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To illustrate gravitational effects on the dynamics of a quantized field, the spectrum of excited
states available to a linear scalar field in de Sitter space is examined in detail. Explicit Schrodinger-
picture wave functionals are obtained for the excitation-number eigenstates of the familiar Fock-
space description. The field energies of these states are calculated from expectation values of the ap-
propriate Hamiltonian. The Euclidean vacuum state is seen to be the lowest-energy de Sitter-
invariant state, although for any massive or nonconformally coupled field instantaneous Hamiltoni-
an diagonalization, breaking de Sitter invariance, yields states of lower energy. All other de Sitter-
invariant vacua are characterized by uniform excitation, relative to the Euclidean vacuum, in all

field modes. Associated with any vacuum state is a Fock-space basis of excited states. These have

field energies in integral increments above the vacuum; i.e., they represent the quantized excitations
of the field s normal modes. The energy increments —the (renormalization-independent) energies of
individual "particles" —differ markedly from the classical normal-mode frequencies of the field.

For fields with combined mass and curvature coupling above a certain threshold, "particle" energies
oscillate at late and early times rather than approach a fixed limit; for fields with strong curvature

coupling these energies can even become negative. They show exponential rather than oscillatory
time dependence if the combined mass and curvature coupling is below the threshold. Excitation
energies of a massless, conformally coupled field have the same time dependence as the energy of a
classical relativistic particle, but for other fields with the same mass-curvature-coupling sum, "par-
ticle" energies have an amplified component, which grows as the radius of the space. The interac-
tion between a field in an excited state and a monopole "detector" is also calculated: Each excitation

gives, above the vacuum signal, a finite response with a finite width in energy. These effects on "par-
ticle" energies and interactions are due to modulation of the field normal modes in a time-dependent

spacetime metric, so similar effects should occur in general spacetimes.

I. INTRODUCTION

Most work on quantum field theory in curved space-
time concerns vacuum states of the fields. Phenomena
such as inflation' and black-hole evaporation, conse-
quences of curved-spacetime quantum field physics, are
associated with fields in a vacuum state. But in ordinary
quantum mechanics the dynamics of a system lies in the
totality of states accessible to it, and in the transitions
which the system can undergo between those states.
Hence, this work examines the array of states available to
a curved-spacetime quantized field. It treats a particular
example, that of a linear (free) real scalar field in de'Sitter
space.

de Sitter-space scalar field theory is a convenient and
useful example. After Aat-spacetime theory it is the sirn-
plest and best studied quantum Geld theory, and it is of
physical interest in connection with inAationary cosmo-
logical models.

Field states are characterized here in several ways.
The Fock-state description in terms of creation operators
applied to a vacuum state is well known. Explicit wave
functionals for the states are obtained as well, utilizing
the covariant functional Schrodinger formalism. ' The
expectation values of the appropriate Hamiltonian serve
to classify states as energy levels. Finally, states are
characterized by the response they induce in an idealized

monopole "detector" coupled linearly to the field, an ex-
ample of the quantum dynamics associated with field in-
teractions. Each of these attributes of the Geld states ex-
hibits distinct features arising from spacetime geometry,
i.e., gravitational effects upon the field physics.

This paper is organized as follows. Section II contains
the particulars of de Sitter-space scalar field theory, giv-
ing the notation and formalism to be used. In Sec. III
this formalism is used to construct Fock-space bases of
quantum states for the field; wave functionals, number-
eigenstate descriptions, and energy levels for these states
are calculated. The vacuum states from these bases are
examined in Sec. IV, and their descriptions here are relat-
ed to features of de Sitter-space vacua found in previous
works. The excited states are treated in Sec. V. Sec-
tion VI treats "detector responses" to the field in these
states. Section VII is a summary and discussion of the re-
sults.

Units with A'=c = 1 are used throughout. Sign conven-
tions and general notation follow those of Misner,
Thorne, and Wheeler.

II. de SITTER-SPACE SCALAR FIELD THEORY

A. Spacetime geometry

de Sitter space, of %+1 dimensions for generality, is
the fixed background for the field theory. Coordinates
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ds = d—t +a cosh (t/a)dQ)v

=a sec r/( d—r/ +dQ&), (2.1a)

with closed spatial sections will be used, covering the
complete de Sitter manifold. Thus the metric is

(A, —
—,'+A,)+1)!P (Q )=

j=1 j Y j+1).

X( stng )(j+1 %)/2P j+1
( g )J A, .—(1/2) j

where a is a positive constant and d 0& is the line element
of the unit ¹phere. Comoving-observer proper time
t E ( —oo, + co ) and conformal time r/ E ( —1r /2, + rr /2)
are related by

with

cos(mP)
X [~(1+v,)]-(/2 (2.6a)

t/a dQ
'9—= = arctan[ sinh(t/a)] .

o cosh u
(2.1b) 2

(2.6b)

The spatial coordinates are the angles
Q~:—[0„.. . , 8)v „(I)I, with 8, E[0,rt] for each i and
Pe [0,2~).

I:—l, ~ l2 ~ & I~, & I~ =m ~ 0, (2.6c)

B. Scalar field theory

The field is a rea1 scalar y with no explicit nongravita-
tional couplings. The theory is defined by the Lagrangian
density

the integers l„.. . , /~ (plus an index I =+ for the cosine
or sine choice) constituting the set L. The P's are associ-
ated Legendre functions of the first kind. Real harmonics
are chosen for convenience. These PL constitute a com-
plete, orthonorma1 set on the X-sphere. The number of
harmonics with a given I value is'

D~ l = (2l +N —1)(l +N —2)!
(N —1 )!/!

,'(V f V F—+—/j (Ij ) .

The corresponding classical field equation is

(2.2)
2A, [A, +(N —3)/2]!

(N —1)![A,—(N —1)/2]!
(2.7)

(&—p')y =0, (2.3)

with the covariant d'Alembertian in de Sitter space.
The constant

with X=A.„i.e., this is the degeneracy of modes with to-
ta1 angular momentum I.

The functions yL are solutions of the differential equa-
tion

(2.4)
with

d d+—tanh(t/a) +coL(t) yL(t) =0,
dt dt

1/2

(2.8a)

is the sum of mass (/to) and curvature-coupling (gR) con-
tributions, with /=0 for minimal and g=, (N —1)/(4N)
for conformal coupling.

Canonical quantization of the field is represented in
terms of an expansion in normal-mode solutions of Eq.
(2.3). That equation is readily solved by separation of
variables; the desired expansion may be written

cot (t)=— /t, +
a cosh ( t /a )

(2.8b)

i cosh (t/a) yt yL =1 .

satisfying the "positive frequency" normalization condi-
tion

They too can be given explicitly in terms of associated
Legendre functions of the first kind:

1/2

(/)(t, Q)v ) =a g[bLyL, (t)PL(Q~)+ H. c. ] .
L

(2.5)

a ~/2
sinh( vrqa )

cosh (t /a)y, (t)=

X I
K(L+ 'Pg '~(;/2)[ tanh( t /a ) ]

+I('I 'Pz '(;/z)[ tanh(t/a)]I, (2.10a)

with
1/2

Nq:— p (2.10b)

and A, =A,
1 as above. The coefficients ~z—' are c numbers,

obeying ~)rL+'~ —~v'L '~ =1 (for positive real q) or

Here (/L is a spherical harmonic in N dimensions, with L
denoting the complete set of N angular-momentum quan-
tum numbers, and yL is a complex, "positive frequency"
solution of the separated field equation. These functions
are detailed below. The amplitude operators bL satisfy
[bL, bt. ]=5LL., etc., implementing the canonical commu-
tation relations.

The harmonics PL are eigenfunctions of the Laplacian
on the unit N-sphere, with eigenvalues L= —/(l +N—
—1), where l is any non-negative integer. ' Their form
may be found by successive separation of that eigenvalue
equation, yielding
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yL, (&)=yL(0)fL"(g)+ayL (0)fl '(g) . (2.11)

The real functions fI"' and fL( ', functions of conformal
time for convenience, are solutions of the differential
equation

21m(~L(+))(I( '*)=+1 [for imaginary q, with the sign that
of sin(niqa)] in consequence of condition (2.9). A choice
of ~1—' values effects a choice of positive-frequency nor-
mal modes. Thus that mode choice involves one complex
parameter per mode, the overall phase being immaterial.
Equivalently, any choice of yl is completely (up to a
phase) determined by, e.g., the value of gl (0)/yl (0),
where the overdot denotes the derivative with respect to
t.

It is also useful to express the g~ in terms of real solu-
tions of the separated field equation. They can be written

tinct from the ~1(
+—' of Eq. (2.10a), normalized via

i H(t) %—[tp(Q)(t ), t]=0,a
Bt

(2.16a)

C. Functional Schrodinger formalism

In the functional Schrodinger formalism ' quantum
states of the field are represented by explicit wave func-
tionals, giving probability amplitudes for the values of a
complete set of commuting observables for the theory.
The values of the field on a constant-time hypersurface
constitute such a set, giving a "field-coordinate" repre-
sentation. The evolution of any wave functional from
one hypersurface to another is described by the function-
al Schrodinger equation

cE +(N —1) tang +$1 (g) fl' '(g) =0, (2.12a)
4'g

or equivalently

with

coL (g)=a cosh(t/a)coL (t)=(L +(M sec g)'~

satisfying the initial conditions

gf (i)

f,"'(0)=1 and (0)=0
BYE

and

~f (2)

fL '(0) =0 and (0)= 1 .
dn

(2.12b)

(2.13a)

(2.13b)

i —H(g) %[tp(Q))t ),g] =0 .
an

(2.16b)

or

That is, the field Hamiltonian H generates evolution in
proper time t, as does the Hamiltonian H=a cosh(t/a)H
in conformal time g.

The appropriate Hamiltonian operators are obtained
from integrals over a constant-time hypersurface of the
field energy density:

H(t)= J dA))ia cosh (t/a)~g«~ '~ T«(2.17a)

They can be given explicitly in terms of hypergeometric
functions:

H(g)= J dQ)va sec g~)g„„~
' T„„, (2.17b)

f ('g ) —cos +

k+ —,
' +iqa —A, +—,'+iqa
2

' 2 '2'; sin 'g T p=V pV~+g pX, (2.18)

where dQ~ is the volume element on the unit ¹phere.
The energy densities are components of the canonicaI
stress-energy tensor

and

(2.14a) with X from Eq. (2.2). The forms of H and H as func-
tional differential operators follow from the replacements

fl( '(g)=cos ~ +'i'gsing

+23+/qa A+32+Eqa 3
7 g and

II=V,q =ig„)g
~

5
6q)( Q~ )

(2.19a)

(2.14b)

a
yL, (&)=

2A,
cosh" ' (t/a)

X(k(+) —ikey(t)+k( —) +inst)(t))8 8 7 (2.15)

with g(t) the function (2.1b) and the coefficients kL
—', dis-

with q and A, as above.
For a massless, conformally coupled field or any other

with the same )M value, viz. , )M =(N 1)/(4a ), the gl-
take a simple form obtained via the conformal invariance
of the field equation. In such a case they are

1/2

(2.19b)

where g is the determinant of the metric as given by the
first line of Eq. (2.1a) and g that of the second line. These
implement the canonical commutation relations between
the conjugate momentum II or H and the field y in the
field-coordinate representation. The field operators and
their spatial derivatives (which commute with all the field
operators on a constant-time hypersurface) are replaced
by their values.

These Hamiltonians take more useful forms in terms of
a normal-mode expansion. If the field on a constant-time
hypersurface is expanded in spherical harmonics, thus
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q (n ) =a" ~'"y y, V,(n„);
L

(2.20)

the amplitudes yL constitute a complete set of cornmut-
ing observables for the theory, equivalent to the field
values themselves. Using the corresponding expansion
for the spatial derivatives of p and with 5/5y
transformed via the chain rule, the Hamiltonians can be
written

H(t)=g sech (tla)N

2a

+—cosh (t/a)cot (t)yL (2.21a)

and

52
H(2) ) =g ——cos 'g +—sec '2)coL (ri)yL2

2

G[Iyi] n Ixi] o]
= ~[2~if,"&(~)j-'"

L

df (2)Xexp, y~ (g) sec
d2)

+xl fL (g) 2yLxz

(2.23)

(2.21b)

where coL and co& are given by Eqs. (2.8b) and (2.12b), re-
spectively.

A general solution of this functional Schrodinger equa-
tion can be given, in the form of a propagator. " The
propagator 6[y„gi,gp rip] the amplitude for evolution
from field configuration po on the g=go hypersurface to
configuration q& at g=g&, is given by the field path in-
tegral

G [q ]t iirqpt Qp]

iS[4]

=f exp i f drif dQ&(a sec&) +'X 2)y, (2.22)
IO

where the action integral is taken over the spacetime re-
gion between the g=qo and g& hypersurfaces, and the
functional integral is over all fields in that region taking
configuration yo on the initial hypersurface and
configuration y& on the final one. Since the action is
quadratic in the field, the path integral can be evaluated
exactly in terms of the action for the classical field with
the given boundary conditions. ' The result is con-
veniently expressed as a function of normal-mode arnpli-
tudes as in Eq. (2.20): With yp thus expanded with
coe%cients xL, and y& likewise with coeScients yI, and
with go=0 for simplicity, the propagator takes the form

from any initial values 4[ IxL I,O].
The canonical Hamiltonian H differs, in general, from

the field energy obtained from the grauitational stress-
energy tensor which appears in the Einstein field equa-
tions. That tensor, obtained by variation of the field ac-
tion with respect to metric, is'

T'~& =(1—2g)a qa~
+(2k ,')g.pg—"—~,q~.q ,'g.ti p—q'—

+2gq&(g &Uq& V' B~+—,'G &y),— (2.25)

with 6 & the Einstein curvature tensor. The "gravita-
tional Hamiltonian" obtained using this in the integral
(2.17a), with the same operator implementations as for H,
is

H's'(t)=H(t) g—cosh (tla)yt

+i tanh(t/a)

5 5X yL +
5yL 5yL

(2.26)
where the factor ordering of the last two terms is chosen
to give a Herrnitian operator. The gravitational and
canonical operators coincide only for minimally coupled
fields. ("Gravitational" here refers to the gravitational
stress-energy tensor; both H and H' ' neglect the gravita-
tional self-energy of the field, necessarily since the space-
time geometry is fixed. ) In any case, however, the canon-
ical Hamiltonian is the correct time-evolution operator
for use in the functional Schrodinger equation, ' ' as is
evident since the path integral (2.22) solves that equation
with Hamiltonian H, not H' '.

The functional Schrodinger description of the theory
and the canonical operator formulation are, of course,
equivalent. The canonical amplitude operators bL can be
expressed as functional differential operators by inverting
expansion (2.5), via a Klein-Gordon inner product, and
using replacement (2.19a) and expansion (2.20) to obtain"

bL = ia' cosh—(t/a)yI (t)yL +a '
yL (t) 5

5yL

(2.27)
This form satisfies the appropriate commutation rela-
tions, as may be seen directly. Conversely, the Hamil-
tonians can be written in terms of the canonical expan-
sion, e.g.,

where fL,"and fz ' are as given by Eqs. (2.14). That this
is the desired propagator may be seen directly, as it solves
Eqs. (2.16) with Hamiltonians (2.21), and reduces in the
limit g~O to a product of delta functions in yL

—xI.
Any solution of the functional Schrodinger equation can
be obtained through

+[IyLI n]= fG[IyL] n lc']0,]+[I I o] gd
L

(2.24)
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H (t)= g (bLbL+bLbL) yLyL+ (yLyL+yLyL) tanh(t/a)+ coL—
cosh (t/a) 2%/ 2Xg

2 a a

4S( 2+bL y L+ tanh(t/a)yLyL+
a

2N(
XLa

4St
+bL yL + tanh(t/a)yLy L+

a
(2.28)

while H is written as the specialization of this to (=0 (with p fixed), and H similarly.

III. QUANTUM-STATE SPECTRA

Sets of wave functionals spanning the Pock spaces of states available to the field can be obtained by specifying con-
venient bases on, say, the t =g=O hypersurface, and using formula (2.24). Vacuum-state wave functionals are products
of Gaussians in the field normal-mode amplitudes; ' ""' this suggests the ansatz

%(„)[Ix I,O]= +g„(x,O)= +
L L

ReyL
1/4

(2 nL!) ' H„[(ReyL)' xL]exp( —
—,'yLxL) (3.1)

for initial wave functionals. Here the H„are Hermite polynomials (not to be confused with the Hamiltonian H), and
L

the yL are arbitrary c numbers with positive real parts. %'ith the nL ranging over all non-negative integers, these func-
tionals form an orthonormal set, complete on a made-by-mode basis. The propagator (2.23) yields the corresponding
set of wave functionals at all times:

ReyL
+! )[[yL I )]= H 4., (yL ))= IIL

1/4
~( )

nL/2

g
—1/2( ) (2"L11 1)

—1/2
L 9 g ( )

+L'

XH„[hL '(rI)yL] expI ,'[bL(rt) —i—AL(2))]y—L I, (3.2a)

with

and

ReyL
bL (21 )

(3.2b)

(3.2c) y L(0)
yI = —ia

yL(0)
(3.4)

where the mode label L is suppressed. The particular
choice of initial width

sec '2) [~gL(7))~ ]N —1

L (3.2d)

g —1/2[ ~ 1/2 N ~ e+ —1/2~+(g ~ g)]

The indices nL are constants of the wave-functional evo-
lution.

The wave functionals VI„ I
correspond to Fock-space

L
number eigenstates, with the choice of initial widths yL
equivalent to the choice of positive-frequency modes.
The action of an operator bL on the single-mode wave
function P„ is, from form (2.27) and the Hermite-

L

polynomial recursion relations,

given the positive-frequency function gL, or equivalently,
the choice of yL thus defined, given yL, implies
gL/gL(0)=gL. With this Eq. (3.3) can be reduced, us-
ing condition (2.9) and the Wronskian relation for Eq.
(2.12a), to b1t/„=n' f„„rpvoided only that gL(0) is
real (as may be assumed without loss of generality). The
choice (3.4) similarly implies b g„=(n +1)' f„+1. The
relations b tb p„=n 1t/„and g„=( n! )

'/ b t"p„, character-
izing number eigenstates, then follow.

The field energies of the states described by the O'I„
IL

can be measured by the expectation values of H' ' in
those states. These may be calculated directly, using the
operators (2.26) and (2.21a):

(H'g')!„!= J %(„)H'g'11/!„)+ dyL
L

H„,+2nH„. . . nH„

n H„
= g (nL+ —,

' )COL(1+O.L ), (3.5a)

(3.3) with
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(~7)L sec '2) —AL) +b, I
26LQI sec

+ (2b, t tang —sec '21);NE

51 COL

(3.5b)

the same result is obtained from form (2.28), using mode
choice (3.4) and the associated number-eigenstate proper-
ties. These expectation values are, of course, infinite, and
a subtraction procedure is required to extract meaningful
energies from them. This is treated further in Secs. IV
and V below.

The wave functionals 'PI„
I

are not in general eigen-
L

functions of the gravitational or canonical Hamiltonians.
Except in one case, they can at most be chosen to be ei-
ther (not both) at a particular instant, efFecting "instan-
taneous Hamiltonian diagonalization. "' The diagonali-
zation of H' ', at time tD or gD, is achieved via the
positive-frequency-mode choice defined by

replacing vL, and can be achieved for any field with p )0.
But none of these diagonalization conditions is preserved
by Eq. (2.8a) or (2.12a)—no single positive-frequency-
mode choice or wave-functional choice diagonalizes any
of the Hamiltonians for any interval of time —unless the
field is massless and conformally coupled, in which case
the +I„ I

with yL =X are always eigenfunctions of H' '.

IV. VACUUM STATES

The WI„~ with nr =0 for all modes I. describe ostensi-

ble vacuum states of the field. These include the one-
parameter family of de Sitter-space vacua found in the
literature, and more: They form an infinite-complex-
parameter family, each defined by a choice of yl for each
mode. Invariance requirements, however, restrict the
range of suitable vacuum states. The vacua can also be
ordered by energy using result (3.5), in accord with the
Oat-spacetime notion of the vacuum as lowest-energy
state.

XL(tD ) ~vL(tD )XL(tD )

with

(3.6a)

A. de Sitter invariance

vL(tD) =+ coL(tD)—2NQ

a

1/2
4N g tanh ( tD /a )

a

i tan—h(tD la),. 2N
(3.6b)

as follows from form (2.28). For the corresponding eigen-
functions this implies

dgL
( ID) +tvL( JD)QL( tD)

dt's

hence

(3.7a)

dy(()

(D)—
dy (2)

de

&v +y())

t v +y(2)
(3.7b)

boa +N (N —1)g 1 — tanh (tD /a)

+L sech (tD la) )0 . (3.8)

If this inequality is violated H'g'(tD) cannot be diagonal-
ized by Fock-space number eigenstates. It is satisfied,
however, by fields with any positive mass and any curva-
ture coupling between the minimal and conformal values
inclusively, for all modes at any time. When it is
satisfied, condition (3.6) or (3.7) also minimizes
(H'g')(„)(tD) on a mode-by-mode basis. The instan-

taneous diagonalization of H and H is efFected by condi-
tions such as (3.6) and (3.7), with coL replacing vI and coL

with vL (g22)—:a cosh(t2) /a)vI (tD ), and conversely. Con-
ditions (3.6) define functions satisfying Eq. (2.9)—
equivalently, the yI ' have positive real parts —only if
the argument of the square root in Eq. (3.6b) is positive,
requiring

Requiring invariance under the de Sitter group imposes
several restrictions on the choice of vacuum state. In-
variance under the proper or connected de Sitter group
entails invariance under the subgroup SO(N+ I) of spa-
tial rotations, and under boosts (i.e., transformations
equivalent to boosts in the higher-dimensional Min-
kowski space in which the de Sitter space may be embed-
ded as a timelike hyperboloid). Invariance under the full
de Sitter group requires, in addition, invariance under the
discrete transformations .spatial (parity) inversion and
time reversal ~

The wave functional of a rotationally invariant vacuum
must assign the same probability to field configurations,
on any constant-time hypersurface, related by a rotation.
This is equivalent to the condition

'VL =XI (4.1)

for all I., i.e., the width of the wave functional in each
mode must depend only on the mode's total angular
momentum. Then the wave functional depends on the
field only through sums of yl over modes with the same l
value. Since such modes give rise to irreducible, unitary
representations of the rotation group, these sums are ro-
tationally invariant.

The requirement of boost invariance, in addition to ro-
tational invariance, restricts the range of vacuum states
to a one-complex-parameter family. A boost tilts the
constant-time surfaces; equivalently, boosted field
configurations on fixed hypersurfaces are linear combina-
tions of configurations of the field and its time deriva-
tives. Thus eigenkets of an infinitesimally boosted field
are eigenkets of a linear combination of the original field
and its conjugate momentum operator. The correspond-
ing change in the wave functional i.e., the difference be-
tween the projection of the state on these and its projec-
tion on the original field eigenkets, is given by the opera-
tion of a boost generator on the state. This must be zero
for boost-invariant states. Such a generator is obtained
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X (cos'g cosOi5 sin'q sin&i5s ) (4.2)

from an integral analogous to those in Eqs. (2.17) for the
generators of time translations. The generator of a boost
in the direction of the 0I polar axis is

M(q)= f10&(a seep) 'T„

The vector in the last set of parentheses in the integrand
is the generator on the spacetime of boosts in the desired
direction. The canonical stress-energy tensor (2.18) is
used; thus M has the appropriate commutation relations
with the field. Using the formalism of Sec. II C and the
properties of the PL from Eq. (2.6a), M can be written

2

I /2

l+N — l +N —2
2 2 2

2
1I+—

2 4

cos Yf
N

&y~ &y, +
+ —,

' cos il(co L +co + N)yL—y

6+i sing IyL
5y~ +

6—(l+N)y +L gy
(4.3)

+i sing[/I, , —(1 +N)l, ]=0 (4.4)

for all l. Here I I denotes 6& —ih&, and the notation
rejects the dependence of col, b,L, and hl on I alone.
The functions A,

&
satisfy

with L =Ii+1,l2, . . . , I&,II, given L =II, lz, . . . ,
l&,I). The invariance condition M+(o) =0, for a vacuum
satisfying the rotational-invariance condition (4.1), is
equivalent to

,(rI):cos. rII,—1', +, ,'cos —g—(coi+ai t+, —N)

Imposing time-reversal invariance, as well as rotational
and boost invariance, reduces the range of vacua to a
one-real-parameter family. The wave functional of a
time-reversal-invariant vacuum must satisfy

(Q)[ Iyt I, il] =%(o) [ IyL I, —g] for all i). This is
equivalent to the condition yl =yL for all modes, i.e.,
the initial widths defining the state must be real.

The Chernikov-Tagirov or Euclidean vacuum has a
wave functional OIo» characterized by the initial widths"

—,'+ A, +iqa —,'+ A,
—iqar I

deaf I
i cos —'g( I &+ I'&+, )sk&

dt's
(4.5) —+A,

—
LCJa —+1,+ i/a

I r
(4.7)

and hence vanish at all g if and only if they vanish at
i) =0. Condition (4.4) is thus equivalent to

y, y&+, =l(1+N)+IJ, a = l+ — +q a (4.6)2 2

for all l. (This is the boost-invariance condition obtained
by Burges, expressed in the notation used here. With
the representations of de Sitter-group generators ap-
propriate to the coordinate system used here, subtrac-
tions such as those used by Floreanini, Hill, and Jackiw'
are not needed, and the associated phases, i.e., generator
eigenvalues, do not appear. ) Rotational invariance plus
invariance under boosts in one direction are equivalent to
invariance under all boosts. Any rotation- and boost-
invariant vacuum is characterized by conditions (4.1) and
(4.6), and completely determined by the choice of a single

yL, for any mode.
Requiring spatial-inversion invariance imposes no con-

straints on the choice of vacuum. The spherical harmon-
ics (2.6a) are eigenfunctions of the parity-inversion trans-
formation 0;~m. —0;, for i from 1 to X —1, and
P~P+ir, with eigenvalues ( —1). Hence, the inversion
of a field configuration with mode amplitudes yL has am-
plitudes ( —1)'yL. All the vacuum wave functionals %(0)
are invariant under this transformation.

e
—iqt

lim [ cosh (t/a)yL'"'(t)]-
)~—oo (2q)'

These are given by Eq. (2.10a), with coefficients

(4.8)

with A, and q as in Sec. II B. These satisfy conditions (4.1)
and (4.6), and are real; the Euclidean vacuum is invariant
under the full de Sitter group. Any other vacuum state
can be described in relation to the Euclidean vacuum: its
initial widths given by yI =rl y'L ', where the rI are c
numbers with positive real parts. The rotational-
invariance condition is then rl = r&, the boost-invariance
condition rI rh+ I

= 1. Vacua invariant under the connect-
ed de Sitter group are thus identified by the single param-
eter r =—ro. For fully de Sitter-invariant vacua this pa-
rameter is real. [The parameter A, used by Chernikov and
Tagirov and Burges to label de Sitter-invariant vacua,
not to be confused with angular-momentum index A, used
here, is simply (1 r)/(1+ r).]-

"In" and "out" vacua of de Sitter-space fields are
sometimes employed. ' These may be defined for fields
with p) N/(2a), i.e., with positive real q, and are invari-
ant under the connected de Sitter group. The "in" vacu-
um is that defined by the choice of positive-frequency
functions yL'"' satisfying
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sin[m(A, ——„'+iqa)] I (A+, ,'+—iqa)

i sinh(irqa) I (A, + —,
' —iqa)

X exp[ —i argl (1+iqa)] (4.9a)

—iqt
lim [ cosh (t/a)y'i ""(t)]—,

&2f —++ oo (2 )1/2

These too are given by Eq. (2.10a), with coeScients

(4.10)

KL
I (1+iqa) = exp[i argI (1+iqa)]

[irqa / sinh( irqa ) ]'

(4.11a)

(4.11b)

The initial widths for the "in"- and "out"-vacuum wave
functionals follow from Eq. (3.4):

y~"'=+i tan (X —,' i—qa—)—ylE', (4.12a)

y'""=—i tan (A'+—iqa).—y—L
'=y'L"'* (4 12b)

These satisfy conditions (4.1) and (4.6). They are real if N
is even; in that case the "in" and "out" vacua are the
same state, which is time-reversal invariant. If 1V is odd
the "in" and "out" vacua are distinct, and each is the
time reversal of the other.

With a single exception, the Hamiltonian-diagonalizing
vacua are not de Sitter invariant. ' The y'I ' of Eq. (3.7b)
do satisfy condition (4.1). But condition (3.7a) implies
I &(rID)=v&"(i)D) sec 'rlD; given this, JR& vanishes at
gD, and hence always, for a11 I only for a massless, con-
formally coupled field. In that case the H' '-

diagonalizing and Euclidean vacua coincide. For H- and
H-diagonalizing vacua, with I &(AD)=co&(ilD) sec
JR&(ilD ) is nonzero for any field with p )0.

For fields with p=O, e.g., a massless, minimally cou-
pled field, condition (4.6) cannot be satisfied by any
choice of y&'s such that yo has positive real part. Such a
field has no de Sitter-invariant vacuum state.

B. Vacuum energies

The vacuum states can be characterized by their ener-
gies, as given by Eqs. (3.5) with all nI zero. That sum of
mode energies diverges for any state; some subtraction
procedure must be used to obtain a finite result. This
means, however, that energy differences between states
given by Eqs. (3.5) are significant. That is, any meaning-

i sin[ir(A, —
—,
' )]

exp[ i —argI ( I +iqa)] . (4.9b)
sinh ~rqa

The "out" vacuum is defined by the positive-frequency
mode choice with functions yL'"", satisfying

ful regularized or renormalized energy will give the same
values for such energy differences as the formal expres-
sions.

The Euclidean vacuum is the lowest-energy de Sitter-
invariant state. The difference in energy between any
other rotationally invariant vacuum and the Euclidean
vacuum is

(H s )(0) (H g )Io) = i g D~(l)cubi(ohio'i ) (4 13)
1=0

with D~(I) from Eq. (2.7). The limiting behavior of o&
i 22

(1—Rer&) +( Imr&)
0 [1+0(A, ')]

2 Rer&
(4.14)

for A. ))1 and pa seci) (at fixed rI), with r&
—=y&/y'i ' as

above. For a boost-invariant state rI is either r =ro for
even I or 1/r for odd I. Hence, for any de Sitter-invariant
state except the Euclidean vacuum, o.

&
is of order unity at

large I, not decreasing with increasing I. For the Euclide-
an vacuum o.

h

' is at most of order A, . The summand in
Eq. (4.13) is positive for large I, varying as A,+. Hence,
any other de Sitter-invariant vacuum has infinitely higher
energy than the Euclidean vacuum.

The other de Sitter-invariant vacua can be described as
states of "uniform excitation " with respect to the Eu-
clidean vacuum. The boost-in variance condition
rI+& =1/rl implies o.I+, =o.

&, to leading order in k or I.
This means the "excitation number" —,'(cr& —o

&
') is mode

independent (as well as time independent) to that order.
This accords with the intuitive notion of a boost-
invariant, i.e., Hat, excitation spectrum.

The Euclidean vacuum is not the lowest-energy state of
all, however, unless the field is massless and conformally
coupled. Condition (3.6) or (3.7), given condition (3.8),
minimizes (H'g')

to) (tD ) mode by mode. In the massless,
conformally coupled case this corresponds to the Euclide-
an vacuum. But for any other fields an infinite number of
states of lower energy than the Euclidean vacuum at any
given time can be constructed, e.g. , by taking yL =yL ' in
some modes, yl =yL

' in the others. This reduces
(H' ')

(o)
—(H' ')'og to a sum of negative terms, break-

ing de Sitter invariance in the process. The complete
H'g'-diagonalizing vacuum [or at least, diagonalizing in
all inodes for which inequality (3.8) is satisfied] at the
chosen instant is the lowest-energy state in such a se-
quence. Its "energy deficit" below the Euclidean vacuum
is finite in some cases, infinite in others. For example, for
nonconformally coupled fields o.

I
' —o.

I
' is negative and

of order 1, for large I at g=gD =O. Then the difference
(4.13) converges for N =1 or 2 but diverges to —~ for
X ~ 3. The existence of states of lower energy, but lower
symmetry, than the Euclidean vacuum is an example of a
general phenomenon which arises even in Minkowski
space.

The choice of a particular vacuum state may be associ-
ated with the choice of semiclassical approximation un-
derlying the field theory. In such an approximation the
vacuum energy, suitably regularized, is usually taken to
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provide the "source" appropriate to the given spacetime
geometry in the semiclassical Einstein equations. Regu-
larized stress-energy-tensor expectation values for a de
Sitter-space scalar field in the Euclidean vacuum have
been calculated by, e.g. , Dowker and Critchley and
Bunch and Davies. The result does not give a con-
sistent semiclassical solution, however: The curvature ra-
dius a obtained is less than the Planck length, not within
the semiclassical regime. This may be remedied by, for
example, treating a very large number (hundreds of
thousands or millions) of independent scalar fields, ' or
by supplementing the regularization procedure with an
ad hoc contribution to the cosmological constant. ' Ei-
ther of these effectively decouples the vacuum energy of
the particular field considered from the source required
by the Einstein equations. But if this is done consistently
with the field in the Euclidean vacuum, then no other de
Sitter-invariant vacuum state can be accommodated
within the resulting semiclassical approximation: The
effects of the infinitely greater energy, and, hence, the en-
ergy density, of any such state cannot be neglected; the
approximation must break down if the field gets into any
such state. The regularization procedure could be altered
to construct a different semiclassical approximation, con-
sistent with a different vacuum state (de Sitter invariance
ensures that the stress-energy expectation values are of
suitable form). Within this approximation vacua
infinitely different iri energy from that chosen, including
the Euclidean vacuum, could not be accommodated.
Thus a semiclassical approximation corresponds to each
vacuum choice, within which only states suSciently close
in energy to that vacuum can be treated consistently.
"Sufficiently close" means that the gravitational effects of
the energy-density difference between these states and the
chosen vacuum must be negligible; the energy difference
must, at the very least, be finite. Of course, the vacuum
choice affects more than the vacuum energy and the
semiclassical Einstein equations; in particular it deter-
mines the, properties of the theory's two-point functions.
The Euclidean-vacuum choice implies, e.g., analyticity of
the Feynman function on the Euclidean continuation of
de Sitter space, regularity of the symmetric and Feyn-
man functions at antipodal points, and short-distance be-
havior of Hadamard form. Other vacuum choices alter
these properties, the time-ordered behavior of the Feyn-
man function, etc. Hence, the semiclassical approxima-
tions associated with other vacuum choices may not be as
suitable as that of the Euclidean as bases for the field
theory.

V. EXCITED STATES—"PARTICLE" ENERGIES

tion energy of a state, the difference between its Hamil-
tonian expectation value (3.5a) and that of the associated
vacuum (again, a quantity independent of any regulariza-
tion or renormalization ' ') is 6(„)=QL nL nor ( +err ).
Naturally, this corresponds to a collection of independent
field quanta or "particles, "

nL in each mode I..
The energy of a single "particle" exhibits gravitational

effects on the dynainics of the field. This energy is
Er =coL(1+0L ). The crL contribution makes both the
value and the time dependence of EL differ from the clas-
sical mode frequency cuL. For example, E~ can increase
as t increases from zero, though classical energies "red-
shift. " Most striking is the behavior of EL at late and
early times. This depends quatitatiuely on the mass and
curvature coupling of the field and the vacuum choice.
For fields with p & N/(2a) the late-time behavior of EL is

2
Po

coshcxL

N . pa(l —4)—X+ sinhaL cos(2qt —
PL )

2a pqa i

+ sin(2qt —PL )
2

pa
(5.1a)

with errors of order e ' ', for t/a ))1 and
(pa seep) »L . The constants aL and PL are

and

aL =2 arccosh~xL+'~ =2 arcsinh~ pc~& '~ (5.1b)

(+) ( —}*
PL = arg az'+'x 'L* —+iqa —2 argI (1+iqa),

a@'= arcsinh[ csch( nqa ) j (5.2a)

and

PL' '=2qa ln2+2arg

(5.lc)

with a'L—' the coefficients in Eq. (2.10a), for yL as fixed by
Eq. (3.4). The Euclidean-vacuum choice yields

A mode-by-mode complete set of excited states 4
t „~ is

arrayed above any choice of vacuum state. The excita- with

+ arcsin(q/p)+8, (5.2b)

2( —1) arctan[ tanh(n. qa/2)] for odd X, i.e. ,

for even N, with A, =2j+—,',
0 for even N, with A, =2j+—,',

integral k,
(5.2c)
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where j is any non-negative integer. The "out" vacuum
defined by Eq. (4.11) or (4.12b) is the unique choice yield-
ing ul =0. Hence, the energy of a "particle, " as defined

by almost any vacuum choice including the Euclidean,
approaches no limit at late times, but oscillates about a
fixed value with constant amplitude and frequency. Only
the energy of an "out particle" approaches a constant
valllc. Thc cB,Ily-tlIIlc (t~ ~) behavior of. EL Is s11111-

lar; in that limit only EI corresponding to the "in"-
vacuum choice approaches a constant value. These
features are illustrated in Fig. 1, which shows EI values
(from the exact formulas) for a minimally coupled field
with q =. 0.5a in four dimensions, using the Euclidean-
and "out"-vacuum choices.

In some cases EL oscillates between positive and nega-
tive values. Its value at t =0 is positive for any field with
real po and p. But form (5.la) implies EL becomes nega-
tive periodically at late times if

I ~ a a ~ I ~ ~ a ~ I a ~ ~ a I a a a ~

a ~ ~ ~ I a a a ~ I ~o ~ a a ~ I ~ a ~ a I a
a I

a a I ~
a ~ ~ I a ~ ~ a I a a ~
~ a ~ I a ~ ~ a I

(b)

~ a ~ ~ I ~ a a a I ~ ~ ~ ~ I a ~ ~ ~ I a ~ ~ a I a a a ~O-15 -10 —5 0 5 10

poa +N(N —1)g 1 — +
csch AL

2

poa (0
q a

(5.3)

is satisfied. This occurs for no field with real po and with

g between the minimal and conformal values inclusively.
Nonetheless, with the Euclidean value (5.2a) for aL, for
example, parameters po and g (hence q) can be found
satisfying this inequality. In that case it is satisfied for
some range of q values near zero if and only if

boa +N(N —1)g 1 — ( vr poa—X—1
(5.4)

obtains. Hence, g must satisfy

(N —1) +p2a'+ ~2p4a 4

1/2

(5.5a)

and

p()a

4(N+1) N(N+ 1)
(5.5b)

the latter from the assumption p) N/(2a). That is, for a
given po, if j is greater than these two bounds and the
corresponding q is small, then the oscillating EL crosses
into negative values in each cycle. The bounds imply
that only fields with curvature coupling stronger than
conformal have this property. Negative excitation ener-
gies suggest the possibility of a runaway instability of the
field, but it must be remembered that the evolution of
field states is governed by the canonical Hamiltonian, and
the canonical energy (the formal $~0 limit of EL, at

FICx. 1. Single-excitation energies for a massive, minimally
coupled field in (3+ 1)-dimensional de Sitter space, with

q =0.5a ', i.e., @=1.581a '. Shown are the energies of "parti-
cles" defined via the (a) Euclidean- and (b) "out"-vacuum
choices, with angular momenta I =0 (solid curve), I = 1 (dotted
curve), and I =2 (dashed curve).

fixed p or q) is always positive. Moreover for the free
fields considered here the time evolution of the wave
functionals (3.2a), in which the nL are conserved, is exact.
Perhaps interactions coupled to the gravitational energy
would show the e6'ects of negative EI. These negative
energy values also do not alter the ordering of vacuum
energies described above, as that depends on modes in the
limit of large A.—in particular, modes with
A, »pa cosh(t/a), for which the late-time limit of form
(5.1a) is yet to be attained.

The above results even can be applied to tachyonic
fields, with po(0. As long as g is large enough to yield
p) N/(2a), all the preceding formulas hold without
change. [This implies, via the bound (5.5b), a curvature
coupling stronger than conformal. ] For such fields EI
oscillates at late times about a negative value. If inequali-
ty (5.3) holds it oscillates between negative and positive
values; if not, it varies only over negative values in the
late-time limit.

Excitation energies for fields with p (N/(2a) exhibit
exponential behavior at late times, rather than the oscilla-
tions of form (5.1a) and Fig. 1. With q:i/la, an—d g) 0
to be definite, the late-time behavior of EL is

~ l~,'+'I'[(N —2g)(1 —4g) —4g]e""
4/a I (1—g)

poa+ ' (~,'+'~' '*+~'+'*~,' ')+ ' l~',-'I'[(N+2g)(i —4g) —4g]e
—'&' . (5.6)

The first (constant) term in the large parentheses is valid only for g(1, the second (e ~' ') term only for g( —,', since
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terms of relative order e ' ' are neglected in deriving this expression.
Excitation energies of "conformally invariant" fields, i.e., those with p =(N —1)/(4a ), show both classical and

nonclassical features. The exact EL are

+N —1 4—Ng N h(l )
N —1

a cosh( t /a ) 4A,a cosh(tla)
cosh AL

N —1 4N—g
2.

T

1 X —1
N cosh(t la) — cos(2Ari B—

L )+ tanh(t la) sin(2Ail —BI ) sinhdL, (5.7a)
cosh tla

with

and

AL =2 arccosh
~
kL+ '~ =2 arcsinh

~ kI (5.7b)

P (E)—f dr f dr'e iE(T—7' )

L 00 00

X (q)[x (r)]q)[x (z')] ) („},
B,= arg(I,'+'k,' ') . -

(5.7c)
(6.1)

The coeKcients kL'
—' are those of Eq. (2.15). The

Euclidean-vacuum choice corresponds to AL =0; for de
Sitter-invariant choices condition (4.1) is equivalent to
AI = A& and BL =B&, and condition (4.6) is equivalent to
A I + i

= AI and BI+ i =BI+m. In the strictly conformally
invariant, i.e., massless and conformally coupled case, EI
reduces to A, coshAL/[a cosh(t/a)] and, hence, behaves
exactly as the classical energy of a relativistic particle
(though unlike coL). But for massive fields with a corre-
spondingly smaller curvature coupling EL also contains,
for non-Euclidean vacuum choices, components which
approach a finite limit at early and late times, and, in gen-
eral, components which grow as cosh(t/a), i.e., as the ra-
dius of the space. This is an example of "superadiabatic
amplification, " arising from the breaking of strict con-
formal invariance.

These conformally invariant fields are the only ones for
which exact thermal-equilibrium states can be defined in
de Sitter space. Such states are naturally associated with
the Euclidean-vacuum choice, that state being their
zero-temperature limit. The excitation energies of these
thermal states show the same behavior as seen in Eq.
(5.7a) with the Euclidean-vacuum choice.

VI. EXCITED-STATE INTERACTIONS:
"PARTICLE DETECTORS"

with E the detector transition energy and x (~) and x (~')
the coordinates at proper times ~ and ~' on the detector
trajectory. Up to a factor depending only on the internal
structure of the detector, this is the total probability, over
the entire history of the detector, for it to make a transi-
tion of energy E in interaction with the field in state

This response function can be evaluated explicitly for a
detector comoving in the coordinates used here. The
field expectation value can be calculated using the wave
functional (3.2a), transforming the field variables between
times v. and r' via the propagator (2.23); equivalently, the
expansion (2.5), with XL as specified by Eq. (3.4), can be
used. The result is

(6.2a)

where V(o} is the response function in the corresponding
vacuum state, the angular coordinates denoted 0 are the
(fixed) values on the detector trajectory, and XI is the
Fourier transform of gL, viz. ,

XI (E)—:f e ' 'XL(t)dt . (6.2b)

P(„}(E)=P(0}(E)

+a g nI [ ~XI (E)
~

+ ~XI ( E)
~ ]PI (A—),

The dynamics of the field is manifest in its interactions
with other systems. The response of a point oscillator
coupled linearly to the field, an Unruh-DeWitt "mono-
pole detector, " is a simple example of such an interac-
tion.

The response of the detector to the field in a state +I„ I

is given by the function
I

XL(E)=
2(N —2) /2

(2q)'~'I (N/2)

X[@'I '-=(+q, A, ,E)+aL '=( —q, A, ,E}],
with

With yL given by Eq. (2.10a), this integral yields

(6.3a)

1 /2
I (1 iqa) N —i (E+q)a N i (E+q)a
I (1+iqa} 4 2 4 2

x I ——k, —+A, , —+1 1 N i(E+q)a . N;1+t'qa, —;1'2 '4 2 ' '2' (6.3b)

and 3F2 a generalized hypergeometric function. For conformally invariant fields Eq. (2.15) implies the alternate form
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1/2

Xl (E)=2" ' ' [kl+'Z, (E)+kI 'Zi( —E)], (6.4a)

with

X—3
Z, (E)=r X— nEgl2 el@i/2 I ((N —1)/2 iE—a F —+ 3 'E—, A.

+—3;1+A.—iEa; —1 +I (A, +1—iEa) 2
'

2

(6.4b)

and F an ordinary hypergeometric function. In all cases
the detector response is the same for any fields with a
given p or q value.

Although the first term on the right-hand side of Eq.
(6.2a) is usually associated with "the particle content of
the vacuum, " it is the second term which represents the
detection of "particles" or excitations, in the sense of
characterizing or distinguishing different field states. In
this sense the vacuum term represents a detector "dark
current, " identical for all states +I„ I

with a given vacu-
L

um choice. This vacuum response has been studied by
several authors; ' ' here attention is focused on the
excitation-dependent response.

The response associated with an excitation, e.g., the
difference between V(„) with one nz one and the rest

L

zero, and V(0), exhibits e6'ects of the dynamic spacetime
geometry. In Minkowski space, with y proportional to
e ' ', this response is proportional to the square of a del-
ta function in energy. One delta-function factor enforces
energy conservation in the response; the other represents
the total time interval, by which the response probability
is divided to give a response rate. But in de Sitter
space, with X as in Eq. (2.10a) or (2.15), the transform X

as per Eqs. (6.3) or (6.4) is finite for all E values (for any
field with p )0). Thus the single-excitation response
probability, over the entire detector history, is finite. It
also has finite width in energy. These features are illus-
trated in Fig. 2, which shows single-excitation responses
for a field with q =0.5a ' in four dimensions, using the
Euclidean-vacuum choice. The same response functions
for a conformally invariant field (with q =0.5a 'i) are
very similar, as shown in Fig. 3, despite the differences in
form between Eqs. (6.3) and (6.4).

VII. CONCLUSIONS

A detailed examination of the spectrum of quantum
states of a scalar field in de Sitter space has revealed grav-
itational effects on the dynamics of the field, over and
above the well-known effects associated with vacuum
states. The states are described via Schrodinger-picture
wave functionals, complementing the familiar Fock-state
description. Field-energy expectation values and
monopole-detector responses also characterize the states,
and exhibit these gravitational effects.

The Fock spaces of states available to a linear, real sca-
lar field in (N + 1)-dimensional de Sitter space are

LA W I ~ ~ ~ W 0 ) ~ I 0 I
$

~ f \ ~
/

~

~ ~ ~ ~
1

~ I ~ I
1

I ~ ~ ~
$

~ ~ ~ I ( 0 ~ I ~

4—0

C4

o
0

~ ~
~ L s ~ ~

FIG. 2. Single-excitation detector-response functions, with
angular dependence divided out, for the field with q =0.5a
i.e., p= 1.581a, in (3+ 1)-dimensional de Sitter space. Shown
are responses to "particles" defined via the Euclidean-vacuum
choice, with angular momenta l =0 (solid curve), I = 1 (dotted
curve), and l =2 (dashed curve).

FIG. 3. Single-excitation detector-response functions, with
'

angular dependence divided out, for conformally invariant
fields, i.e., fields with p= 1.414a, in (3+ 1)-dimensional de Sit-
ter space. Shown are responses to "particles" defined via the
Euclidean-vacuum choice, with angular momenta l =0 (solid
curve), l =1 (dotted curve), and l =2 (dashed curve), as in Fig.
2.



EXCITED-STATE SPECTRA OF de SITTER-SPACE SCALAR FIELDS 3355

spanned by states with wave functionals consisting of
products, over the field normal modes, of Hermite poly-
nomials times Gaussian functions of the normal-mode
amplitudes. The functional Schrodinger equation deter-
mines the time dependence of the coefficients multiplying
the normal-mode amplitudes in these functions, given by
Eqs. (3.2). A mode-by-mode complete set of states is
specified by the values of these coe%cients, one complex
number for each mode, at t =0, the instant of minimum
expansion of the space (in spatially closed coordinates).
A one-to-one correspondence exists between the sets of
such values and the choices of positive-frequency modes
and, hence, creation and annihilation operators, in the
canonical Fock-space description of the theory. This is
explicitly given by relation (3.4). The orders of the Her-
mite polynomials in these wave functionals, excitation or
"particle" numbers in the Fock-space description, are
constants of the states evolution. Hence, for a fixed
positive-frequency-mode choice, no "particle" production
takes place. What is usually termed "particle produc-
tion" in time-dependent spacetimes arises from a change
in mode choice, i.e., vacuum-state choice. In this alterna-
tive picture "particle production" entails quantum transi-
tions between field states, as it does in Aat-spacetime
theory. Such transitions do not occur for a field interact-
ing only with a fixed spacetime geometry.

States with Gaussian wave functionals, then, are vacu-
um states. ' ' ' These constitute an infinite-complex-
parameter family (one parameter per mode). Vacua in-
variant under the connected de Sitter group form a one-
complex-parameter subfamily; states invariant under the
full group, including time reversal, are a one-real-
parameter subset of these. These are the vacua described
in the literature. ' The Euclidean vacuum ' is fully
de Sitter invariant. The "in" and "out" vacua' are in-
variant under the connected group, but are time-reversal
invariant (and identical) only in an odd number of space-
time dimensions; otherwise they transform into each oth-
er under time reversal. Vacuum states obtained via diag-
onalization' of the canonical or gravitational Hamiltoni-
ans used here are not de Sitter invariant, except the H' '-

diagonalizing vacuum for a massless, conformally cou-
pled field, which coincides with the Euclidean vacuum.
The Euclidean vacuum is the lowest-energy de Sitter-
invariant state, in the sense that the difference between
the Hamiltonian expectation value in any other such
state and that in the Euclidean vacuum (a
renormalization-independent quantity ' ') is a divergent
sum of positive terms. The terms correspond to a uni-
form excitation in all modes. For any massive or noncon-
formally coupled field, however, noninvariant vacua of
lower energy at any instant can be constructed by Hamil-
tonian diagonalization in some or all modes. This sug-
gests the possibility of the instability of the Euclidean
vacuum or "spontaneous de Sitter-symmetry breaking, "
in the presence of an interaction capable of mediating a
transition between the states.

States with nonzero excitation numbers exhibit non-
vacuum gravitational effects. The field energy of one
"particle, " i.e., the difference between the Hamiltonian
expectation values of two states differing by one excita-

tion, behaves in general quite unlike the associated classi-
cal mode frequency. The dissimilarity is most apparent
at early or late times: While the classical frequency
asymptotically approaches the field mass in these limits,
the quantum energy can oscillate or grow exponentially.
For fields with a mass —curvature-coupling sum p larger
than N /(2a ), with a the minimum radius of the space,
the energy oscillates with fixed amplitude and frequency.
For some fields with curvature coupling stronger than
conformal it can even oscillate between positive and neg-
ative values. "Particles" defined via almost any vacuum
choice, including the Euclidean, exhibit this behavior;
only with the "in" and "out" vacuum choices do "parti-
cle" energies approach fixed limits at early and late times,
respectively. For fields with p(N/(2a), including con-
formally invariant fields, these energies exhibit a growing
exponential rather than oscillatory behavior. Only for a
massless, conformally coupled field do they obey the red-
shift law for classical relativistic-particle energies. The
response of a monopole detector ' ' to a "particle"—
again, the difference between the responses in two states
differing by one excitation —shows effects of the space-
time geometry as well. As a function of (detector-
transition) energy, the response is a peak of finite height
and width, in contrast with the delta-function response
obtained in Aat spacetime.

Naturally, these gravitational effects are most pro-
nounced for fields with a Compton wavelength p ' com-
parable to the curvature radius a of the space. The be-
havior of the field states rapidly approaches that in fIat
spacetime with increasing p or q.

Gravitational effects similar to those seen here are to
be expected in more general contexts as well. The effects
here all originate, mathematically, in the fact that the
normal-mode time-dependence functions g, given by Eqs.
(2.10a), (2.11), and (2.14), or (2.15), and the associated
time dependence of the wave functionals, are not of the
simple complex-exponential form found in fIat spacetime.
Thus- the effects might be characterized as consequences
of a "modulation" of the field normal modes by the time
dependence of the metric, entailing both the classical
redshift-blueshift refiected, e.g. , in the sech(t/a) factors in
g, and further modulation represented in the associated-
Legendre-function factors. A general quantized field in
any dynamic spacetime will experience similar modula-
tion, and exhibit similar gravitational-dynamical effects.
Moreover, when interactions, i.e., time-dependent pertur-
bations, and the consequent quantum-state transitions are
considered, the complex-exponential time dependence of
wave functions in Aat spacetime gives rise to energy con-
servation. The nonexponential time dependence of wave
functionals found here, and in general dynamic space-
times, suggests that gravitational effects will alter the
simple intuitive picture of (local) energy conservation in
quantum transitions.
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