Skyrmion and the
isospin rotation of (C4) will cause them to be in the maxi-
mal attraction configuration. It can be seen that the
Skyrmions at (O,L,L) and (L,L, O) which are also nearest

neighbors are in the maximum attraction configuration.
Thus the symmetry (C) has the advantage that each Skyr-
mion is surrounded by 12 nearest neighbors all in the
maximum attraction configuration, rather than six such
neighbors in symmetry (A). The unit cell of size 2L has
Skyrmions in all corners each contributing —, unit of
baryon number, and Skyrmions at the centers of the faces
that contribute —,

' unit each. The total baryon number in
each unit cell is therefore four units.

Symmetry (D), which has the lowest energy, is a half-
Skyrmion version of the fcc lattice (C). Three of its gen-
erators (Dl), (D2), and (D3) are identical to (Cl), (C2),
and (C3), respectively. The additional symmetry appear-
ing here is given by

(D4) x, =(x+L,y, z) and n =( —0, m„vr—2, ~.3) .

The symmetry (D4) is a translation combined with an
O(4) rotation by m in the cr, rc& plane. The symmetry (C4),
which remains one of the crystal symmetries of this struc-
ture, can be obtained by combining two transformations
of the type (D4).

In this symmetry we note that at the origin, x, =0,
where ~;=0 we may take without loss of generality
o = —1 and the field in this vicinity will resemble that in
the center of a Skyrmion. The symmetries (D 1), (D2),
and (D4) imply that o =0 on any surface x; =+L/2. A
cube containing the origin and bounded by these surfaces
contains half a Skyrmion with o. (0. Because of relation
(D4), o = 1 at (L,O, O). Near this point we put the second
type of half-Skyrmions, with o. & 0. Thus the crystal may
be viewed as an "antiferromagnetic" arrangement of
half-Skyrmions, each filling a cube of size L. The symme-
try operations above ensure that the two types of half-
Skyrmions are appropriately rotated in isospin so that the
fields are smooth and the energy is minimal.

In this symmetry the densities have a unit cell of size L
but the fields have a unit cell twice this size: namely, 2L.
To see the baryon content of each unit cell we take the
unit cell with boundaries x; =+L/2. As discussed above
such a cell contains half a unit of baryon number. The
unit cell of the fields has size 2L and contains four units
of baryon number exactly as in the structure (C).

The four symmetries which we discussed share the
property that the low-density symmetry is a subgroup of
the high-density symmetry: (A) is a subgroup of (8) and
(C) is a subgroup of (D). Phase transitions between (A)
and (8) and between (C) and (D) are allowed according to
Landau and Lifshitz' to be of second order. %hether
such phase transitions actually occur depends on the en-
ergetics of the problem. This will be discussed in Sec. IV.

The next stage is to expand the unnormalized vector
n in a Fourier series. Because the symmetries discussed
above have two common transformations (Al) and (A2),
all symmetries will have an expansion of the type

E ' = g aI I &
sin( h vrx /L )cos(k ~y /L )cos( I~z /L )

h, k, l

cr = g P,b, cos(a~x/L )cos(bey/L )cos(cvrz/L ) . (10)
a, b, c
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and n are obtained from n' by using the symmetry
operation (A2). The further constraints imposed on the
expansion coefficients a and 13 may be read off by impos-
ing the symmetry relations on Eqs. (9) and (10).

The symmetries impose the following constraints on
the expansion coefficients. For symmetry (A): (Ai) h and
k are odd, m is even; (Aii) a, b, and c are even; (Aiii)

~abc I bca ~cab '

For symmetry (B) which has symmetry (A) as a sub-

group, there are three relations (Bi), (Bii), and (Biii) which
are identical to (Ai), (Aii), and (Aiii). In addition two
more relations hold: (Biv) abl, &= —

(
—1)'"+"+ '~

akb&,
(B ) p ( 1)(a+b+ )/c2p

Symmetry (C) has two types of solutions: (Ci) h is odd;
k and 1 are even; a, b, and c are odd. Or (Cii) h is even; k
and l are odd; a, b, and c are even.

Symmetry (D) which has (C) as a subgroup, has a sin-
gle constraint (Di) which is identical to (Ci).

The symmetries discussed in this section, and the
Fourier expansions based on them, will serve in the next
section as a basis for calculating the energies and the
phase diagram of the Skyrmion crystal.

IV. CALCULATION AND RESULTS

Our calculation of the energy of a Skyrmion crystal
proceeds in two stages. First we assume that the ground
state is a periodic crystal where it is only necessary to cal-
culate the energy of a single unit cell. After this calcula-
tion is done it turns out that the energy is not a convex
function of the density; this fact signals the onset of a
thermodynamic instability. In such a region a phase sep-
aration occurs, where different parts of the system obey
different symmetries. In the second stage we proceed to
obtain the phase diagram of the system by a standard
Maxwell construction. Previous calculations have disre-
garded the phase separation signaled by a nonconvex en-
ergy and have not used a Maxwell construction. Since
they calculated the energy of a single unit cell where sur-
face effects are dominant they did not observe the phase
separation numerically.

In the first stage we calculate the energy of a single
unit cell for each symmetry. This is done by performing
a variational calculation using the parameters a&kl and
13,b, as variables. This procedure replaces the usual cal-
culation where space is discretized and the values of n
on the grid are calculated. The advantages of our
method are (1) symmetries are easily incorporated into
the calculation, (2) the integrals involved in the calcula-
tion of the energy can be computed with high accuracy,
while correctness of the baryon number is automatic, (3)
rather than solving a differential equation we employ a
simple program searching for a minimum, (4) it turns out
that the series in question are rapidly convergent and
only a small number of parameters is needed, and (5) it is
easy to perform a variation without changing the baryon
number.

As a starting point for our search procedure we use the
lowest nonvanishing terms in the Fourier expansion. Be-
cause of the derivatives appearing in the definition of the
energy each component will contribute terms proportion-

al to the squares or higher powers of the momenta. Thus
high Fourier components will be suppressed.

The baryon density of the solution as given in Eq. (6) is
proportional to the Jacobian of the transformation be-
tween the hypersphere S3 described by n and the R3
space of the coordinates x;. The total baryon number of
the solution is equal to the number of times the solution
covers the hypersphere of unit radius. Because of Eq. (8)
the number of times n covers the unit sphere is equal to
the number of times n (x) wraps around the origin:
namely, the point n (x)=0. When the functional depen-
dance of n on x is simple enough the winding number is
easy to determine by direct inspection or by plotting n
This can be done at the beginning of our variational cal-
culation when we take as a starting point the lowest
Fourier components allowed by the symmetry under con-
sideration. As we proceed by varying the functional of
the solution we do not want the baryon number to
change. A smooth variation of n cannot change the
baryon number. The auxiliary variables n are not nor-
malized so that a smooth change in them can result in a
discontinuous change in the baryon number. This can
happen when under the variation the surface of the solu-
tion goes through a point where n (x) =0, and the origin
moves from the inside of the surface to the outside or vice
versa. There is no danger of this happening when we
minimize the energy, since near such a point Eq. (8) will
force n to be rapidly varying and the energy of such a
configuration will be very large. Nevertheless, we calcu-
late the baryon number of our solution as a check of the
calculation and find it to be consistent with the symmetry
result to five significant figures. This serves as a check on
our calculation and on the accuracy of our integration
routines.

The auxiliary variables n that we have introduced are
not uniquely determined. The variables n are invariant
under any transformation of the type

n —+Nn

where N is an arbitrary nonvanishing function of the
coordinates. This lack of uniqueness does not cause
difFiculties. Since we deal with a truncated Fourier series
for n, the continuous set of degenerate minima turns, in
this case, into a shallow minimum. No difticulties were
encountered in finding this minimum numerically. In
discussing the numerical analysis involved in finding the
solution to symmetry (D) we will show how the freedom
of choosing + can actually be used to facilitate the
analysis. Other symmetries were analyzed using a con-
stant N.

Our analysis' of symmetries (A) and (B) was motivated
by an attempt to. verify numerically the Goldhaber-
Manton' conjecture. Earlier numerical calculations ' '

did not produce a ground state having the symmetry (B)
that is implied by this conjecture. The calculation of the
minimal energy of symmetry (B) started with the lowest
Fourier components a»o= 1 and P2OO. Only four extra
terms in the Fourier expansion were needed to obtain an
energy of 1.08. The terms needed were ai3o ~222 aim
and u33O The first two of the new terms are about 4% as
compared with the leading terms, while the last two are
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about 0.2%%uo. All higher terms are insignificant. The
small size of the higher coefficients proves the rapid con-
vergence of the Fourier expansion we are using. Adding
to our search procedure coefficients allowed by symmetry
(A) but forbidden by symmetry (8) did not improve the
energy of the solution. This shows that symmetry (8)
does indeed describe the symmetry of the local minimum
of the energy.

Our results concerning the (8) phase agree with those
of Ref. 11. The energy obtained this way is lower than
the energy of phase (A) but the energy difference is very
small. The minimum energy is obtained for a lattice size
L =5.55 and the energy at the minimum is E=1.078.
We have not pursued the study of the complete density
dependance of the energy; this has been discussed in Refs.
11 and 14.

To analyze the Skyrmion configurations that belong to
symmetry (D) we again start with the lowest nonvanish-
ing Fourier components, a, pp and P», . Without loss of
generality we may take a,oo= 1, then by varying P», we
obtain E = 1.07. The convergence of the series is so rapid
that even the lowest term iri the expansion suffices to give
a lower energy than the minimum of configuration (8).
Two variational procedures are open for this case. The
first is straightforward: namely, expanding both o. and P
in Fourier components and minimizing. A second way is
to make use of a convenient rescaling function 4 from
Eq. (11). We pick this function so that o is exactly given
by the lowest Fourier component:

(a)

~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~5

I .00-
Z =0.25

0.75-

Y 0.50-

0.25-
/

/ I

0.00 0.25 0.50 0.75 I.OO

I .00
Z= 0.5

Z=O
I .OO: g

-/PL'-
V 0.5O- (

0 25-- Xg /'y L
000

0.00 0.25 0.50 0.75 I.OO

o =cos(~x /L )cos( my /L )cos( rrz /L ); (12) 0.75-

thus only the parameters a&kI remain as variational pa-
rameters. Such a choice of N is not generally possible.
Since 4 is nonvanishing we must know the zeros of o. in
order to pick a parametrization such as Eq. (12). For
symmetry (D) these zeros are determined by symmetry
considerations, and thus automatically included in Eq.
(12). We have compared calculations with and without
using Eq. (12); the energies obtained in both ways are
equal within numerical accuracy. The advantage of using
Eq. (12) is that the variational function contained less pa-
rameters thus simplifying the numerical analysis.

The energy at minimum obtained this way is

Y 0.50-

0.25.

0.00 I I

0.00 0.25 0.50 075 I.OO

FIG. 1. The baryon density of the minimum-energy
configuration. Cuts of the baryon density in x-y plane at (a)
z =0, (b) z =L/4, and (c) z=L/2. The density at z=3L/4 is
identical to that of (b) because of symmetry. Contours are in
units of 0.01, baryons per unit L, axes are in units of L.

E=1.038 . (13)

This is the lowest-energy configuration obtained so far.
While we do not have a proof that this is indeed the glo-
bal minimum of the energy, the fact that this
configuration is so close to the lower bound makes this
very likely. The lattice size for the minimal energy
configuration is L=4.71. The baryon density of this
configuration is given in Fig. 1. The baryon density is
high at the corners of the cube of size L where the centers
of the half-Skyrmions are located; the density is also large
on the links connecting these points. On the lines parallel
to the links and going through the centers of the faces the
baryon density vanishes because of symmetry reasons.
This can be seen by combining the expressions of the
fields n for this symmetry with the expression for the
baryon density. The energy density for this configuration

is almost identical to the baryon density. This should not
come as a surprise since the energy density bounded
below by the baryon density and its integral is only larger
by 3.8% than the baryon number.

The average baryon density of symmetry (D) is lower
by about 18%%uo than that of symmetry (8). The distances
between the centers of nearest half-Skyrmions in the sim-
ple cubic lattice of (D) are almost identical to the distance
in the bcc lattice of half-Skyrmions in symmetry (8), in
fact they differ only by 2%%uo. We thus learn that the half-
Skyrmions behave essentially' like almost rigid objects.
The difference in densities between the two configurations
is mainly due to the higher density of the fcc as compared
with the simple cubic, a geometric efFect.

The energy per baryon of a single unit cell of the Skyr-
mion crystal was calculated as a function of the lattice
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parameter L. For symmetry (D) it is well approximated
by the expression

E=0. 1056L, +0.0412+2. 3505/I (14)

The energy of a single unit of the Skyrmion crysta1 hav-
ing symmetry (8) was given by Jackson and Verbaar-
schot. :"

E=0.0952I +0.0188+2.939/L, .

Using the energies per unit cell we can now study the
phase diagram of Skyrmion matter.

In comparing the two configurations one must note
that symmetry (8) contains eight units of baryon number
per unit cell while symmetry (D) contains only four. In
order to compare the two configurations at equal baryon
density one should take

L (8) ~L(D) (16)

4

E l. 20 r

8 ~ r

S

).OG
2

FIG. 2. The energies of phases (8) and (D) and (S) as a func-
tion of lattice size. The lattice size has been normalized so that
the configurations appear at equal density. The solid lines cor-
respond to stable phases, the dashed lines to unstable phases.

Figure 2 shows a comparison between the energies of
the two phase, as a function of the lattice parameter L,
but with phase (8) normalized according to Eq. (16) so
that the comparison of the energies is at equal baryon
densities. Figure 3 shows the same energies plotted as a
function of the volume V=L, where again Eq. (16) has
been used so that equal volumes correspond to equal den-
sities. There are three conclusions to be drawn from this
diagram.

(i) The ground state of Skyrmion matter obeys symme-
try (D).

(ii) For V or L to the right of the minimum, namely, at
lower densities, a phase separation occurs. As we in-
crease the volume and decrease the density, it is advanta-
geous for the system to separate into a phase we have
denoted by S, where part of the system remains at the
density that corresponds to the minimum of the energy
and the rest is empty. In Figs. 2 and 3 the stable
branches of the phase diagram are drawn as solid lines
and the unstable lines are dashed.

E l.20—

I. I 0
0

S

I.OO
0 l00 200 500 400 500

FIG. 3. The energies of phases (8) and (0) and (S) as a func-
tion of volume of the unit cell, normalized so that the
configurations appear at equal density. The solid lines corre-
spond to stable phases, the dashed lines to unstable phases.

(iii) At very high densities, phases (8) and (D) intersect
causing a first-order phase transition. This transition
cannot be seen from Figs. 2 and 3; a better resolution
figure to show this will be presented.

The two phase transitions appearing will be elaborated
next.

Since we are dealing with Skyrrnion rnatter at zero
temperature, we can translate the volume dependance of
the energy into pressure dependance by using

In dealing with the low-density phase transition we ob-
serve that the S phase in Figs. 2 and 3 is a result of a
thermodynamic instability. At infinite I or V the energy
is that of separated Skyrmions, E=1.23 in our units.
The line S is therefore the straight-line tangent to line D
that joins the rninimurn to the point at infinity. We have
thus used the standard Maxwell construction we are sup-
posed to use when the diagram is not convex. Figure 4
shows the phase diagram where we have plotted P vs V.
In this diagram we have included only the phases (D) and
(S); again the unstable branch is a dashed line. Along the
line D beyond the phase transition from D to S the pres-
sure becomes negative; this is also obvious from Fig. 3
since the energy increases as the volume increases. There
is no simple way in which we can exert such negative
pressure. The Coulomb interaction in nuclear matter
could be the source of negative pressure; unfortunately
just because of this interaction nuclear rnatter in bulk
prefers to undergo P decay giving rise to neutron stars.
The point M on Fig. 4 denotes the minimum of the pres-
sure. The point T denotes the phase transition between a
crystal of Skyrmions and a crystal of half-Skyrmions that
was previously investigated. We conclude that at the
transition point dP/dV is positive and this corresponds
to negative compressibility clearly indicating that the
phase transition is not on a metastable branch but on an
unstable branch of the diagram. Skyrmion matter there-
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FIG. 4. P vs V diagram of phases (D) and (S). Note that the
pressure along curve D gets negative. M denotes the minimal
pressure, T denotes the point where a transition to phase (C)
would have taken place if phase separation did not occur. Also
note that at point T the compressibility'is negative.

fore does not undergo a second-order phase transition'
at T but a first-order transition at much lower volume.

A second phase transition occurs at much lower
volume, namely, at higher pressure and density. This is a
transition between symmetry (B) and (D). The energy
differences between two phases is too small to be seen in
Fig. 3. Figure 5 shows an enlarged region of Fig. 3 where
we can clearly see that the lines B and D intersect. This
is again a first-order transition, and the energy is not a
convex function of volume. A common tangent to the
two curves is drawn through the points a and b, accord-
ing to the standard Maxwell construction, and on this
line the system is in a mixture of two separated phases D

I
I

I
[ I

f
I

/

t
/

I

f
[

1.570

1.560

9.5 9.6 9.7 9.8 9.9 IO.O IO. I IO.Z
V

FIG. 5. Enlarged drawing showing the phase transition at
high density. Above the transition D has the lowest energy,
below the transition phase (B) is lower in energy. The Maxwell
construction is achieved by drawing a common tangent to the
two curves, a straight line joining points a and b.

FIG. 6. P vs V diagram in the region of the high-pressure
transition.

and B. Along this line the pressure is constant as is seen
in the P vs V plot in Fig. 6. It should be emphasized that
this phase transition appears at very high density and
pressure and that the energy differences between phase
(B) and (D) are very small. The existence of this phase
transition may be strongly influenced by extra terms in
the Lagrangian, a point which we have not investigated.

V. CONCLUSIONS

In this paper we have investigated nuclear matter in
the Skyrme model at the classical limit, neglecting quan-
tum corrections. We have investigated the lowest-energy
phase, a simple cubic lattice of half-Skyrmions. This
phase obeys a symmetry which we have denoted by D,
which is a Skyrmionic generalization of the crystallo-
graphic space group P 3

This phase remains the lowest-energy phase over a
large range of densities. At the minimum of the energy a
first-order phase transition occurs and the transition to a
crystal of Skyrmions rather than a crystal of half-
Skyrmions' ' is unphysical. At high density there is a
first-order transition to the phase which we have denoted
by B, a bcc arrangement of half-Skyrmions, a Skyrmionic
generalization of the crystallographic space group P

3

The half-Skyrmion picture of Goldhaber and Manton'
turns out to be a very reliable description of Skyrmion
matter at high density. It describes well all high-density
phases, even those that were not known when the sugges-
tion was made. In addition it provides a way to under-
stand the difference in density between the various
phases. The half-Skyrmions turn out to be rather rigid
objects which retain their size in differen phases.

In this paper our treatment was restricted to the classi-
cal limit of Skyrmion matter. When quantum corrections
are included, they will certainly play a major role and
modify the results. The kinetic energy inherent in the
quantum-mechanical analysis will modify the crystal into
a liquid. We have not attempted an analysis of the quan-
tum effects in order to see what properties of the Skyr-
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mion solid remain in the quantum state. Drawing on the
experience with standard liquid-solid transitions we may
assume that even in a liquid short-range order reminis-
cent of the solid phase is retained.
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