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of the relativistic two-body bound state in 1+1 dimensions
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Within a relativistically correct yet analytically solvable model of light-front quantum mechanics
we construct the electromagnetic form factor of the two-body bound state and we study the validity
of the static approximation to the full form factor. Upon comparison of full form factors calculated
for different values of binding energy we observe an unexpected effect that for very strongly bound
states further increase in binding leads to an increase in the size of the bound system. A similar
effect is found for another quantum-mechanical model of relativistic dynamics.

I. INTRODUCTION

The goal of this paper is to study the electromagnetic
form factor of a relativistic bound state in the framework
of the light-front quantum mechanics (LFQM). We shall
discuss the validity of the static approximation for calcu-
lations of such a form factor.

To this end we devised the simple model' based on a
scalar field model quantized on the light-front surface in
one time and one space dimension. The model is rela-
tivistically correct, yet simple enough to provide for
analytical results for the form factor in question. In a
nonrelativistic limit the model boils down to the two-
body Schrodinger equation with a 5-type potential
representing a contact interaction. We calculate the full
electromagnetic form factor in a rigorous way and then
compare our results to those based on a static approxima-
tion. It turns out that the static approximation works
only for small momentum transfers, and its quality is
controlled by a dimensionless parameter P that measures
a fractional mass defect of the bound state. Plotting the
form factor as a function of momentum transfer Q we
observe that the form factor becomes more Aat as the
binding of the system is increased from P=O, but there
exists a critical value of the binding f3,„=0.4257 for

I

which the form factor is the Aattest. Increasing the bind-
ing beyond P„we observe just the opposite trend and the
shape of the form factor for a very strongly bound system
resembles that of a weakly bound one. However, if the
form factors are plotted as functions of (Q/M), then the
effect mentioned above is not observed. This raises the
question of the size of the bound system that we subse-
quently address. Finally, we point out that a similar
effect exists also for another quantum-mechanical model
of the relativistic bound state.

II. THE MODEL

Our model is the light-front version of the Wick-
Cutkosky model in one time and one space dimension,
and describes a relativistic system of two scalar particles
of mass m, interacting via exchange of a heavy scalar bo-
son with mass p. The underlying interaction Lagrangian
is L =gP Po, where P and Po are scalar fields with mass
m and p, respectively. In the lowest order of perturba-
tion theory the two-body wave function is given by the
Weinberg equation. To obtain a relativistic version of
the contact interaction, we perform the limits p —+~,
g —+ ~, keeping A.

—=g /4' m constant. The Weinberg
equation takes the form

1Q(x„x~)=
Qx, x2 M2

(
—I A, )f dy, f dy25(l —y, —yz)

rn 0 o Qyiy2
x)x2

Here M is the mass of the bound state, x, (x2) is the frac-
tion of the total light-front momentum P+=P +P of
the system carried by the first (second) constituent. Since
the light-front variables x;,y, are invariant under the
Lorentz boost, the wave function g is the Lorentz-
invariant object. One has 0 &x, & 1, and x, +x2=1, and
likewise for y;, thus the solution of Eq. (l) is the function

of the single variable x =x, —x2 only, i.e., P=f(x), and
reads

2

g(x) =N (2)

Here X is the normalization constant and we have
defined the dimensionless parameters
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a —=P/(1 —P), (3)

where the parameters p and p measure the strength of the
binding

of the frame of reference.
Our results for the wave function could be recast into a

more traditional form. To this end we introduce the rela-
tivistic relative momentum p as the new variable, defining

p:/3 —p —/4,
/3 =B/m. ,

and 8 is the mass defect (binding energy) of the system:

8=2m —M .

(4) x i, 2 —= —,'l l+P «(P) I, — -P —+

where

e(p)=(m +p )'i

Equation (1) could now be rewritten as

The relation between the coupling constant and the mass
of the bound state is provided by the eigenvalue of Eq.
(1), and is discussed in Ref. 1. Let us note some typical
values of the parameter /3. For positronium one has
p=0. 000015, for a deuteron p=0.001; for strongly
bound nuclei an average binding per nucleon corresponds
to p=0.01. In a naive quark model with the quark mass
m =330 MeV we obtain p=0. 15 for a nucleon and
p=0.96 for a pion. In Fig. 1 we plot the bound-state
wave function t/(x) of Eq. (2) for few representative
values of the parameter p, ranging from weakly to strong-
ly bound systems. One sees that for the weakly bound
system the two-body wave function resembles the 6-type
function centered at x=O. This indicates that for a weak-
ly bound system each of constituents carries an equal
amount gf total light-front momentum I'+, irrespective

(p /m+mP)P(p)= —f dp', P(p'), (9)
2 —m e(p')

where the new wave function P(p)=(1 —x )t/'(x) reads
explicitly as

P(p) =x 1

1+a p +m a /(1+a )
(10)

The structure of Eq. (9) strongly resembles that of the
Lippmann-Schwinger equation

(p /m ++)NLS(p)
2 f dp NLS(p

describing a one-dimensional, nonrelativistic system of
two particles of mass m bound by a contact potential,
that in the position space has the form V(z)= —mA5(z),
with z being the relative distance between both particles.
For a weakly bound state (i.e., for p=p«1) the kernels
of Eqs. (9) and (11) coincide in the dominant low-
momentum region (i.e., for p'/m (( I), and the solutions
of both equations become identical.

III. FARM FACTQRS

~P=0.001

Suppose that the composite system with momentum I"
absorbs a virtual photon and remains intact. Assume
that only the constituent 1 is charged and couples to the
photon, acquiring full the photon's momentum

q
"=(q, q ), and yet both constituents are found in a final

state representing the composite system with the overall
momentum I'". The probability of such a sequence is
measured by the elastic electromagnetic form factor
F(Q ), where

2
( 0)2 ( 3)2 Q2 (12)

so that Q )0.
In quantum mechanics one usually works within a stat-

ic approximation that neglects the motion of the target
and calculates the form factor as the Fourier transform of
the static charge-density distribution in the target. In
this case Q =q, and one has

F„(Q )= f dz, e 'Q*(z, )P(z, ) . (13)

1.0

FICx. 1. The bound-state wave function g plotted vs the rela-
tive light-front momentum fraction x for different values of the
binding parameter P. Larger values of /3 correspond to stronger
binding, cf. Eqs. (4)—4,

'6).

Here z& is the distance of the first particle from the center
of mass of the target. The wave function P is taken as the
Fourier transform of the exact wave function given by
Eq. (10). Keeping in mind that z =2zt, where z is the rel-
ative distance appearing as the argument of the Fourier
transform, one easily obtains
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F„( )= 1

1+Q /16m 13
(14) pands the iritegrand into the power series of I/a, obtain-

ing

This is the static form factor based on the exact relativis-
tic wave function of Eq. (10). If we took the nonrelativis-
tic wave function PLs of Eq. (11) instead, the only change
would be the replacement P~P in Eq. (14). For weakly
bound systems P=P=0 and both results coincide. On
the other hand, for an extreme binding one has P= I,
whereas }33=2, and the form factor based on PLs takes
values which for large Q could be two times larger than
those given by Eq. (14). Since already the static form fac-
tor of Eq. (14) will be found overshooting systematically
the true form factor (defined below), we hereafter disre-
gard the nonrelativistic wave function in our discussion.

In actual scattering processes the deuteron does not
remain at rest, but for large momentum transfers, sufFers
a huge recoil. This is rigorously accounted for upon con-
structing the electromagnetic current for the constituent
field P,

F(a)=413/a+O(I/a )

=16m /3/Q +O(M /Q ); (20)

0.020 I I I

(a)

i.e., one recovers again the static result. However, there
is an unexy ected disagreement in the intermediate
momentum-transfer region —this is visualized in Fig.
2(a), where the full form factor for the weakly bound sys-
tem with P=0.001 (deuteronlike binding) is compared
with its static counterpart. The static approximation
works for Q/m & 1, whereas for larger values of momen-
tum transfer ful1 form factor bends down and then only
very slowly approaches its asymptotic (and static) limit,
cf. Fig. 2(b). This unexpected bending of the form factor

j'=~':p(B'P) —(8 p)p:,
and defining the form factor by the relation

(~, ,lj.(0)lq,.) = (~+~ )-F(Q'),1

(15)

(16)

0.015
static

exact

where I" =I' +q, and the state vectors of the initial
and final deuterons are given as the two-body sectors of
the light-front Pock space involving the wave function lt.
We extract the form factor upon calculating the longitu-
dinal (i.e., v=+) component of Eq. (16), arriving at the
following expression for the form factor:

0
~ 0.010

i'
0'

0.005

p = 0.001

2+&X —oo 1+x 1+X +2'
(17)

0.000 0 2.0

(g/rn )

4.0 6.0

where y =(x +a)/( ]+a), and the key parameter
a. =q /p that measures the longitudinal-momentum+ +

transfer is given by

a= —,'[Q /M ++(Q /M ) +4(Q /M )] .

The integral in Eq. (17) is analytically calculable and full
but a rather lengthy result is given in the Appendix of
Ref. 1. Here we wi11 discuss the characteristic features of
the form factor F(a) for various strengths of the binding.

A. Weakly bound systems (P=P« 1 )

For small values of the momentum transfer we could
expand the integrand of Eq. (17) into the power series of
the parameter o.. The linear terms cancel exactly and the-
result reads

0.020

o.015

Q'~0.0't 0
C4

E

0'
0.005

0.016

0.0w-

100

0 = 0.001

t

500 900

A'F(a)=1— +O(a )

0.000 0 50

(g/m )

100

=1— +O(Q /M ) .
16m P

(19)

This result is identical with the static result, cf. Eq. (14).
Likewise, for large values of momentum transfer one ex-

FICx. 2. (a) The exact electromagnetic form factor
(Q/m) F(Q } (solid line) and its static approximation (dashed
line) plotted vs {Q/m} for weakly bound system with P=0.001
(deuteronlike system). (b) The same as in (a), but for di6'erent
scale of momentum transfers.
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FIG. 5. Exact form factors for diffeifferent values of binding--pa-
rameter P, plotted vs (Q/m) .
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FIG. 7. The same as Fig. 5, but plotted vs {Q/M), where M
is the mass of the bound system.

(z', )„=I dz, y*(z, )zip(z, ) .

Combining Eq. (21) with Eq. (13) we obtain

(21)

large values of P (extreme binding) the shape of the form
factor resembles that of weakly bound systems. This is
visualized in Fig. S, where the form factors for different
strengths of the binding are drawn as functions of
(Q/m) . The curve representing the extreme case of
binding with P=0.96 (quark-antiquark binding in pion)
lies somewhere between those for P=0.01 and P=0.15.
Needless to say, the static approximation fails completely
for such a strong binding, as is clear from Fig. 6.

Let us point out that the surprising efFect presented in
Fig. 5 could be hidden by an alternative presentation of
our results. To this end we plot in Fig. 7 the same form
factors rather as functions of (Q/M); i.e., we adjust the
unit of momentum transfer for each curve separately.
The effect is gone, and the larger the binding, the Hatter
the form factor.

This raises the question —what is a size of the bound
system under consideration? Conventionally the size
could be defined by an average square of the distance of
the particle 1 from the center of mass. In our one-
dimensional model we write

FIG. 8. The bound-state size (z, ), in units of 1/m, for
dttferent values of the binding parameter P. The solid line is the
full result, Eq. {25),and the dashed line is the static result, Eq.
(23).

( 2) 2BE(Q )

QQ
2

g2 0
(24)

Expanding the form factor F(a) given by Eq. (17) into
the Taylor series and using Eq. (18) we obtain

1 d F( )a
M da

(25)
a=0

IV. SUMMARY

For weakly bound systems the results (25) and (23) coin-
cide and it is the second term on the right-hand side of
Eq. (25) that causes the size to grow infinitely for negligi-
ble binding. For a strongly bound system it is the vanish-
ing bound state mass M in the denominator of Eq. (25)
that makes the result diverge again. In Fig. 8 we plot the
size (z, ) of the bound state as defined by Eq. (25) for all
values of the binding parameter P. The minimum at
P=P„ is in agreement with the discussion of Fig. 5. For
comparison we show also the static result given by Eq.
(23).

and the result is

(z2 )„=I/(Sm'P) .

As the binding increases from P=O to P= 1, (z i )„de-
creases to the finite value I/Sm . But the static form fac-
tor does not approximate the full form factor for a
strongly bound system, so we better work with the latter
and de6ne the size of the system by

The electromagnetic form factor of a two-body relativ-
istic composite system has been studied within the model
of light-front quantum mechanics. The model interaction
could be regarded as a relativistic version of a two-body
contact interaction. As one would expect, the static ap-
proximation to the electromagnetic form factor has been
found to work only for weakly bound systems, and only
for small momentum transfers, i.e., for (Q/m) ( 1.

Two genuine relativistic effects have been observed.
(i) For weakly bound systems the full form factor plot-

ted as (Q/m) F(Q ) exhibits a surprising deviation from
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its static counterpart at the momentum transfer (Q/m)
of the order of 1. As the momentum transfer is further
increased, the full form factor only very slowly regains its
asymptotic (Q/m)~ oo value, where once again it coin-
cides with static result.

(ii) When the binding of the system is increased, the
size of the bound state, defined as the derivative of the
form factor with respect to the momentum transfer, ex-
hibits unexpected behavior. It turns out that a minimal
size is obtained for the value of the mass defect parameter
p=0.4257, i.e., for the mass defect of some 24%. Fur-
ther increase of the binding leads to an increase in the
size of the bound system.

The second property is not a particular feature of our
model. Recently Glockle, Nogami, and Fukui (GNF)
constructed a relativistically covariant model of a two-
body bound state, based on the two-body Dirac equation
with a contact interaction. For weakly bound systems
the exact GNF form factor coincides with the results of
our work. The static form factors are identical in both
models for all values of binding strength. Moreover, the

GNF model yields an almost identical eA'ect for the bind-
ing dependence of the exact form factor. In fact, in the
GNF model the form factors calculated for p and 1 —p
coincide exactly and the minimal size of the two-body
system is obtained for p„=0.5.

One may speculate whether such behavior of the form
factor could be found also for other (1+1)-dimensional
models. To shed light on this issue we are currently in-
vestigating a (1+1)-dimensional model based on the
Bethe-Salpeter equation.

ACKNOWLEDGMENTS

This work was completed while one of the authors
(M.S.) was visiting the Department of Physics of McMas-
ter University. He wishes to express his appreciation of
the warm hospitality extended to him during this visit by
Professor Y. Nogami and members of the Theory Group.
The work was supported by the Polish Ministry of Na-
tional Education under the Research Contract CPBP
01.03.

*Temporary address: Department of Physics, University of Ar-
izona, Tucson, AZ 85721.

M. Sawicki and L. Mankiewicz, Phys. Rev. D 37, 421 (1988).
W. Glockle, Y. Nogami, and I. Fukui, Phys. Rev. D 35, 584

(1987).
G. C. Wick, Phys. Rev. 96, 1124 (1954); R. E. Cutkosky, ibid.

96, 1135 (1954).
4S. Weinberg, Phys. Rev. 150, 1313 (1966).

5An alternative derivation of the GNF model of Ref. 2 has been
recently provided by Y. Munakata, T. Ino, and F. Nagamura,
Prog. Theor. Phys. 79, 1404 (1988), who obtained the GNF
model as the Breit version of the Bethe-Salpeter equation.
Because of a different treatment of the 6-type potential, their
energy eigenvalue differs from that of GNF, but coincides
with it for weak binding. The results for the wave function
remain unchanged.


