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In this paper we develop a path-integral formulation of classical Hamiltonian dynamics, that
means we give a functional-integral representation of classical transition probabilities. This is done
by giving weight “one” to the classical paths and weight “zero” to all the others. With the help of
anticommuting ghosts this measure can be rewritten as the exponential of a certain action S. Asso-
ciated with this path integral there is an operatorial formalism that turns out to be an extension of
the well-known operatorial approach of Liouville, Koopman, and von Neumann. The new formal-
ism describes the evolution of scalar probability densities and of p-form densities on phase space in a
unified framework. In this work we provide an interpretation for the ghost fields as being the well-
known Jacobi fields of classical mechanics. With this interpretation the Hamiltonian H, derived
from the action S, turns out to be the Lie derivative associated with the Hamiltonian flow. We also
find that the action S presents a set of Becchi-Rouet-Stora- (BRS-)type invariances mixing the origi-
nal phase-space variables with the ghosts. Together with a Sp(2) symmetry of the pure ghosts sec-
tor, they form a universal invariance group ISp(2) which is present in any Hamiltonian system. The
physical and geometrical meaning of the ISp(2) generators is discussed in detail: in particular the
conservation of one of the generators is shown to be equivalent to the Liouville theorem. The ISp(2)
algebra is then used to give a modern operatorial reformulation of the old Cartan calculus on sym-
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plectic manifolds.

I. INTRODUCTION

Since its formulation almost half a century ago' the
path-integral approach to quantum mechanics has
proved to be one of the most powerful tools for the study
and “visualization” of quantum phenomena, both in the
perturbative (Feynman diagrams) and nonperturbative
(instantons, monopoles, etc.) domain. Virtually all as-
pects of field theory have been revitalized and refreshed
by the path-integral approach. Nevertheless, no attempts
have been made (at least to our knowledge) of giving an
analogous path-integral formulation of classical mechan-
ics. At first sight this might seem to be a strange way of
making simple things complicated but, in fact, there are
several motivations for developing such a theory. First, a
formulation of this sort would help in better understand-
ing the interplay between classical mechanics (CM) and
quantum mechanics (QM): being both written in terms of
path integrals now, it should be easier to see the
differences and the similarities. Second, long ago Koop-
man? and von Neumann,’ influenced by the invention of
quantum mechanics, gave an operatorial formulation of
CM. Therefore, it is plausible to suspect that this theory
(CM) should have a path-integral counterpart. Third, a
classical path integral might help in visualizing some phe-
nomena in the classical regime which, even today, are
only poorly understood: the example we have in mind is
that of deterministic chaos in Hamiltonian systems.*
Fourth, the operational formulation, equivalent to the
classical path integral, turns out to be related to the
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differential geometry on symplectic manifolds in a way
similar to the relation between Witten’s supersymmetric
quantum mechanics® and the differential geometry on
Riemannian manifolds. Thus the path integral not only
“knows” about the dynamics, but also about the geometry
and the ropology of phase space. There are also striking
similarities between our classical path integral and the to-
pological field theories recently discovered.®

A first attempt to provide such a path integral formula-
tion of classical mechanics was made in Ref. 7 and we
will refer to it as I. There it was suggested to use a Dirac
8 function 8[¢—¢,,] for the measure which gives weight
“one” to the classical paths ¢, and weight “zero” to all
the others, i.e., to those which are not solutions of the
equations of motion. In Ref. 7 it also was shown how
this measure can be rewritten in the standard form as the
exponential of an action S. The action S involves a set of
anticommuting ghosts which could be understood as the
Jacobi fields of classical dynamics.® The action §
possesses a Becchi-Rouet-Stora (BRS) and anti-BRS sym-
metry which mixes the ghosts with the original bosonic
variables. It is also invariant under a set of ghost-charge
and ghost-conjugation-like transformations which, to-
gether with the (anti-)BRS operator, form an ISp(2) sym-
metry group. In Ref. 7 the conservation of one of its gen-
erators has been shown to be equivalent to the Liouville
theorem, which states that the phase-space volume is in-
variant under the Hamiltonian flow. Some further
analysis of these invariances, in particular of the anti-
BRS symmetry, was performed by Kraenkel.®

3363 ©1989 The American Physical Society



3364

In the present paper we continue the analysis of the
classical path integral, in particular, of its Hamiltonian
form, by interpreting the remaining ISp(2) generators in
terms of more familiar (geometric) objects. For example,
the BRS operator will be identified with the exterior
derivative on the space of classical orbits, which, in turn,
can be identified with phase space. Similarly, from the
action S we can derive a “super-Hamiltonian” % which
turns out to be the Lie derivative associated with the
Hamiltonian flow. Here lies the real surprise and the
power of the path-integral approach: it naturally gen-
erates geometrical objects, such as the exterior derivative or

" the Lie derivative, which do not have to be introduced in
an abstract manner as it is usually done in the standard
Sformulation of CM. In this way the standard Cartan cal-
culus on phase space'® will be translated into a set of sim-
ple operatorial rules derivable from the operatorial con-
tent of the theory described by our path integral. The
crucial elements of the operatorial formalism mentioned
above are the ‘“‘classical commutation relations” which
follow from the classical path integral. This formalism
naturally embeds the standard operator approach to CM
pioneered by Liouville, Koopman? and von Neumann.’
The operator method discussed here goes beyond the
standard one in that it not only deals with scalar proba-
bility density functions on phase space, but also includes
the dynamics of p-form fields on phase space. The ap-
pearance of these higher fields is a consequence of the
ghosts, and since these are related to the Jacobi fields, the
p-forms contain information about the behavior of nearby
trajectories, for instance. This is the kind of information
which is important for the study of chaotic phenomena.

This paper is organized as follows. In Sec. II we briefly
review the configuration-space path integral introduced
in Ref. 7. In Sec. III we write down an analogous path
integral on phase space and derive its operatorial content.
In Sec. IV we discuss the ISp(2)-symmetry algebra and
various interesting representations of it. The following
two sections are devoted to a detailed interpretation of its
generators. In Sec. V we show that the ghosts may be
identified with differential forms on phase space and in
Sec. VI we further study the differential geometric mean-
ing of the ISp(2) charges.

II. THE CLASSICAL PATH INTEGRAL:
LAGRANGE FORMALISM

In this section we briefly review the main points of Ref.
7, where a Lagrangian formulation has been used. We
shall be very sketchy here because we only want to con-
vey the general ideas. A more detailed analysis (in a
Hamiltonian formulation, however) will be given in the
following sections.

In Ref. 7 a proposal was made for a path-integral for-
mulation of classical mechanics along the lines of
Feynman’s path-integral approach to quantum mechan-
ics. While the quantum generating functional (for simpli-
city we consider a system with one degree of freedom
only and K and K’ are normalization constants which we
will omit in the rest of the paper)
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gives weight exp(iS) to each path, the classical one could
be built as giving weight “one” to the paths classically al-
lowed and weight “zero” to all the others. It is given by
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where ¢, () is a solution of the classical equation of
motion 8S /8¢4(2)=0, starting at ¢(0) and ending at ¢(N).
Here we have sliced the time interval [0, 7] in N intervals
of equal length T/N. Since ¢ is a solution of the equa-
tion of motion, it is possible to rewrite Z ¢y as
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In principle we should take the absolute value of the
determinant, but for the moment we will suppose that it
is positive. The delta functional can be represented as

5

= [ Dhrexp f dt A(t) (2.6)

5¢

and the determinant is conveniently reexpressed as a
functional integral over two Grassmann variables c(?)
and ¢(1):
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Inserting expressions (2.6) and (2.7) into (2.5), we obtain
Zewl1= [ Do DA De D exp [i§ + [dtgg ] 2.8)

with the action S given by

o [T _ 8%S ,
§=[ drnn 8¢( if dtf dr'et) g s C )
2.9

From its construction it is clear that the path integral
with weight S is completely equivalent to classical
mechanics; there are no quantum fluctuations driving the
system away from the classical paths. The remarkable
point about the action (2.9) is'that it exhibits an unexpect-
ed BRS- and anti-BRS-type invariance. In fact, S is in-
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variant under the following two sets of transformations
(our Hermiticity conventions are such that ¢ and ¢ are
real, and €, €, 6, and 0 are purely imaginary Grassmann
variables):

d¢p=¢ec, 6c=—ieA, 86c=0, B6A=0, (2.10)

and

6¢p=—¢€c, d6¢c=—i€A, &c=0, dA=0. (2.11)

Here € and € are anticommuting parameters. It is easy to
see that both of the above transformations are nilpotent:
i.e., 82=0. Therefore, we may address them as BRS and
anti-BRS transformations, respectively. The presence of
these symmetries motivates'! the use of the superspace
formalism. Let us extend ¢ space (the real line) to a su-
perspace (t,0,0) [it is easy to see that the transformations
(2.10) and (2.11) correspond to translations of 6 and 6]
and let us define the following superfield on this space:

®(1,0,0)=¢(t)+i0c (t)—ic(t)0+i0OA(t) . (2.12)

In terms of ® the classical path integral assumes a very
simple form

Zeul0]= [ D exp (2.13)

ifS[<1>]d9dé] .

Note the striking similarities between this path integral
(2.13) and the quantum-mechanical one (2.1). The weight
factor has the same structure in both cases. It is con-
structed from the same function S, with different argu-
ments however: ¢ in QM and ® in CM. This similarity
reveals the unique role played by the action at both the
classical and quantum level. Another point worth being
noticed is the following: if we expand the S[®] appear-
ing in (2.13) in 0 and 8, we find

S[®1=S[41+6B,[c,¢]+0B,[c,¢]1+00S[¢,A,c,c],
(2.14)

where B, and B, are certain functionals of ¢, ¢, and ¢
whose precise form is not important here. Note that the
lowest component of (2.14) is the quantum weight S[¢]
of (2.1), while the highest component is the classical
weight S[¢,A,c,C] of (2.8). Thus the classical and the
quantum weight can be unified in a unique ‘“‘superaction”
S[®]. This fact cannot be a mere formal coincidence, it
indicates that something profound is behind. There exists
a kind of “covariance” between the classical and the
quantum regime: by some combination of BRS and anti-
BRS transformations we can rotate S[¢] into
S[¢,M\,c,¢], i.e., the classical regime into the quantum re-
gime. The geometrical meaning of this fact will be fur-
ther explored in Ref. 12. At this point one might ask why
one needs more fields at the classical level than at the
quantum-mechanical level. There are various possible
answers: one is that also at the quantum-mechanical level
additional ghost fields could be introduced and they will
illuminate the understanding of its geometrical structure
(see Ref. 12). Another answer is that at the classical level
the ghosts are needed to cut off the propagation “perpen-
dicular” to the classical orbits. This is somehow like
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Yang-Mills theory, for instance, where the ghosts are
needed to cancel the effect of the unphysical modes of the
gauge field.

In the above construction the ghosts entered in a pure-
ly formal way as a tool to exponentiate the Hessian of the
action. It turns out, however, that they play a role much
more important than just that of some auxiliary fields.
To see this, we consider a simple system with action

s=[di[14>—V($)]

and write down the equations of motion obtained by
varying S of Eq. (2.9):

(2.15)

3¢+ V'(4)=0, (2.16)
[024+V"($)]c(2)=0, (2.17)
[37+V"($)]e()=0, (2.18)
[37 +V"(@IM=ic() V" ($)c(2) . (2.19)

Using the superfield (2.12), these equations can be com-
bined into the “super-Newton’ equation:

Fd=—V'(D) . (2.20)

Equation (2.16) is the standard equation of motion of ¢,
which also could be derived from S[®] directly.
(Lagrange could have used § instead of S to give us his
equations.) The equation for ¢ and ¢ is also well known:
it is the equation of the first variation 8¢(¢) of the trajec-
tory ¢(z), which is usually referred to as the Jacobi field®
or the geodesic deviation.!> If ¢(¢) and ¢(z)+8¢(z) are
two nearby solutions of Eq. (2.16), then the Jacobi field
8¢(1) has to satisfy the equation :

[82+ V" (¢)18¢(2)=0 . (2.21)

Obviously, this is the same as the ghost and antighost
equation of motion. So § gives us not only the standard
equation of motion but also the equation of motion of the
Jacobi fields and it is for this that it is a much more use-
Jful and important object to use than S. Looking back at
Eq. (2.10) we observe that the BRS transformation, when
applied to a classical path ¢(¢), maps it into another clas-
sical path ¢(¢)+ec(z). It thus acts like a “translation” or
“derivative” on the space of classical orbits.

Jacobi fields and their correlators {8¢(2)8¢4(0)), re-
spectively, are extremely important to detect possible
chaotic behavior of a dynamical system.!*!* In particu-
lar, if (in realistic applications ¢ is, of course, a multicom-
ponent variable)

lim ~;—,ln<8¢(T)8¢(0)>¢0 (2.22)

then the system is a so-called C system,*'*> and neighbor-
ing trajectories fly apart exponentially. Clearly, with re-
gard to such applications, it is useful to have a formalism
in which the Jacobi fields appear explicitly at the same
logical level as ¢(¢) itself, rather than just being derived
objects (the ‘““difference” of two ¢’s). Eventually, in fact,
we would like to compute correlations such as (2.22) as
ghost two-point functions of the path integral (2.8).
Having both ¢ and c in the same formalism means
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geometrically that we are not just working on the mani-
fold of classical solutions ¢(¢) but rather on its cotangent
bundle. We will see that this gives rise to a much richer
structure than usually considered in classical dynamics.
In particular, as will be seen in the next section, it leads
to form-valued density functions on phase space.

III. THE CLASSICAL PATH INTEGRAL:
HAMILTON FORMALISM

In this section we derive the classical path integral for
the Hamiltonian formalism of classical mechanics. Be-
cause of its first-order character, the relevant integrals
can be easily evaluated and the problem of finding the
correct boundary conditions is easier to handle than in
the Lagrangian formalism. We start from Hamilton’s
equations

Ut =0, H[$(1)],

where ¢“E(q1, e g@hps ey py), a=1,...,2n, is a
coordinate on a 2n-dimensional phase space /M,,, H is
the Hamiltonian, and 0®®= —»® is the symplectic two-
form. (In this paper we make the simplifying assumption
that ©® and its inverse w, have their standard ¢-
independent form everywhere. Topologically nontrivial
cases will be discussed elsewhere.) The standard Poisson
brackets of two observables 4,(¢%) and A4,(¢° is given

by

(3.1

{A;,4,}=0, 4,03, 4, . (3.2)

Using (3.1) one obtains the usual equation for the time
evolution of 4 [¢(1)]:

d
dt
Another important concept we shall need is that of a
probability density function p(¢?,?) on phase space. Typi-

cal examples include the standard microcanonical, canon-
ical, and grandcanonical ensembles, respectively:

Prme <S(H —E) ,

A[¢(1)]1=0,Ad°={ A, H} . (3.3)

p. <exp(—BH) , (3.4)

Pgc < exp[ —B(H _.U'N)] .
Similarly, the distribution indicating the presence of a
single particle reads

p(¢%1)=82"($%—p%(t ;%)) . 3.5

Here and in the following ¢%(z;¢f) denotes the classical
solution of the equation of motion (3.1) with initial condi-
tion ¢7 =¢g(t =t;,¢7). The time evolution of these distri-
butions is given by

%p(¢a,t)=—{p,H}E—fp(d)",t) . (3.6)
Here we have introduced the Liouville operator
L=—-3,Ho"3, (3.7

E. GOZZI, M. REUTER, AND W. D. THACKER 40

which is the central element of the operatorial approach
to classical dynamics.? Comparing this to the formalism
of QM and thinking of p as the analogue of the density
matrix, is the analogue of the Hamilton operator.
Keeping this analogy in mind, we define the classical
average (“expectation value”) for the variable ¢ at time #:

(%), = [d> ¢%p(,1)
= [d*¢d?¢,4°P($,t1¢:,t,)p(,1,) .

In the second line of (3.8) we have expressed the distribu-
tion at time ¢, p(¢,t), in terms of the initial distribution
p(é;,t;) specified at some earlier time #; <¢. Furthermore,
P(¢,t|;,t;) denotes the classical probability for a parti-
cle to be at a point ¢ at time ¢, if it was at ¢; at time ¢;.
Clearly P is nonzero only if the two points are connected
by a classical path:

P($,tl¢;,1,)=82"(¢"— pi(1;9,)) .

Again, ¢ is a classical path with appropriate initial con-
dition.

We now turn to the path-integral representation of
averages such as (3.8). Starting from the Hamiltonian
equations of motion (3.1), we now repeat the steps which
led to Eq. (2.8). The delta functional forcing the system
on its classical trajectory reads

S[¢°—¢%41=8[¢ “— w™d, H )det(d,8; — ©*3,3, H) .
(3.10)

Exponentiating the right-hand side (RHS) of Eq. (3.10) as
in Sec. II we arrive at [see the Appendix for details of the
discretization procedure used in the definition of the path
integral and for the reason of having external currents
coupled to the ghosts ¢, T, and A in the “source terms” in
Eq. (3.11)]

Zow= [ DDA, DD,

(3.8)

(3.9

Xexp ifdt(,z +source terms) (3.11)
with the Lagrangian
L=%,[¢°—0,H($)]
+ic,[9,8) — 3,3, H(¢)]c® . (3.12)

We start the discussion of (3.11) by looking at the Euler-
Lagrange equations of .L. Varying A,, ¢,, ¢’ and ¢¢ re-
spectively, we find, from Eq. (3.12),

é°—w®,H=0, (3.13)
(9,8% — 3,08, H )c®=0, (3.14)
€,(3,8¢ +©™d,3,H)=0 , (3.15)
(3,8} +w*d.9, H)A, =ic,w™d,3,0,Hc? . (3.16)

Again the first equation is the usual equation of motion
and the ghost equation of motion coincides with the Jaco-
bi equation. Note that .£ contains only first-order deriva-
tives. Therefore, writing
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L=A\°+ic,c —FH (3.17)
we can read off a “Hamilton” function
H =N, 03, H +i¢,0*d,d, Hc® (3.18)

For the interpretation of # as a Hamiltonian to be
correct, we have to make sure that A, and ¢° as well as
T, and c? are (in a generalized sense) pairs of canonically
conjugate variables. To show that this is indeed the case,
we now compute the equal-time (anti)commutators of ¢,
Ags ¢4 and T, from the path integral (3.11). We define

([4,(t) Az(t)]>=1irr})( A (t—€)A,(2)

tA4,(t—€)A4,(1)), (3.19)

where A, and A4, are any function of ¢%(¢), A,(¢), c(¢),
and C,(7). The symbol [ ] denotes the Z,-graded commu-
tator; if both entries are anticommuting, it means the an-
ticommutator, in all other cases it is the ordinary com-
mutator. Finally ( ) denotes the expectation value with
respect to (3.11). The RHS of Eq. (3.19) has to be evalu-

ated in a discretized version of the theory. Using stan-
dard techniques'® we find that
([¢%A,]1)=i8] , (3.20)
([E,,c?]) =8¢ (3.21)

and that all other commutators vanish. In particular, ¢
and ¢° commute for all values of @ and b. In terms of the
¢’s and p’s (which were combined into ¢?) this means

([g'p;1Y=0 (3.22)

for all i and j. This shows very clearly that we are doing
classical mechanics and not quantum mechanics. The
commutators (3.20) and (3.21) suggest the following inter-
pretation of the variables ¢%A,,c%¢C,: we may consider
them as coordinates for a 4X(2n)-dimensional extended
phase space on which the following (graded) Poisson
structure is defined:

(925} =85 ,
{Eb,ca} = _ISZ .
[Another manner to derive the Poisson structure (3.23)
and (3.24) is the following. The Lagrangian £ gives rise
to the constraints Il ,=A, and II ,=ic, where II , and
IT1 . are the momenta conjugate to ¢ and ¢ Because of
these constraints, in going to the Hamiltonian formalism
we have to apply the Dirac procedure.!” The resulting
Dirac brackets would be Eqgs. (3.23) and (3.24).] Note
that this Poisson structure is not the one of Eq. (3.2). Us-
ing (3.23) and (3.24), it is easy to verify that the equations
of motion (3.13)—-(3.16). can be reproduced in Hamiltoni-
an form:
d
— A
dt
where A is ¢% A,, ¢ or ¢,, or any function of them.

Here % is the “super-Hamiltonian” defined in Eq. (3.18).
Furthermore, as in quantum mechanics, we can go over

(3.23)
(3.24)

={A,%} , (3.25)
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from the Poisson-brackets formalism to an operatorial
formalism via the replacement

{’}H—i[v]'

This is what one usually would call “quantization,” but it
does not have this meaning in our case. We stress that
only the extended 8n-dimensional phase space leads to
the appearance of noncommuting operators, but not the
original 2n-dimensional one. From the 8rn-dimensional
point of view the operators ¢? are mutually commuting
position variables (with conjugate momenta A,). There-
fore, the g’ and p, variables of the original 2n-
dimensional phase space still commute with each other,
as they should in classical mechanics.

Equation (3.26) is exactly what transforms (3.23) and
(3.24) into (3.20) and (3.21), respectively. In the operatori-
al formalism the time evolution of a certain observable

(3.26)

A= A(p%1),A,(8),c%1), T,(2)) is given by a Heisenberg-
type equation '
d .
— A=[A4 . .
I [4,7] (3.27)
In particular, using the basic brackets (3.20) and

(3.21), we can easily show that (3.27) reproduces
(3.13)-(3.16). [In going from the c-number observables 4
to its operatorial version there might be ordering ambi-
guities because of the noncommutativity of ¢ with A and
of ¢ with c¢; however, these ambiguities are not present
for the restricted class of observables 4= A4(¢) con-
sidered in the conventional operatorial approach.]

Let us now use the path integral (3.11) to compute
transition probabilities and classical averages. Let us
look at the integral (the symbol £’ means that we omit
the integration over the initial and final points which are
kept fixed)

K(¢f7cf’tf!¢i’ci’ti)
t ~
= [ D76 DAD"c DE exp [i I dz,c] (3.28)

subject to the boundary conditions
(1) =0, ¢%1,)=¢7,
Ca(t,')=cia, Ca(tf):(:; s
A (), Ag(ty), T,(1;),
These boundary conditions are motivated by our experi-
ence with phase-space path integrals in QM. There, to
compute a transition amplitude, one has to fix the posi-
tion variables of the end points, but one integrates over
all values of the momenta at the end points‘ Since, ac-
cording to (3.20) and (3.21), (¢ A,) and (c%C,) are conju-
gate pairs, we try the same prescrlptlon here In fact, the

integral (3.28) can be done exactly!®!® and the result
reads

K(¢f,cf,tf|¢,,c, ,t

(3.29)

c,(t) arbitrary .

=8¢ —$a(ts,:))
X8 (cE—Ca(ts,ci5[da]) -

(3.30)
Here ¢¢% and CZ denote solutions of the equations of
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motion (3.13) and (3.14) with initial conditions ¢¢ and cf,
respectively. Note that the solution C_ functionally de-
pends on the path ¢ 4(#). The result (3.30) should not
come as a surprise. [It essentially tells us that only the
zero modes of the ghosts kinetic operator contribute to
the path integral. That means that the Jacobi fields satu-
rate the path integral (3.28).] Let us look at the ghost
piece in (3.12), for instance. It is a first-order fermionic
action, very similar to the usual Dirac action. For ac-
tions of this type it is well known!”!8 that the quantum-
mechanical transition amplitude is given by a 8 function
containing a solution of the classical equation of motion.
This is due to the fact that for any Lagrangian of the
form 1t D,i), where D, is some first-order differential
operator, the integral over ¢ gives rise to a & function
8(D,y). Thus only ¢ paths with D,4=0, i.e., solutions of
the equation of motion, contribute to the path integral.
This is what gives rise to the second 8 function on the
RHS of (3.30). What is unusual about (3.12) is that also
the bosonic part of the action is of the form ‘“momentum
times equation of motion” which means that the A in-
tegration yields a & function with the ¢ equation of
motion. Performing the ¢ integration we then obtain the
first 8 function on the RHS of (3.30). The transition
function (3.30) contains information both about the paths
(via ¢) and the Jacobi fields (via C). If we are not interest-
ed in the information about the Jacobi fields we can in-
tegrate over ¢, to get back the probability P introduced
earlier:

Jd¥c,K(dy,cprtrldi,e0,t) =82, —dy(t;,8,)

P(¢r,trld;st;) .

However, in the spirit of the discussion at the end of Sec.
I1, we would like to keep the information about the Jaco-
bi fields since they are indispensable tools for the study of
chaos, for instance. [Note that integrating in (3.31) over
both c; and ¢, yields zero. We recall that for transition
probabilities we only have to integrate over either the ini-
tial or the final position to get its renormalization and not
over both. That is what we did here by integrating K
only over c¢,. The full normalization is obtalned after a
further integration over ¢ .. ]

In Sec. IT we used a one-particle language, i.e., we con-
sidered some trajectory ¢(t) and the associated Jacobi
field ¢ (#) describing nearby trajectories. Now we would
like to go over to a statistical, or many-particle, descrip-
tion in which we do not consider individual trajectories
¢(1) but rather the evolution of density distributions
p(¢% 1), where ¢? is considered merely as a phase-space
coordinate and not as function of ¢. Including the ghosts
into this picture amounts to a “Schrodinger-type” formu-
lation (but let us remember that we are not doing any
kind of quantum mechanics) of our theory. The operator
algebra (3.20) and (3.21) can be realized by differential
operators

(3.31)

Ay = —i=2

—_—, 3.32
=g (3.32)

> (3.33)
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and multiplicative operators ¢ and ¢ acting on func-
tions p(¢%c?1). These functions can be thought of as a
generalization of the ordinary density p(¢%1?). Inserting
the differential operators (3.32) and (3.33) into the Hamil-
tonian (3.18), it is easy to verify that the evolution kernel
(3.30) obeys the following diffusion (or ‘‘Schrodinger-
type’’) equation

(i3, —F)K (¢° c%t]¢?, ¢l t;)=0 (3.34)
with the operatorial form of # given by
Fb= — i3, HO, +i—2= 3,9, Hc" (3.35)
dc’

(Note that there is no ordering problem in # because of
the antisymmetric nature of ©®.) Therefore, a general-
ized density distribution depending on the ghosts and
defined in terms of some given initia! distribution p(¢;) via

ot n= [ d>¢,dc,

XK (¢%c%tlgf,cf,1,)p(df,cf st (3.36)
solves a diffusion equation such as (3.34):
i3,p(¢% ¢4 t)=Hp($%c%t) . (3.37)
Expanding the ¢ dependence of g in the form
ISP @ a
pl¢%c ,t)—Pg();Tpfl ...ap(qb,t)c s ? (3.38)

we see that (3.37) is equivalent to a set of 2n +1 real
equations for the components p(” ). o (¢,0). In Sec. V we
I4

shall interpret these components as_differential forms on
phase space and the Hamiltonian # as a Lie derivative
acting on them. From a physical point of view the
coefficient functions p(‘”. +a, ATE important because they

encode information about the behavior of nearby trajec-
tories (see, for instance, Ref. 15). Here we only would
like to point out that the equation for p” =%(¢,7)=p(4,?)
is nothing else than the Liouville equation (3.6). In fact,
looking at (3.18) with (3.32) and (3.33), it is clear that the
fermionic part of #f is absent in the p =0 sector and that
the bosonic part is essentially the same as the Liouvillian:

Hl,—o=—iL . (3.39)

We can now use the generalized density functions
ﬁ(¢“ ¢4 to define ‘“‘expectation values” of observables
=4 (¢" %) which contain the ghosts:

(4),= [d¥pd*c A(¢%c)p(¢%c1) .

Writing g as in (3.36) and taking the explicit form of K
(3.30) into account, { 4 ), becomes

(3.40)

(4 >t=fd2”¢,-d2”ciA(¢§1(t;¢,~),C"(t;c,-,[¢cx]))
X plg%clt;) (3.41)

These equations illustrate once more that, depending on
the choice of A, all kinds of information about both
trajectories and Jacobi fields can be extracted from
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p(¢%c% 1. Another interesting class of observable is the
time-dependent correlation functions (for their physical
interpretation see, for instance, Parisi?®)

(A1) Ay(1y) - Ay(ty),
= [d¥pd>c A4,(4%c%t))
X Ay (¢%,c%1,) - Ay(g% ety g% ) .
(3.42)

Here Aj(¢",c“;t) denotes the time-evolved observables
and p(¢%c?) is some initial density distribution specified

J

<A1(t1)A2(t2) Tt AN(tN)>ﬁ

ZfdxeﬂhlAl(x;O)eVﬂﬂt'_

tz)Az(x;O)e
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at 1 =0. The equation of motion of the 4;’s is (3.27) (a
“Heisenberg-type” equation), which has the formal solu-
tion

A(D=e4(0)e 1 . (3.43)
We shall now derive a path-integral representation of the
correlation functions (3.42). Assuming that its time argu-
ments are ordered according to

t>1,> >ty >0 (3.44)
and using (3.43), we obtain
—iFH(ty—t5) . e“ij{“NflvtN)AN(x ;O)e_ii{tNﬁ(x) . (3.45)

We have introduced here the abbreviation x =(¢%c“. We may omit the operator exp(i#t,) from the RHS of (3.45)
since it is easy to show that, for any function G vanishing on 3/, , we have

fd2n¢d2nc eit]?G(¢a’ca):fd2n¢d2nc G(¢a’ca) .

(3.46)

(This expresses a kind of ““superprobability” conservation.) With the help of the time evolution kernel K, Eq. (3.45) can

be written as

N
CA(2) Ay(ty) - AN(tN))ﬁ==f TTdx, [ dxo A, (x;00K (x4 |x5,1,) A5 (x,;0)
1=1

XK (x5,t5|x5,23) -« K(xy_ sty —11xntn) An(x ;00K (X py,ty|%0,0)8(x) .

(3.47)

Each of the K’s has a path-integral representation of the form (3.28), but we can also combine the RHS of (3.47) into a
single path integral: this is well known in the quantum case'® and can easily be understood by looking at the discretized
form of the path integral presented in the Appendix. So (3.47) can be written in the continuum notation

N
(TA,(1)A,(85) - - Ay(ty) = [ D DA De DETT A4;(4(1;),c%(2;))p($%0), ¢ %(0) Jexp

j=1

The measures such as D¢ denote the integration over all
¢(t) including the end-point variables ¢(0) and ¢(z,,).
In writing down (3.48) we allowed for an arbitrary order-
ing of the time arguments ¢; (the largest of them is denot-
ed by t..,) because then, by the usual arguments, the
path integral computes the average of the time-ordered
product of the 4;. The main difference between (3.48)
and a quantum-mechanical path integral (apart from the
different time-evolution operators H for QM and # for
CM and the different measures) is that the time-evolution
kernels and observables are convoluted with only one
“wave function” g, whereas in QM one has a factor of ¢¥*
coming from the final state and a factor ¥ from the initial
state, respectively. This is another reflection of the sim-
ple fact that the QM analogue of 7 is a density matrix
3 ,.P.In){n|, and not a Hilbert space vector |n). We
will come back to these analogies in Ref. 12.

Similarly as in quantum field theory the correlation
functions (3.48) can be obtained taking derivatives of a
generating functional with respect to external currents.

i fot’““dtz ] : (3.48)

[

Coupling the fields to external sources through the La-

grangian L (the subscript s is for sources)
L, =T, (6)d%(1)+ A% ()L, (1)

+7q,(t)c(t)+T,(t)n(t) (3.49)

the generating functional is given by

Zﬁ[J,A,T],'r;]E<Texp ifowdt.Ls ]>ﬁ

= [ D¢ DL De DT p($(0),¢%(0))

xexp [i [ “dr(Z+L,) ] . (3.50)
Before closing this section we should mention an impor-
tant difference between the Lagrange and Hamilton for-
malism as far as the determinants in Egs. (2.7) and (3.10),
respectively, are concerned. In the Lagrangian version of
the classical path integral the determinant of 825 /8¢2 is a
highly nontrivial nonlocal functional of ¢ and, therefore,
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we need the ghosts to exponentiate this determinant. On
the other hand, the corresponding determinant in the
Hamiltonian version [see Eq. (3.10)] can be formally
proven to be equal to unity, i.e., independent of ¢. The
proof as follows:

det[d,5¢ — 3,9, H($)]
<exp {TrIn[8f —9, '0*d,0, H(¢)]}
(3.51)

=exp %fdt Tro%d.0,H |=1 .

The first equality in the third line of Eq. (3.51) is due to
the fact that the Green’s function of 9, is 6(¢) and that,
consequently, the power series of the logarithm ter-
minates after the first term. The second step follows from
the antisymmetry of . This proof indicates that we
could in principle omit the ghost sector in the Hamiltoni-
an formalism, because the determinant is 1. The reader
might then ask why we do not do so: the reason is that we
are interested in the dynamics of the ghosts because they
are the Jacobi fields and to study chaos!® we need to cal-
culate their correlation functions [see Eq. (2.22)]. To
determine these correlations we have to couple the ghosts
to external currents as we did in (3.49) and (3.50):

Z[J,A7,m1= [ Db DADe De pexp [z’fdt(,z+,£s)} .

(3.52)
Integrating out the ghosts in (3.52) we are left with
Z[J,A7,m]= [ Do DA p
Xexp |i [dt(Ly+J,4°+A%,
+aM " 'p) |, (3.53)

where £ p is the bosonic part of £ and M is the matrix
M(t,t')=(9,6; —w?d,0,H)8(¢t —1t') . (3.54)

So, even if the determinant of M is one, it is the matrix
M{(t —1t') that is nontrivial and that will give us nontrivi-
al information on the ghost (or Jacobi-field) correlations.

IV. THE ISp(2) ALGEBRA

In this section we discuss various BRS-type symmetries
of the action §'= [dr L with L given by (3.12). First of
all, it is easy to verify that S has the same kind of BRS
and anti-BRS invariance as its Lagrangian counterpart.
It is invariant under the BRS transformation

6¢°=e€c?, 6&c,=iel,, 6c?=8A,=0 (4.1)
and the anti-BRS transformation
8¢*= —ewc,, 8c’=iew™A, 6c,=8A,=0. (4.2)
They are generated by the charges

Q =ic’Ar,, Q=ic,0\, 4.3)

according to the rule
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58X =[eQ +&0,X] . 4.4)

[The graded commutator rules were given in Egs. (3.20)
and (3.21) but only in expectation value. So the commu-
tators below and all the following are intended in expec-
tation value.] Using the equations of motion
(3.13)-(3.16), it can be checked that the charges Q and 0
are conserved, and it is also easily seen that they com-
mute with #:

[0.7#1=[0,7]=0.

Moreover they anticommute among themselves and are
nilpotent:

[0,01=[0,01=[Q,0]=0.

Using (3.13)-(3.16) one can show that also the following
ghost bilinears are conserved:

4.5)

(4.6)

Q,=c%,, K=1lw,c%" K=lo",z, . .7
Here we introduced the inverse of ©?:
Wy =382 . (4.8)

Of course, the quantities (4.7) commute with the Hamil-
tonian [all the classical commutation relations that appear
in the following hold (modulo some =+i) also in the classi-
cal Poisson-brackets formalism of Egs. (3.23) and (3.24)]:

[Q,, H1=[K,H#]=[K,#]=0 . 4.9)

The charges (4.7) have the following commutators with
the ghosts

[Qg’ca]zca’ [Qg’Ealz_(‘_‘a ’
[K’ca]=0, [K)C_‘a]=cbwba ’
[K,c?]l=c,0%, [K,c,]1=0.

(4.10)

This identifies O, as the ghost charge operator; it assigns
ghost charge +1toc?and —1 to ¢,. On the other hand,
K and K act like a kind of charge-conjugation operator.
These charges have the following algebra among them-
selves:

[Qg’K]=2K’ [Qg’f]:_ZK-’ [K,E]:Qg . (4.11)

This is the Lie algebra of Sp(2). The commutators of Q
and Q with the new charges are

{Qg’Q]:+Q, [Qg!Q—]z_Q ’
[K,0]=0, [K,Q]=+Q,
[K,01=0, [K,Q0]=0.
These relations together with (4.11) make up the Lie alge-
bra of the inhomogeneous symplectic group ISp(2) (this
will become clear in the following). The above sym-
metries can be conveniently represented in a superspace

formalism. We combine the different fields of the theory
into the following real superfield:

D9(t,0,0)=¢+0c’(t)+ 0w®c, (1) +i00w™A, (1) .

(4.12)

(4.13)

In terms of ®“ the Hamiltonian and the Lagrangian, re-
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spectively, assume a remarkably simple form:

FH=i [dodOH(®) , (4.14)

L=i[d0do[10°%,d*—H(®)]. 4.15)
[In writing down (4.15) we have omitted a surface term.]
The ISp(2) generators can be represented by the super-
space differential operators

p=2_ §=—2 5 =52 90

8 3 (4.16)
k AZG—-: .

%30 *=%%8

They generate the ISp(2) transformations according to
P’=[Q,9°]=00°, 4.17)

where  is any of the operators Q,Q 0,,K, K. It can be
checked that the algebra of the Qs coincides with (4.11)
and (4.12). We observe that Qg, K and K leave the bilin-
ear 00 invariant. By definition, this means that they gen-
erate the group Sp(2). On the other hand, O and Q per-
form translations on 6 and 6:

0—0+e, 0>0—¢. (4.18)

This shows that the BRS and anti-BRS operators provide
the inhomogeneous part of ISp(2).

There is still another interesting representation of the
ISp(2) algebra. In Sec. III we introduced generalized den-
sity distributions p(¢? ¢ which do not only depend on a
point in phase space, but also on the ghosts. These func-
tions p provide a representation space for the operatorial
formulation of the theory defined by the path integral
(3.11). In this formulation, which is the analogue of the
quantum-mechanical Schrodinger picture, the momenta
A, and €, conjugate to ¢° and c9 respectively, are
represented by the differential operators —id, and 3/9c*
in order to satisfy the commutation relations (3.20) and

(3.21). Acting on the functions p(¢°c? the ISp(2) gen-
erators have the representation
~_d d
Q _—_caaa’ Q= " wabab’ Qg_ a 5ot ,
3 3 (4.19)
K =lo,c%b K=lo®——

> B¢ act

A general function g(¢% ¢°) has an expansion of the form

a .a - 1 (p)
P )—zﬁpal'“ap

p=0

(%)™ - (4.20)

Let us now consider “homogeneous forms of degree p,”
i.e., functions for which pi}’l), ..q_is nonzero only for one
. P

value of p:

a

p’p(¢“,c“)=;17p2"l"..ap(¢“)ca‘ e .21)

The action of the ISp(2) operators on such functions is
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0p,= abp(p)~- el e,
0p,= (pil)g e bl’fz"l)azn-apca2 e,
0,7, =pP, » (4.22)
Kﬁpz'i;lﬁ b,6,PE- ~-aPCblcb20a’ e,

We will soon return to these expressions and give them a
differential geometric interpretation.

We shall not treat here the physical state condition?!
and the cohomology problem associated with these BRS
operators but defer this to Ref. 22. The reason for not
discussing it here is that the problem is not trivial and
more on the line of the basic-cohomology formulation of
topological field theory.»?3 To attack this problem we
first need a further understanding of the differential
geometric structure of the operators (4.22) and of our
whole construction.

V. THE GHOSTS AS PHASE-SPACE
DIFFERENTIAL FORMS

In the following two sections we shall give an interpre-
tation of the five ISp(2) charges and relate them to more
familiar differential geometric objects. These charges are
universal, they are present in any dynamical system.
Hence, they should represent something we know al-
ready, but under a different name perhaps. Let us recall
our interpretation of the ghosts ¢%(?): they are the Jacobi
fields 8¢%), i.e., the infinitesimal displacement between
two classical trajectories. For the charge K, for example,
this correspondence reads

K =Ltw,c4t)cb(t) Lo, 8¢%()84°(1) . (5.1

The next point to be remembered is that the space of clas-
sical trajectories, which we will denote by 7, is in one-to-
one correspondence with the phase space J/,, (Ref. 24).
The origin of this correspondence is that to each classical
path we can associate that point in phase space from
which it starts. (Because the equations of motion are first
order, the initial point uniquely specifies the trajectory.)
Thus we have

P, . (5.2)

The Jacobi fields §¢°(¢) could be thought of as elements
of T*?, the cotangent bundle over 7. (Recall that the
Jacobi fields depend on the point in the “base space” P,
i.e., on the trajectory around which they describe small
fluctuations.) The correspondence (5.2) induces a similar
correspondence for the cotangent bundles:

T*PT*M,, . (5.3)

The relation 8¢%t)<>d$® between Jacobi fields and
differentials d¢“€ T ;M,, can be understood in the fol-
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lowing way. We know that the time evolution generated
by the Hamiltonian is a special canonical transformation,
i.e., a special symplectic diffeomorphism on J#,,. Usual-
ly this diffeomorphism is interpreted in an ‘“‘active” way
in the sense that a coordinate change corresponds to a
physical displacement of a particle. We also could look
at it in a “passive” way: we stay at a fixed point ¢ on J,,
and study how the time evolution manifests itself in the
cotangent space Ty M,,. It will map a basis dé®l,—o
used at ¢t =0 onto a new basis d¢*|, at ¢ >0 according to
the usual tensorial transformation law. We easily can
derive an evolution equation for d¢“|,; it is nothing else
than the Jacobi equation. Therefore we may identify
d¢®|, £8¢%(t) and d¢°|,—o=d¢". This shows that the
Jacobi fields 6¢¢ “grow” out of the differentials d¢® in
the course of the time evolution which establishes the
one-to-one correspondence (5.3). Because of this
identification we may now complete (5.1) as

K =10,,c(0)c Y1) Lo, 86%(1)84"(1)

logdd'NddP=w . (5.4)

What we obtained on the RHS of (5.4) is the symplectic
two-form w, which is known to be invariant under the
Hamiltonian flow.!° The same is true for all its exterior
powers o Aw A\ - -+ Aw (note that the exterior powers »*
give rise to the Poincaré-Cartan integral invariants), and
in particular for the phase-space volume form vol=w".
The conservation of the latter is the statement of the
well-known Liouville theorem. We conclude that the
conservation of K is a consequence of, or actually the
same thing as, the conservation of the symplectic two-
form. ‘

Above we identified the ghosts ¢? with the basis ele-
ments d¢? of the cotangent space. For this identification
to be possible we have to make sure, however, that ¢? and
d¢° transform in the same way under any symplectic
diffecomorphism of J,, (not just under time evolution).
It is easy to see that this is indeed the case. Let us con-
sider an arbitrary time-independent infinitesimal coordi-
nate transformation:

¢ra:¢a_sa(¢6) .

(We also could consider time-dependent transformations;
the only difference is the usual 3G /9t term in the trans-
formation of the Hamiltonian. In order for this transfor-
mation to be symplectic, i.e., to preserve w,,, the vector
field € has to be (at least locally) of the form

e (¢°)=wd,G(¢°)

(5.5)

(5.6)

with some generating function G. Equations (5.5) and
(5.6) imply that ¢ ¢ and w,,d,H transform like vectors.
Now we determine the transformation law of A,, ¢4 and
¢, in such a way that L of Eq. (3.12) behaves as a scalar.
It is easy to see that we must require

b ra éb
tII: ad) }‘b’ c'i= a¢b cb: E’a: 9 6[7 .
a¢ra a¢ a¢:a

We see that our theory is canonically covariant, as it
should be, if we transform A, and ¢, as 0/3¢“ and c“ as

A

(5.7
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This confirms the interpretation that the ghosts ¢ “live”
in cotangent space. Similarly, the antighosts ¢, behave
like elements of the tangent space.

Since in symplectic geometry the two-form w provides
a natural isomorphism between tangent and cotangent
space, it is clear that the conservation of K =lw,c%?"’
must have an analogue in tangent space. Obviously this
“dual Liouville theorem” is just the conservation of
K =1w%,c,. Now we have explained why there are the
universal charges K and K in any Hamiltonian system.
However, K and K being conserved implies that also their
commutator is conserved. In view of the relations (4.11)
this means that we automatically get a third conserved
charge, namely Q,. [In Ref. 7 Q, was identified with the
symplectic two-form w. In view of the analysis presented
here that is wrong. See, however, the parenthetical re-
mark before Eq. (6.19). It was also stated that the conser-
vation of Q, was essentially due to the Liouville theorem
(or the invariance of w) and that conclusion is basically
right.] This completes the discussion of the Sp(2) genera-
tors and we now turn to Q and Q.

VI. CARTAN CALCULUS WITH GHOSTS

The BRS operator Q is most easily understood in the
“Schrodinger-type” representation introduced in - Eq.
(4.19):

Q=c“,. (6.1)
If we again identify the ghosts with d $? we have
Q =c%,<>d¢’d,=d ; (6.2)

i.e., the BRS operator can be put in correspondence with
the exterior derivative on phase space. (Remember that,
contrary to the previous section, ¢® now denotes an an-
ticommuting number [the argument of p(¢%c?)] and not
a function of #.) Under this identification the function
Pp(¢%c? of Eq. (4.21) becomes an ordinary p-form on
phase space:

. 1 a a

pp(¢”):;pf,pl)...ap(¢“)d¢ A AdeT . 6.3)
Looking at the first of Eq. (4.22), we recognize that Q acts
on differential forms like the standard exterior derivative
d. We should note at this point that Q plays a remark-
able double role: first, according to the BRS transforma-
tions rules (4.1), it maps a classical trajectory ¢°(z) onto a
new classical trajectory ¢°+ec?t) by adding a Jacobi
field to it. In this sense it is a translation or derivative
operator on the infinite-dimensional space of classical tra-
jectories . Second, in Eq. (6.2) it appears as an ordinary
exterior derivative on phase space. Clearly these two
roles are reconciled by the identifications (5.2) and (5.3),
i.e., by tracing back all trajectories to their starting point.
This identification is certainly possible for integrable sys-
tems, but it might break down for nonintegrable systems.
In fact the correspondence (5.2) does not imply that the
topologies of the two spaces are the same. Let us
remember that the space 7 feels the dynamics through H,



40 HIDDEN BRS INVARIANCE IN CLASSICAL MECHANICS. II

while JMl,, does not. This will imply that also the homo-

logical and cohomological properties of the two spaces.

are different. So the cohomology of Q seen as an operator
in 7 will be different from the cohomology of Q seen as
an exterior derivative d on JM,,. This analysis will be re-
ported elsewhere.?!

The second equation of (4.22) suggests that the anti-
BRS operator Q is a kind of exterior coderivative. It
reduces the rank of the form by one unit and takes the
“‘divergence” with respect to the free index. In Rieman-
nian geometry this contraction would be performed with
the help of the Riemannian metric, which enters the
coderivative via the definition of the Hodge star operator.
In our case no Riemannian metric is available and the
contraction is done with the symplectic structure instead.
(In analogy with the Riemannian case one could be
tempted to define a Laplacian as the anticommutator of
Q and Q. This would yield m""aaa »» Which vanishes iden-
tically, however.) Returning to the relations (4.22) we ob-
serve that the ghost charge operator Q, simply counts
the rank of differential forms and that K is just a multipli-
cation of the respective form with the symplectic two-
form. Finally, K performs a kind of trace operation. It
reduces the rank of the form by two units and contracts
the free indices with .

In order to better understand why the BRS charge is
conserved, we recall that the time evolution of the gen-
eralized density functions p(¢%c?1t) is given by the
“Schrodinger-type” equation (3.37) with the Hamiltonian
F defined in (3.35). This Hamiltonian % has a very sim-
ple differential geometric interpretation. Introducing the
Hamiltonian vector field'°

h(¢°)= w3, H (¢°) (6.4)
we have
H=—il, , (6.5)
where
1,=h%,+c%d,h%) 9 (6.6)
oc?

is the Lie-derivative operator along the vector field A°.
In fact, applying [/, to an expansion such as (3.38), we find
the standard action of a Lie derivative on a covariant ten-
sor:

lhpizpl)“-ap:hbabp(fl)' "ap—l—aalhbp(a)2 e a,

+a,,2h”pg’l),,a3 gyt (6.7)
Hence, the evolution equation (3.37) for the generalized
densities can be written as

3pd). . (%= —1yp{). ..o (¢%1) . (6.8)
This equation is manifestly real. It says that the tensor
components of g are time evolved by Lie transporting
them along the Hamiltonian vector field A% This is a
consequence of the fact that, in classical mechanics, the
dynamics is implemented by a special coordinate trans-
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formation. Equation (6.8) is nothing but a rule for a
series of successive infinitesimal coordinate changes
parametrized by ¢. Note that in the p =0 sector Eq. (6.8)
reduces to the standard Liouville equation (3.6) since in
that case [, coincides with the Liouvillian £ =#99,. The
conservation of the BRS charge is easy to understand
now if we remember that the exterior derivative d com-
mutes with any Lie derivative. Since Q can be identified
with d and # with —il,, respectively, Q is then con-
served as a consequence of the well-known differential
geometric property that we mentioned above: [d,/]=0.
Recalling that /,0*>=0 for any Hamiltonian vector field
h, the conservation of Q=¢,©"d, can be understood
analogously.

In the above discussion we have represented the ISp(2)
generators by differential operators acting on functions
p(¢%¢c?, which we interpreted as (inhomogeneous)
differential forms. Returning to the analogy with quan-
tum mechanics, this kind of representation would be the
analogue of the Schrodinger picture. In the rest of this
section we describe the relation between the ISp(2) gen-
erators and standard differential geometry in what would
be the analogue of the ‘“Heisenberg picture.” We shall
not consider explicit realizations of ‘‘states” and their
transformation laws, but rather equal-time commutators
of certain composite operators. We start from the
geometric objects

v=v9,, a=a,d¢’

FP="F . qd¢" N - Nd™ (6.9)
yw=Lpt % A,
p! 1 4

Obviously, v is a vector, a a covector, F*) a general p
form, and V'? a completely antisymmetric contravariant
tensor. To these objects we associate operators according
to

F(P’————p|Fal a c?, (6.10)
1 a a
(p) — 1 - P
14 o1 1 "Cay 1 T,

Here the superscript caret means that we are dealing with
operators containing ghosts. Because of the basic rules
(3.20) and (3.21) the objects (6.10) have well-defined (grad-
ed) commutators among themselves and with the ISp(2)
generators (4.3) and (4.7). It turns out that all the tensor
manipulations on symplectic manifolds, sometimes re-
ferred to as the Cartan calculus, can be reformulated in
terms of such commutators. Let us give a few examples.
(For the reader not familiar with the terminology of sym-
plectic differential geometry we refer to Ref. 10 or 25 or,
for a compact review, to Appendix A of Ref. 26.) The
fact that Q acts like the exterior derivative d is now ex-
pressed by

[Q,F P 1=(dF"")" . (6.11)
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There is an analogous relation between Q and the an-
tisymmetric contravariant tensor fields:
ta

PE = ..
cacal

[0,V 7]=—"L o3,y T, . (6.12)
P. P

In particular for p =0, i.e., for functions, this reads
[0, f1=[(df)*]",

where we introduced the map # which associates a vector
field o to any one-form a (see Refs. 25 and 26) according
to

(6.13)

(ah)=w%a, . (6.14)

Furthermore we find that the interior contraction has the
representation

[0,F V)=, FP)" , [&PP]=0, /)"  (6.15)

with the following two types of interior contractions:

(p) — b
(WFP), oo =VFy,

p—1 '”ap~—1 ’

(6.16)

(1 Vo) =g,
The charges K and K can be used to express the
correspondence that exists in symplectic geometry?>2°
between vector fields and one-forms: they can be used to
transform vector fields into one-forms and vice versa (this
correspondence is a sort of analogue to the Riemannian
geometry operation of pulling indices up and down):
[K,D]=0w"", [K,&]=(aH)" . (6.17)
Here v’ denotes?® the form associated to the vector field n
or (in simple words) it indicates the lowering of indices
according to the rule

(v"), =, v (6.18)

The raising operation # has been defined already in (6.14).
Equation (6.17) again identifies K as the symplectic two-
form and K as its analogue in tangent space. [Going back
to Ref. 7 where we identified the Q, as the symplectic
two-form, we could interpret that result in the following
sense: let us interpret K as a one-form & with values in
the “forms.” Then inserting it in the second equation in
(6.17) and using the last equation in (4.11) we obtain that
the (a¥)” is nothing else than the ghost charge Q,. So we
can say the ghost charge (once interpreted as a vector
field with values in the forms) is the image of the sym-
plectic form K under the correspondence generated by
the map #.] Recalling the standard identity for the Lie
derivative,

I,=du,+u,d , (6.19)

and combining (6.11) with (6.16) we obtain the following
representation of the Lie derivative:

(L,FPHYN=[[Q,p],F?] . (6.20)

As an example let us look at the special case v =(dH)¥
corresponding to the Hamiltonian vector field
9=, H of (6.4):
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I&

(U g F P =[[Q,(dH*" 1, F P']

=[[Q,[0,H],F ] .

In the second line we used Eq. (6.13). It is a simple exer-
cise to check that

(dH

(6.21)

[Q,[Q,H]=i (6.22)
so that
(U g $FOON=[iF,F P] . (6.23)

This is in complete agreement with (6.5) where we had
identified I, with i#f. It is amusing to note that even the
Poisson brackets (PB) of the original (2n-dimensional)
phase space can be expressed in terms of our commuta-
tors. For any two functions f(¢“ and g(¢%), the PB is
given by

(£.g}=[I1f,QLK1[l[s, QLK 1K]1] .

Even if the RHS of (6.24) looks complicated, it is a
straightforward exercise, based upon the rules given
above and the definition of the PB (Ref. 26), to derive it.
This rewriting of the PB { , } in terms of a chain of clas-
sical commutators [, ] will be helpful, once we go over to
QM (Ref. 12), in better understanding the approach to
quantization based on the “deformation’”?’ of the Poisson
brackets into the quantum commutators.

To summarize the content of this section we can say
that, once the five basic operators Q,0,Q,,K,K are
given, all the Cartan calculus rules (interior products, Lie
derivative, etc.) reduce to simple commutators. But, on
the other side, the price to pay is that the Poisson brack-
ets become a complicated chain of commutators. This
might be anyhow a price worth paying if it helps in
throwing new light on the geometry of phase space.!>?’
With these remarks we have completed our discussion of
the ISp(2) charges and their geometrical meaning.

The reader might have realized that much of the dis-
cussion is very similar to Witten’s work on supersym-
metric quantum mechanics.® This theory has been used
to give proof of the (holomorphic) Morse inequalities?®
and of the Atiyah-Hirzebruch theorem,?’ for instance,
which heavily relied on the techniques developed for su-
persymmetric field theories. Apart from the fact that we
are doing classical mechanics, the main difference be-
tween Witten’s theory and ours is that supersymmetric
quantum mechanics “lives” on a Riemannian manifold,
whereas we are working on a symplectic manifold. Nev-
ertheless, in both cases the operatorial formalism derived
from a certain path integral turns out to be clearly relat-
ed to the standard (exterior) calculus on the respective
type of manifold. In our case anyhow this nice piece of
mathematics came out of a physical problem: namely, the
problem of rewriting classical mechanics using path in-
tegrals. We did not approach the problem the other way
around, as it is mostly done nowadays, by seeing which
piece of mathematics the path integral might simulate.

Before concluding let us remark that also Crnkovic
and Witten,?* and Zuckerman®* had noted that in any
variational problem there exists a universal conserved

(6.24)
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charge similar to our K. In a sense we have completed
their work finding four other universal charges that give
the full ISp(2) structure.

VII. CONCLUSIONS

In this paper we have described the general framework
of a path integral and operatorial approach to classical
Hamiltonian dynamics. Its basic ingredients are not only
the conventional density distribution over phase space,
but also a set of p-form fields reflecting the dynamics of

. the ghosts or, equivalently, of the Jacobi fields. So far we
have only presented the general ideas, but we have not
discussed the potential applications of the formalism.
Since these applications go in various different directions
they will be described separately elsewhere.

As mentioned already, the theory presented here is a
very natural framework to study chaotic phenomena in
Hamiltonian systems. The essential observation is that
the ghosts, and therefore also the p-form fields, contain
information about the behavior of nearby trajectories.
Further work will have to concentrate on how to extract
interesting observables from the path integral, such as the
Lyapunov exponents, the various entropies,'® and the or-
der parameters for the different degrees of ‘““chaoticity”
(ergodic, mixing, C systems, etc.). A first step in this
direction is contained in Ref. 14, where we use our for-
malism to algebraically characterize ergodic systems. To
do this we exploit the fact that, in addition to the ISp(2)
symmetry discussed here, .L is also invariant under a true
supersymmetry. Contrary to the ISp(2) generators, the
supersymmetry generators not only ‘“know” about the
geometry (and topology) of the phase space, but also
about the dynamics, i.e., they explicitly depend on the
Hamiltonian. It can be shown that ergodic systems have
this supersymmetry unbroken, while in KAM or integr-
able systems it is spontaneously broken.!* These hidden
symmetries help in completing the old program*® of alge-
braically characterizing the equilibrium states of a sys-
tem. The Kubo-Martin-Schwinger (KMS) nature of these
states is deeply related to the supersymmetry mentioned
above and this symmetry might be useful in unveiling the
real physical meaning of the KMS condition. There are
also indications that the abstract modular automor-
phism>® discussed in the algebraic approach to dynamical
systems is related to a simpler modular invariance mani-
fest in any classical systems once a proper reformulation
of the Lagrangian (in the spirit of the nonlinear sigma
model) is given.’!

Another interesting line of investigation has its origin
in the identity (6.22), showing that the Hamiltonian ¥ is
BRS exact. It can be shown?? that the Lagrangian . is a
pure BRS commutator as well. This means that our
theory might fall into the class of topological field
theories advocated by Witten.® It is in fact possible to
characterize various topological feature of Jil,, using this
path integral. To clearly set this problem, and to disen-
tangle the geometrical features from the dynamical ones
it is crucial to properly understand the cohomology of
the BRS operator Q. The space on which Q acts is the
infinite-dimensional space ? of classical trajectories and
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the study of its (co)homological properties is not an easy
task. Once completed?” it will give us information about
the topological properties of the correspondences (5.2)
and (5.3). This correspondence in turn will throw light
on the integrability of the system, and maybe it will allow
for an algebraic characterization of integrability similar
to the algebraic characterization of ergodicity.!* So it
seems that the tools we have developed in this paper
might be the right ones to address various interesting
questions related to the ergodic, KAM, or integrable na-
ture of dynamical systems.

Last but not least there is a relation between our for-
malism and quantum mechanics to be studied. We would
like to see if this path integral for classical mechanics can
provide some new understanding of quantum mechanics.
Of course, it is true that the ghosts were introduced to
suppress quantum fluctuations and that therefore they
seem to be superfluous in quantum mechanics. However,
we suspect that there also exists a quantum-mechanical
path integral generalizing the usual one, in the sense that
it describes not only scalar probability amplitudes but
also form-valued amplitudes. They would not be forms
on phase space but rather on the N-dimensional Lagrang-
ian submanifold'® introduced to quantize the theory. The
weight in this path integral would no longer be the Feyn-
man one but a generalization that allows the propagation
of higher forms. The old Feynman weight would be, with
respect to the new one, in the same relation as the Liou-
ville operator L is to the Hamiltonian #/. There are indi-
cations'? that this Feynman weight is still a Lie derivative
of the Hamiltonian flow but on a space different than the
phase space (that means the exterior derivative d would
be different, and so also the BRS charge and the sym-
metries of this weight). This space seems to be the
Grassmannian Lagrangian introduced in Ref. 10. The
new Feynman path integral will also be useful (contrary
to the usual one) to calculate geometrical features of this
Grassmannian Lagrangian. In fact, if the new weight is a
Lie derivative it can be put in the form of a BRS varia-
tion of something and so it will also fall into the class of
topological field theories. What is more important, an-
yhow, is that the formalism of Ref. 12 will help in under-
standing the different nature of the modular invariance
present in quantum mechanics with respect to the one of
classical mechanics:3! this difference seems to be at the
heart of quantum mechanics.
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APPENDIX

In this appendix we present a discretized version of
Egs. (3.10) and (3.11) and analyze various associated
problems. Let us start from Eq. (3.10); in an obvious no-
tation, its discretized version reads
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8[¢°—oal= T18[¢°())—da(j;°(0N]
ji=1
=115 | &2 '_IA)“ () —w"”abH(j)] ’ 'fag—w“bacabzﬂj) ‘
j=1
_ g . U G—=1D—=¢%) .
=TIdA,(j)dc™j)de,(jlexp |iA,(j) A @, H(j)
j=1
+,(j) %SZ(C”U—1)—cb(j))—w"caca,,H(j)cb(j)}) . (A1)
f
We divide the interval of time in m intervals of length A _ _ . = ]
and label the instants of time with j=0,...,N. It is Zem fi)qﬁi)k:l)c e exp ’fdt"[
clear that upon inserting this expression into the generat- X N(AO), ¢ (0),7(0)) . (A5)

ing functional (3.11), we obtain a path integral of the
form

Zey= [ DODAD'  D'e T [g(0), A1), c(0),8(D)] .
(A2)

From now on we will omit the indices on ¢, A, ¢, and C.
The symbol 2 indicates that the integration over the ini-
tial points for A(0),c (0),¢(0) is missing:

DA=T1dA)), D'e=]]dc(j),D'c=][]dc(j) .

j=1 i=1 i=1

The integrand I is a function of the initial #(0) and a
functional of ¢(¢),A(t),c(¢),€(2). Having one integration
missing for A,c,T, it will be hard to figure out how to go
to the continuum limit in the measure of (A2). Moreover
it will be difficult to study the symmetries present in Zqy
because the measure D¢ and the measure D'¢p D'c D' do
not appear on a completely equal footing: there is one in-
tegration less in A,c,C than in ¢. In particular, if we have
a symmetry (such as Q or Q) that mixes ¢ with ¢, it would
be desirable to have a more symmetric measure. A solu-
tion to this problem might be the following: insert in
(A2) a function N(A(0),c (0),¢(0)) such that

fdk(O)dc(O)dE(O)N(k(O),c(O),E(O))=1 . (A3)
Then Zy, in (A2) could be rewritten as
Zew= [ Do DA De De THOV[4,1,c,7]
XN (A(0),¢(0),2(0)) . (A4)

In (A4) the measure is perfectly matched now between
¢,A,c,C. It will not be a problem to go to the continuum

limit. It yields
T#OI[g A c,z] <exp [i [dr Z ]

so that (A4) becomes

[It might be that in choosing a midpoint slicing in (A1),
in order to go to a perfect continuum limit the N function
gets changed by further surface terms, but this is not im-
portant here. What is important is that a surface terms
has to survive to guarantee a nonzero Zgy, (see the dis-
cussion below).] At first sight the function N in the in-
tegrand of (AS) seems to spoil the beauty of the path-
integral representation of Zgy. However, there is a sim-
ple reason why this function has to be there: the path in-
tegral (AS) without N would vanish because of the zero
modes of the kinetic operator of the ghosts. To see this
we expand the ghost ¢ (#) in terms of eigenfunctions of its
kinetic operator:

ia, \t
C(t):ze ””C(n) N
(n)
where

(3,8 —0™d.0,H)cl, =a,cl, - (A6)

Thus the path integral (AS5) without the N function be-
comes

Zoy= ffD(ﬁ DA exp

ifdthB]

X fdcm)d% IT de(ydeye ™, (A7)
n=1

where
’ZB :ka(¢a_wababH)

and where ¢ is the zero mode: ;) =0. We assume
that there exists only one of these zero modes. This func-
tional integral is clearly zero because the c (o, factor is not
contained in the integrand and so performing the integra-
tion over c(g) we would get [dc,=0. If, instead, we
had used the Zy; with the N function inserted, we would
have had



I8

Zoy= [ Do D1 exp

n=1

and here the ¢ (g, integration is not zero because c g,
and €, are also contained in the N function. So the
function N has the role of regulating the zero modes. In-
serting Eq. (A3) into Zy, is analogous to the usual trick3?
of treating the zero modes by inserting a ‘“‘gauge fixing”
of the symmetry associated and the corresponding
Faddeev-Popov term. The arbitrariness we have in N [in
(A5) we can insert any function that satisfies (A3)] is the
same arbitrariness we have in choosing the “gauge fixing”
for the zero modes. In the actual applications of the path
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iC(,a,c(n

ifZB ]fdf(mdc(m I1 dcmdeine
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) o0 0
N (AMO0),cpF 3 cnpCion T X Timy (A8B)

n=1 n=1

integral we can choose N as part of the source coupling
exp(iflﬁs) where L is given in Eq. (3.49). This term
contains A(0), ¢(0), and ¢ (0) and so it acts like the N
function above. That is the reason why in Eq. (3.11) we
did not put any N function. We can conclude then by
saying that coupling the ghosts and A to external currents
enables us to have a perfectly symmetric measure, and a
nonvanishing Zcy. Besides this, the coupling is also
essential if we want to calculate ghost-ghost correlations
which are the central elements necessary to detect chaos.
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