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Higgs mechanism for Kalb-Ramond gauge field
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Kalb-Ramond gauge field theory, coupled to manifestly gauge-invariant and reparametrization-
invariant second-quantized string fields, is studied. String condensation into the vacuum is shown
to develop masses to the Kalb-Ramond gauge field which we call the string Higgs mechanism. In
case the Kalb-Ramond field couples to the open strings which have a massless vector field in the

spectrum, our field theory also exhibits the well-known Stueckelberg mechanism. To strengthen our
conclusion, we construct a lattice version of the above string field theory and demonstrate that the
mean-field approximation indicates the existence of the Higgs phase.

I. MOTIVATION

The Kalb-Ramond gauge field' appears in various field
theories. Notable examples are the fundamental
(super)string theories, phenomenological QCD strings
and color confinement models, and axionic cosmic
strings.

The present paper discusses certain interesting aspects
of the Kalb-Ramond gauge field theory. (Even though
there are several proposals of non-Abelian extension of
Kalb-Ramond gauge theory, none of them are satisfacto-
ry since the path ordering of the Wilson surfaces is ill
defined. ) Specifically we are interested in the Higgs
mechanism of the Kalb-Ramond gauge field. How would
we achieve this? Let us recall that in the Abelian Higgs
model the photon becomes massive (Meissner eff'ect) once
the Higgs field, to whose world line the photon couples,
undergoes a charged Bose-Einstein condensation. Simi-
larly, since the Kalb-Ramond gauge field couples to the
world sheet of strings (our terminology such as "electric"
and "magnetic" is in analogy with Maxwell's elec-
tromagnetism; we also normalize the action of the Kalb-
Ramond gauge field so that the coupling constant ap-
pears in front of the Kalb-Ramond field minimal cou-
pling term), bosonic string condensation into the vacuum
may realize the Higgs mechanism to the Kalb-Ramond
gauge field. (To the best knowledge of the author, Nam-
bu first suggested the Higgs mechanism for the Kalb-
Ramond gauge field similar to the present paper even
though he did not show how it works explicitly. See also
Ref. 7.)

We demonstrate, in the present paper, that the above
argument is indeed true: the condensation of the closed
strings exhibits a Higgs mechanism to the Kalb-Ramond
gauge fields (string Abelian Higgs model). We also find
that, if coupled to open strings whose physical spectrum
includes a massless Abelian vector gauge field, the
Kalb-Ramond gauge field becomes a massive vector field
through the well-known Stueckelberg mechanism.
Therefore, both the Higgs mechanism and the Stueckel-
berg mechanism are two different ways that the Kalb-
Ramond gauge field acquires mass through its coupling
to the two different types of strings. We also study a lat-
tice version of the string Abelian Higgs model. The

phase structure is examined within the mean-field ap-
proximation. The existence of the Higgs phase is demon-
strated, in which the Kalb-Ramond gauge field becomes
massive.

II. PLAQUETTE FORMULATION
OF THE STRING QUANTIZATION

We consider a relativistic closed string immersed in D-
dimensional (D ~3) spacetime. An infinitesimal string
plaquette X" (X(o,r)) is taken as a dynamical variable
which is related to the string coordinate X"(o,r) by

dX" (X(o,r)) =—X"'(X(o,r))do. @dr

B(X",X )d (1)
B(o., r)

The world-sheet parametrization is described by
o. =[0,2~] and r=[ —Oo, oo]. In the presence of the
background Kalb-Ramond gauge field,

1
H„ i(X)—:—V(„B i)(X),

the first-quantized string action' is

S„„,d= Jdo drI T(X" X„)' [X(o,r)]
+qX"'(X(o,r))B„(X(o,r))I . (2)

Here, T is a "bare" string tension and q is a coupling con-
stant of the string to the Kalb-Ramond gauge field (i.e.,
the "electric" charge). Using Eq. (1), one can verify that
the action equation (2) is manifestly reparametrization in-
variant. If we vary the action equation (2) with respect to
the variable X" using the implicit relation of X"'(X)
given in Eq. (1), we get a string equation of motion in the
background of the Kalb-Ramond gauge field:

a(r„.y&r', X )
T " +qH„„(X)X =0 . (3)

t) CT, 7

This is indeed a correct equation of motion, being a string
analog of the Lorentz equation for a charged particle in
an external electromagnetic background field.

The Kalb-Ramond gauge field has a U(1) gauge invari-
ance
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5AB„(x)=B(„A )(X) . (4)

q fdo dr X~ V'( A
)
= —

q f d&
ax

CT —2' '7

Under this transformation, the second term of Eq. (2) is
changed into (the boundary terms at r=+ m vanish since
the gauge function A„should be the same at these boun-
daries )

configuration 0,, we add an infinitesimal plaquette
X"'(X(o,r)) at a point X(o ) C Q. This induces a normal
direction deformation of the string loop Q( ~ ) into
Q( )+B,Q( ~ ) such that BX=b,Q. The procedure is de-
picted in Fig. 1.

This will induce a deformation of the string wave func-
tional 4[Q]. The rate of deformation of the string wave
functional is defined as the plaquette derivative

ax+qf
V[Q+ 5Qx] —%[Q]

(5)

These terms vanish only for a closed string, having
periodic boundary condition in the cr direction. If the
string is open, one needs to extend the gauge invariance
by including the massless photon background field cou-
pling to +e and —e electric charges at both ends of the
open string. Thus the open-string action in the back-
ground of the Kalb-Ramond gauge field and the photon
field reads

g, ,„=S„„,d+e f do dr X" Fp (X(o,r)) .

The extended gauge transformation now reads

n,B,.(X)=a„A.,(X)

and

a„,~„(x)=a„q(x)+qA„(x) .
e

:—f +h do bX" (X( ~ )) .
&&" (x(.))

The loop space metric is denoted by
2

h( )
Bx"(o)

27TBO

(12)

III. THE SECOND QUANTIZATION
OF STRING ABELIAN HIGGS MODEL

We now consider the second-quantized closed-string
field theory interacting with the Kalb-Ramond gauge
field, the string Abelian Higgs model. The theory may be
described by an action

4= f d X,H„i(X)2X3!

Note that the gauge transformation involves a singular
transformation of the Maxwell field.

The "momentum" conjugate to the string plaquette
X|" is

P„(X)—: = T —" (X) qB„,(X) . —
5Xi'"(X)

+ fDX(o)f +h do.
0

DN[Q]
DX" (X)

—w'~c[Q]~' +z,„„.
(13)

This is the generator of string loop deformation within
(D —1)-dimensional subspace normal to the string.
From this, we find the "physical on-shell" condition
[Nambu" showed how the Hamilton-Jacobi formulation
can be achieved for the free action (i.e., no external
Kalb-Ramond gauge field)]

(P„+qB„)[X(o.,r)]= T

Upon quantization of the strings, we have a wave func-
tional of the strings %[Q]. Here, Q( ) denotes a
parametrized string loop Q =

I
X"(o ) =X~(o +2~):o.

E [0,2'] I. The wave functional should be invariant un-
der a string reparametrization Q(o )—+Q(o ):

%[Q(o )]=ql[Q(o )] .

Thus, from Eq. (9), the quantum-mechanical wave equa-
tion may be written as

'2

i — +qB (X(.)) %[Q]=T ql[Q] . (11)
6

5X" (X( ))

Here, the dynamical string tension is denoted by M. The
covariant plaquette derivative is defined by

D
D&" (x( ))

+iqB (X( ) ) .
sr~ (x( ~ ))

The string field 4[Q(. )] is a complex scalar functional
which is reparametrization invariant. The term 4;„,gives
rise to the usual joining and splitting interactions among

Here, we used the fact that the wave functional 4[Q] is
manifestly reparametrization invariant.

The definition of the plaquette derivative on the string
functional %[Q] is as follows. For a given loop

FICx. 1. Addition of an infinitesimal plaquette at X(0.) on a
loop A.
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strings and thus has cubic, quartic, or more contact
terms:

S;„,=g DX,DX N* 0,+0 4 Q, N 0
+g DX)DX2DX3DX44 0 i +Q2

XN*[Q2+ Q4]N[Q, +Q3]4&[Q2+ Q4]+.

(14)

@[Q( )]~4'[Q( ~ )]=exp[iqco[Q( ~ )]}C&[Q( )] . (15)

Note that the interaction terms in Eq. (14) are invariant
under the loop space U(1) gauge transformation Eq. (15).

Here we concentrate on the gauge invariance associat-
ed with the Kalb-Ramond gauge field. Since we should
preserve the reparametrization invariance, the functional
co[Q] must be reparametrization invariant by itself. Let
us take

co[Q( ~ ) ]=f ndx "A„(x) . (16)

One now considers a one-parameter trajectory of the
strings Q with coordinates X"(cr,r) where o = [0,2ir ] and
r=[0,1] denotes the closed-string parametrization and
the evolution parametrization, respectively. Then we can
rewrite Eq. (15) as

co[Q( ~ )]= tt) =oadAcr A„(X(o ))

(17)

The plaquette integration is over the string world sheet
whose boundary is C. Now, we look at

+iqB„' (X( )) N'[Q( )]
5&" (X( ))

5
=exptiqco[Q( )]} 5X" (X( ))

5co[Q ]
5&"'(X(.) )

t

+iqB„' (X( )) 4[Q] . (18)

Using Eq. (17) and the basis relation

If there were no external background Kalb-Ramond
field, the above action (13) is invariant under a global
U(l) gauge transformation 4[0]~e' C&[Q] and the
string reparametrization N[Q] —+4[Q].

In fact, interactions of strings with the Kalb-Ramond
gauge field or with other modes of the string spectrum
can be deduced from the local U(1) gauge invariance.
(This formalism is very analogous to the string field
theory proposed by Marshall and Ramond. ' See also
the formulation by Hosotani. '

) Local U(1) gauge trans-
formation of the complex string functional is

exp(iqco[Q]) -+iq[B„',(X)—c)(„A~)(x)] 4[Q] .5
5X" (X)

Thus if the gauge transformation of the Kalb-Ramond
gauge field is given by Eq. (15), we find that the covariant
derivative transforms homogeneously and the action (13)
remains gauge invariant.

The spontaneous symmetry breakdown of the local
U(1) gauge invariance associated with the Kalb-Ramond
gauge field is achieved by condensations of the closed
strings into the vacuum. Namely, when the "physical"
string tension M becomes complex, M ~0, we have

(19)

(The string condensation criterion can be determined as-
suming that the strings are topological defects of a local
field theory. This analysis was undertaken in Ref. 14.)
Note that the vacuum expectation value of string field N
can be an arbitrary functional of string coordinates sub-
ject to the Poincare invariance constraint. This means
that, infinitely many string particle states on the Regge
trajectory become tachyonic and condense into the
vacuum. The simplest choice corresponds to $0[x]
=go/2q=const and we get

2
00X=

—,', H„2 + B„ (20)

No[I ( )]=P exp ie f A„(x) drdX" 40
E cSv 2g

(21)

Inserting this configuration into the action equation (13),
we get

2 2

X,„,„=—,', II„2(X)+ B (X)+ F„(X)—(22)

This exhibits a genuine Higgs mechanism for the Kalb-
Ramond gauge field theory. The mass of the Kalb-
Ramond gauge field is generated by the "charged" con-
densation of the closed-string loops into the vacuum. A
unique feature of string condensation compared to the
usual point-particle condensation is the possibility of
string-coordinate-dependent functional of the vacuum ex-
pectation value. As mentioned above, however, only
Poincare-invariant condensates are allowed. Thus the
functional co[Q] must only involve nonzero modes of
X"(o ) and must be Lorentz scalar. In addition, to have a
meaningful loop space formulation of string field theory,
the reparametrization invariance must be retained.

Next, suppose that the string field N[l ( )] describes an
open string denoted by 1—= tX"(o.):o &[0,2']}. In this
case, the massless photon couples to the ends of open
string, which carries equal and opposite electric charges
as we discussed in the previous section [see Eq. (6)]. Thus
the string field with the photon coupling may be written
as a path-ordered Wilson line

we rewrite Eq. (18) as Thus the vector field of the open string couples to the
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external Kalb-Ramond gauge field through the 8„I'"
term. '

The Lagrangian equation (22) is nothing but the
Stueckelberg formalism of a massive pseudovector field
in terms of Kalb-Ramond tensor field. Namely, we may
redefine the Kalb-Ramond field

e8„—8„+ V')„A ) . (23)

The kinetic term of the Kalb-Ramond gauge field does
not change after this field redefinition so the new La-
grangian is

closed link as

[ Q( C +p) U~.Q( C)
(C) p &BC

+Q(C —p) U Q(C)]

+[M a +2(D —1)]Q(C)Q(C) . (29)

Here C+p denotes the addition of a plaquette p to the
closed link C and the summation over the plaquette
means all possible plaquette additions to the given link C.
The dynamical string tension M is related to the bare
string tension of T as'

X,p,„=—,', H „,i (X)+ — B„„.e
(24) M =a [exp(Ta ) 2(D ——1)] . (30)

Since we redefined the Kalb-Ramond field, the coupling
of the open string to the external field B„now reads

g fda dr [gyve ji/2

+q X" B„(X)+—V(„A ) (X)
q

(25)

This is precisely the first-quantized string action equation
(9) we deduced from the extended gauge invariance equa-
tion (7). We thus find that the Kalb-Ramond field com-
bines with the massless Abelian vector field to become a
massive pseudovector field and interact through the
minimal coupling described by Eq. (25).

IV. LATTICE FORMULATION
OF THE STRING ABELIAN HIGGS MODEL

U [B„j=exp[iqa B„„(p)]. (26)

Let us now turn to a (spacetime) lattice formulation of
the closed-string Abelian Higgs model Eq. (13). Using
this formulation, we will analyze the phase structure
within the mean-field approximation. Consider a Eu-
clidean D-dimensional hypercube lattice of lattice spacing
a. The Kalb-Ramond gauge field is defined on each pla-
quette. Thus we consider a plaquette operator

The second term that depends upon the spacetime dimen-
sionality is a contribution from the entropy of the string
configuration.

Thus the total action is written as

where we assume proper Haar measures defined both on
the Abelian U(1) group and on the reparametrization
group of strings.

The partition function may be evaluated by the mean-
field method. ' First we decompose the string loop field
Q(C) as a product of each individual component excita-
tions of strings:

Q(C)= Q g U, (m) .
lEBC m

(32)

The mth string excited state link operator is denoted
schematically by UI(m). When the physical string ten-
sion takes M ~0 [see Eq. (30)], the string field Q(C) is
expected to fluctuate around a nonzero value. Thus we
decompose the string loop operator as

$0[U, Q(C), 13,M ]=SH+S~ .

We now evaluate the partition function

Z(/3, M )= f g dU + dQ(C)
p C

X exp[ —So( U&, QC, P,M )],
(31)

The kinetic term of the Kalb-Ramond gauge field is

ePH=P g Re + U~

Q( C) =Ql [ A „]co(C), co( C) i
= (33)

(cube) p C cube

The lattice coupling constant of the Kalb-Ramond gauge
field is denoted by P. The gauge transformation of the
plaquette operator under the transformation equation (4)
turns out to be

U~~ + Ai U~ where Ai =exp[iqaA„(l)] .
I E Bp

Namely, for a given plaquette p on which we assign the
plaquette operator U, the gauge transformation is to put
the link operators Al on every perimeter link I H Bp of the
plaquette p.

Similarly, we can write down the gauge-invariant ki-
netic term of string loop fields Q(C) defined for each

All the "heavy" mode excitations other than the massless
vectorlike spectrum are denoted by co(C). Its magnitude
is proportional to the physical string tension. The mass-
less vector field spectrum may be written as

Ql [ A „]= Q exp[ iqa 3„(1)] .
leBc

Inserting this into Eq. (31) we get

Z(P, g )=f +dU +dQ, (A)
p C

X exp[ —S,tr( U, Q„P,g~ )],
where
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S,tr= —ln f + da)(C)exp[ —So[ U, Qico(C), P, M ] I .
c

(34)

2
gR HI GGS

We now approximate the effective action S,s. as
g42

R

—,g, yl y
(C) ) peBC

0, U g 0, +H. c.
leC+p leC

CONF I NE MENT

+ [M a +2(D —1)]

=gz +Re U + II& (35)
p 1 edp

with the lattice coupling constant gz =2~co~ for the
string field. Thus we finally get

el.
FIG. 2. The phase diagram of the string Abelian Higgs mod-

U ~ + Ai U and Ql-+A(Bi .
leap

(37)

With the ansatz Re( U~ ) = V~, Re( U& ) = VI, and
Im( U ) =Im( U& ) =0, we get, from Eq. (36), the mean-
field solutions'

I((ap ) I, (aI )

Here Io I] are modified Bessel functions while

a =2(D —2)PV +gg~ Vi

and (39)

a( =2(D —1)g~ V~ Vi

From these, one can determine phase boundary in (P,gz )

space, extended from the two critical points (I3„gi, =0)
and (P= ~,gii ), at which the first-order phase transition
takes place. Analysis of Eqs. (38) and (39) shows that
there are three phases of the theory as drawn in Fig. 2.

When P ~P, and g~ ~g~, the Kalb-Ramond gauge
field and the photon field are confined due to strong dis-
order. If we increase P~ ~ beyond the critical value P„
the Kalb-Ramond field is weakly coupled and becomes
massless while the photon field remains confined still.

Z(P, g )= f +dU +dQ, exp( —4, ),
p 1

where

7, =/3 g Re g U +g~+Re U +0&
(cube) p e cube

(36)

modulo irrelevant numerical constant normalization.
This is precisely the partition function of the Kalb-
Ramond gauge field coupled to the "massless phantom
photon" field A„. Note that the gauge invariance of Eq.
(28) associated with the plaquette operator [U(1) Kalb-
Ramond tensor field gauge invariance] appears lost in
this mean-field theory. However, the original gauge in-
variance associated with 0( C) [whose continuum version
is Eq. (15)] shows that there are residual gauge invari-
ances

V. DISCUSSION

In this paper we mainly concentrated on the Kalb-
Ramond field coupled to the string fields. However, it is
straightforward to generalize this to the higher- (p + 1)-
rank antisymmetric tensor gauge fields (and only Abelian
fields due to the reason discussed earlier) by coupling to
the appropriate extended objects (p-branes). The p-
branes, once condensed, exhibit p-form gauge field as a
Goldstone excitation mode. This Goldstone field is ab-
sorbed by the (p + 1)-rank antisymmetric tensor gauge
field and turn into a massive gauge field.

Can we also describe the graviton and the dilaton cou-
plings to the string in terms of the plaquette variables as
we did for the Kalb-Ramond gauge field? It is easy to see
that appropriate couplings are

4= fda drI TD(X)[X"'G„(X)G&(X)X ~]'

+qX" B„(X)]. (40)

If the Auctuation of these massless modes is small, the
linearized interaction term reads [G (X)=5„+h„(X)]

@peva

f do dr T+X D(X)+T h (X)+qX""B„(X)/lV

(41)

Thus we derive their currents to be

Thus, this is a phase in which the Kalb-Ramond field ex-
hibits Coulombic behavior. On the other hand, if we in-
crease g~ also beyond the critical value gz, a weakly in-
teracting, massless photon couples to the Kalb-Ramond
gauge field. They combine to result in a massive Kalb-
Ramond gauge field. This is precisely the parameter
domain that the string Higgs mechanism shows up. In
four dimensions, however, there exists a nonperturbative
disorder' for all values of 13 due to the "magnetic" in-
stantons of the Kalb-Ramond gauge field. Thus the
Coulomb phase in the figure is not present in four dimen-
sions. The physical consequence is string electric
confinement' due to the Kalb-Ramond "magnetic" in-
stantons.
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X)=
5G~ (X)

and

X„X=Tf der dr " (F)5' '[X —Y(o,r)]
Qy2

"T(X)= =Tf do d~+X 5' '[X —F(o, r)] .
5D (X)

(42)

We note that these are nothing but the energy-
momentum tensor and its trace part of a single string,
coupled to the linearized graviton and the dilaton. The
string plaquette couples to the gravity and the dilaton
fields nonlinearly (in fact, this difficulty has been noticed
by Kalb and Ramond'), unlike the Kalb-Ramond gauge
field. This nonlinear structure makes it hard to formulate
graviton and dilaton coupling of strings in terms of the
world-sheet plaquette as a dynamical variable. An early
attempt has been made by Marshall and Ramond" based
upon the local U(1) gauge invariance of the loop space
[see Eq. (15)]. This interesting approach is yet to be in-
vestigated thoroughly.

In the above, we showed how the closed-string conden-
sation into the vacuum can generate spontaneously the
mass to the Kalb-Ramond gauge field. Our classical

string Abelian Higgs model is more heuristic than
rigorous. The issue of reparametrization gauge invari-
ance is very important to have a con'sistent, fully interact-
ing quantum string field theory (we do not have any such
theory at hand for the moment). We did not discuss the
unitarity and quantum consistency issues since only clas-
sical physics is all we need. The Becchi-Rouet-Stora-
Tyutin (BRST) formalism is expected to add only some
technical complications to the basic picture we presented
here. Still it would be nice to understand the precise way
that BRST string field theories realize the Higgs mecha-
nism we discussed in this paper. One possible approach
may be through a background-independent string field
theory' and considering a Kalb-Ramond field back-
ground.

Finally, we mention that the fermionic strings in the
background of the Kalb-Ramond gauge field are a
straightforward generalization of the present paper.
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