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Dissipative effects, such as the relaxation of quasiparticle occupation numbers, arise from absorp-
tive parts of Green's functions, which typically appear first at the second order of perturbation
theory. Within the closed-time-path formalism, it is shown, using a generalized renormalization
technique, that these absorptive parts may be approximately resummed so, as to appear in unper-
turbed propagators. In this way, it becomes possible to study, in low-order perturbation theory, the
evolution in time of a field theory which is driven away from thermal equilibrium by the presence in

its Hamiltonian of explicitly time-dependent parameters. Particular attention is given to a scalar
field with time-dependent mass, which is relevant to the dynamics of phase transitions in the very
early Universe. Under favorable conditions, the analysis leads to a kinetic equation of the
Boltzmann type, and an approximate numerical solution of this equation is presented for illustrative
purposes.

I. INTRODUCTION

This is one of a series of papers' in which we develop
theoretical tools needed for a systematic study of the dy-
namics of symmetry-breaking phase transitions in the
early Universe. We have in mind scenarios of the "new
inAationary" kind which modify the original idea of
Guth by supposing that a scalar "inAaton" field under-
goes a second-order transition. In these scenarios,
inAation lasts while the initial symmetric state of the field
slowly evolves into a broken-symmetry state. Our pro-
gram, explained and motivated in detail in Ref. 2, is to
assume the existence of an initial high-temperature, spa-
tially homogeneous, symmetric state, and to follow the
evolution of the density matrix, or at least of Green's
functions, through the phase transition, while using the
thermal expectation value of the stress tensor to calculate
the evolution of the Robertson-Walker scale factor. This
is a fairly obvious and well-defined, if technically compli-
cated, approach. Of course, the existence of an initial
state with the above properties is by no means assured;
indeed, it is explicitly denied in scenarios of the "chaotic"
type. Nevertheless, a primary attraction of the idea of
inAation is that memory of the initial state is effectively
lost and we, therefore, hope to obtain reliable information
about the final state by studying systematically a problem
which is mathematically well posed. A study of this gen-
eral kind has, indeed, been described by Mazenko. ' He
found, in particular, density Auctuations much smaller
than those estimated by earlier methods. Since the ear-
lier estimates were greatly in excess of the values required
by prevailing theories of galaxy formation, this line of in-
vestigation is clearly of practical importance. Mazenko's
estimate, on the other hand, is far too low. To some ex-
tent, our program may be viewed as an attempt to gen-
eralize his analysis which, for example, relies heavily on
special properties of the large-X limit of O(X)-symmetric
scalar field theory.

In pursuit of this program we have encountered (so far)

two major technical obstacles. The first, foreseen from
the outset, is that neither the expectation value of the
infiaton field P nor local Auctuation regions (in which this
expectation value is nonzero although its spatial average
vanishes) will naturally emerge from our assumed initial
state unless they are inserted by hand —an arbitrary pro-
cedure we wish strenuously to avoid. This problem was
solved in principle in Refs. 1 and 2, where we showed
that all relevant properties of the broken-symmetry state
can be recovered if we recast the theory in terms of P,
avoiding all reference to (P). The second problem, to
which this paper is addressed, is the following. The pres-
ence in the field-theory Hamiltonian of the time-
dependent scale factor naturally drives the theory away
from thermal equilibrium. Feynman rules for perturba-
tive calculations in the nonequilibrium theory were de-
rived some time ago by Semenoff and Weiss, ' and these
appear to be just what we require. Unfortunately, these
rules describe, in traditional fashion, perturbations about
a noninteracting theory. Now, the occupation numbers
of single-particle or quasiparticle modes evolve with time
only via scattering processes. In elementary transport
theory, for example, this evolution is described by a
Boltzmann equation. " Therefore, the occupation num-
bers in the unperturbed propagators are fixed by the ini-
tial distribution and do not adequately reQect the chang-
ing state of the system.

Evolution of the occupation numbers is a dissipative
relaxation effect, which may be expected to arise from ab-
sorptive parts of higher-order contributions to the full
Green's functions. Since very few of these can be calcu-
lated in practice, it is highly desirable to effect some form
of resummation which would incorporate at least the
leading effects into unperturbed propagators. In standard
renormalization theory, such resummations can be ac-
complished by adding a suitable counterterm to the free-
field part of the Lagrangian, subtracting it from the in-
teraction part, and determining its value self-consistently
by minimizing the net effect of the modified interaction.
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We follow the same route here, constructing what will be
referred to as a "dissipative counterterm" in a manner
consistent with the general structure of the propagators.

In this paper we consider only the example. of a single
self-interacting scalar field with a time-dependent
effective mass, since this already gives rise to considerable
technical comp1exity. However, the method we use to
construct the dissipative counterterm is a systematic one
and should be readily adaptable to more general theories.
Indeed, the problem we address pervades the whole of
nonequilibrium statistical mechanics, and we would ex-
pect the techniques proposed here to be very widely appl-
icable. Even for theories with time-independent Hamil-
tonians, it is desirable to include in unperturbed propaga-
tors as much information as possible about the state of
the system. When this state changes with time, the
method developed here is, we believe, the appropriate one
to use.

We follow Semenoff and Weiss in adopting the closed-
time-path formalism' ' to obtain real-time Green's func-
tions. The version appropriate to thermal equilibrium
has been elegantly derived in terms of path integrals by
Niemi and Semenoff, ' who point out that it resolves am-
biguities encountered, for example, by Dolan and
Jackiw' in their real-time formulation of thermal field
theory. (The imaginary-time formalism given by the
latter authors, is, of course, perfectly sound, but it cannot
be extended to encompass nonequilibrium states. ) Fur-
ther developments have been presented by several au-
thors' and a closely related method for calculating time-
dependent expectation values is described by Jordan. '

This formalism is briefly described in Sec. II, where we
exhibit the structure of the 2 X 2 matrix of real-time prop-
agators. In Sec. III we introduce the dissipative counter-
term, while in Sec. IV we obtain a formal solution for the
modified unperturbed dissipative propagator matrix to
which it gives rise. In an interacting theory, single quasi-
particle modes are not necessarily well defined. Section V
discusses the extent to which the propagators can be in-
terpreted in terms of time-dependent occupation numbers
and exhibits an approximation in which a kinetic equa-
tion for these numbers can be derived. The counterterm
is evaluated at the lowest nontrivial order of perturbation
theory in Sec. VI, and it is shown that, under sufficiently
favorable circumstances, the kinetic equation reduces to a
Boltzmann equation of the standard type. An illustrative
numerical solution of this equation is described in Sec.
VII. Finally, in Sec. VIII our findings are summarized

I

and compared with other approaches to nonequilibrium
field theory. An appendix reviews the relevance of our
model to scalar field theory in Robertson-Walker
universes.

II. CLOSED-TIME-PATH FORMALISM
AND THE STRUCTURE OF PROPAGATORS

We consider a Hermitian scalar field, denoted in the
Heisenberg picture by P(x, t), whose time evolution is
governed by the Lagrangian density

X(P)=—,'(B,P) —
—,'VP VP —

—,'m (t)P 2 ~ 4

or, equivalently, by the Hamiltonian density

&((5)= ,'vr + —,'VP V—P+,'m (t—)P +—P
2 ~ 4

(2.l)

(2.2)

where vr(x, t)=P(x, t) is the conjugate momentum. The
mass carries an explicit time dependence which, for the
purposes of this paper, we take to be externally
prescribed. The Lagrangian density of a scalar field in a
spatially homogeneous Robertson-Walker universe can
be expressed in this form, as discussed in the Appendix.
If, at time to, the state of the field is described by the nor-
malized density matrix p, then, taking the Schrodinger
and Heisenberg pictures to coincide at to, the generating
functional for time-ordered Green's functions at later
times is

Z(j)=Tr pT exp i f dt f d xj (x, t)p(x, t)
0

(2.3)

where T is the time-ordering operator. The expectation
value of any function of P at times later than to may be
expressed in terms of functional derivatives of Z (j).

The time-ordered exponential in (2.3) may be rewritten
in terms of Schrodinger-picture operators as

"rexp i f dt f d x&s(t)
0

X T exp i f dt f d x—[&s(t) j( —xt)p (s)x]
0

(2.4)

where T is the anti-time-ordering operator and &s(t) is
the Hamiltonian density obtained by inserting
Schrodinger-picture operators Ps(x) and ~s(x) in (2.2).
It is now useful to generalize (2.3) and (2.4) by writing

Z(j&,j2)=Tr p T exp i f d x(&s+J24s)
r

T exp i f d x(&—s —j,ps) (2.&)

In particular, the propagators

6 6

XZ(j„j2) (2.6)

have the following interpretation in terms of the

I

Heisenberg-picture field, with x —= (x, t):

G»(x;x') G,z(x;x')

G2, (x;x') G22(x;x')

&[/(x)P(x')] [P(x')P(x)]
[P(x)P(x')] T[P(x)P(x')] (2.7)
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For free particles in thermal equilibrium, or in the
Minkowski vacuum, the expectation value (P(x)P(x') ) is
analytic at t = t'. In the presence of dissipation, however,
we may expect it to decay at large time separations,
perhaps as exp( —constX lt t'l)—. While we make no
special assumption about the nature of this decay, we do
wish to allow for the possibility that the expectation
value assumes different forms for t greater or less than t'.
If we write

Tr[pg(x)P(x')] =8(t t')H —(x;x')
+8(t' —t)K(x;x'), (2.8)

H(x;x') H'(x;x')=8(t t')—
H (x;x') H*(x;x')

H(x';x) H(x';x)+8(t' t)—H*(x'x) H*(x'x)

Using standard techniques, ' ' ' we may derive a
path-integral representation of (2.5) in the form

Z(ji~jp) Zpf [dpi(x)dg, (x)](4,li lg, »(j, ~j2)

(2.10)

Z(j, ,j2)=f [dp, (x, t)dp2(x, t)]

Xexp i J dt f d x[X(P, ) —X($2)
0

+j Pi+ j24'2]

(2.11)

where the functional integral in (2.11) is subject to the
boundary condition P, (x, tp)=P, (x), and Zp is a normal-
izing constant ensuring that Z(0, 0)=1. The c-number
fields Pi and P2 may be envisaged as residing on segments
C& and Cz of a contour in the complex time plane, C,
running along the real axis from to to ~ and Cz running
from ~ to to. Causal boundary conditions are equivalent
to giving each segment an in6nitesimal downward slope.
In the case that p is the canonical density operator
exp[ —PpH(tp)]/Tr exp[ PpH(tp)], the m—atrix element
in (2.1) may be represented by a Euclidean path integral,
the corresponding field P3 residing on a third segment C3
which descends from tp to tp —imp Periodic bou.ndary
conditions then apply at the end points tp and tp t'Pp of
the whole contour. At present, however, we refrain from
taking this step.

III. THE DISSIPATIVE COUNTERTERM

The Feynman rules for perturbative evaluation of the
Cxreen's functions generated by (2.10) include a matrix of

then the Hermiticity of P and p implies that
K( x; x')=H*(x';x). One easily finds that (2.7) has the
structure

G»(x;x') Gi2(x;x')
G2i(x;x') G22(x, x )

propagators g,b(x;x'), namely, the lowest-order approxi-
mation to (2.9), which invert the quadratic part of the
efFective action in (2.11). These propagators satisfy equa-
tions of the form

2)~~(x)g~b(x;x )=g~~(x;x )2) b(x )

i—5,b5(x —x'), (3.1)

where 2) is a second-order differential operator. Bound-
ary conditions on this equation arise from the manner in
which (2.11) is embedded in (2.10) and will be discussed
later. In practice, it will be possible to carry out only
very-low-order calculations, and it is essential to define
g (x;x') so as to mimic as closely as possible the proper-
ties of G (x;x'). In particular, finite lifetimes of quasipar-
ticle exeitations, which in turn permit the evolution of
occupation numbers in response to a changing environ-
ment, are possible only in the presence of interactions,
and are absent from g (x;x') if perturbation theory is or-
ganized in the most obvious manner. The strategy we
propose is to modify g (x;x') by adding to the quadratic
part of the composite Lagrangian X(P, ) —X(Pz) a local
counterterm ,p, (x)W—,blab(x) and subtracting it from the
interaction part. Initially arbitrary functions in A, can
then be used to optimize the resulting g (x;x ') as an ap-
proximation to G(x;x'). The notation is intended to em-
phasize an obvious analogy with mass renormalization
which, in zero-temperature Minkowski-space field theory
permits the use of an unperturbed propagator having the
same mass shell as the full propagator. Indeed, a mass
renormalization counterterm is included in the diagonal
part of JN, b We sh, al.l see, however, that the decay width
for quasiparticle excitations must be represented by off-
diagonal terms. These make sense only within the
closed-time-path representation and have no straightfor-
ward interpretation in terms of the original field P(x) and
its Lagrangian (2.1) alone. For example, the addition and
subtraction of an anti-Hermitian counterterm in the
Hamiltonian (2.2) to simulate decay widths would not
work.

Clearly, there are limits to what can be achieved in this
way. Consider the self-energy matrix X(x;x') defined by

G(x;x')=g(x;x')+i f d x "d x'"g(x;x")X(x";x"')

X G(x"';x') . (3.2)

We shall want to choose JK(x) so as to minimize the net
effect of the second term in this equation. However, the
contribution of this local counterterm to X(x;x ') is of the
form JR(x)5(x —x'). When the state is homogeneous in
space and time, X depends only on (x —x'). The stan-
dard renormalization technique expands its Fourier
transform about a selected reference momentum, in
effect expressing X as a series of derivatives of 5(x —x'),
and the two leading terms yield mass and wave-function
renormalizations in a more or less unambiguous manner.
Here we consider states which are homogeneous in space
but not in time. Evident1y, the temporal inhomogeneity
cannot be represented correctly by a local counterterm,
and, although we shall o6er a prescription for extracting
a suitable counterterm, this is by no means unique. There
is some hope that a local counterterm does adequately
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simulate the behavior of the propagators and their first
few derivatives evaluated at equal times, which is
sufficient for many low-order calculations. Conceivably,
the technique described here might be generalized using a
nonlocal counterterm, but we have not pursued this pos-
sibility.

Given that a local counterterm is to be employed, its
structure must be consistent with (2.9). That is, the
differential operator 2)(x) must be such that (3.1) admits
a solution of the form (2.9), in which we denote by
h (x;x ') the lowest-order approximation to H (x;x '). We
restrict attention to spatially homogeneous states, and
take Fourier transforms with respect to the argument
(x —x'). We need to construct an operator 2)k(t, c)/c)t)
such that the equations

n„(t,a/at)g, (t, t )=g„(t,t )n„(t,—5/at )

= —i5(t —t') (3.3)

have a solution of the form (2.9) with H(x;x') replaced
by hk(t, t') To a.ccomplish this, we first observe that the
operator appropriate to a temporally homogeneous state
must be included as a special case. For this case, let

h„(t,t') =u„(t t')+iv„(t—t'), — (3.4)

with u and U real. For the Fourier transform of the prop-
agator matrix gk(t t') =gk(t, t'), —we find (cf. Ref. 13)

gk(co)—:J dt e ' 'gk(t)

Ak(co)+iBk(co) Ak(co)+ Ck(co)
(3.5)Ak(co) —Ck(co) Ak(co) iBk(co)—

with
Ak(co) =2f dt uk(t)coscot,

0

Bk(co)=2I dt vk(t)coscot, (3.6)
0

Ck(co)= —2j dt vk(t)sincot .
0

Equation (3.3) becomes an algebraic equation
&k(co)gk(co) =gk(co)2)k(co) = —(', whose solution
(suppressing momentum and frequency arguments) is

—(B+iA) i(A+C)
Xl= i(A —C) (B iA)— (3.7)

a
k at

a2
~ +Pk iak

at2

a +~O'k

a
Xk a

+Eo'k
at

a'
, —pk —ia„

To construct the corresponding differential operator, we
naturally replace co by i()/c)t. We demand that hk(t, t') be
a smooth function, so that the 5 function in (3.3) arises
from differentiating step functions. Then 2) must be
second order, with second derivatives appearing only in
its diagonal elements. %'e fix the coefficients of these to
be +1, in accordance with (2.1) and (2.11). Taking into
account that A, B, and C are real and that A and B are
even in co while C is odd, we discover that 2)k(c)/c)t) has
the form

2nk+ 1
X +

COk COk —l gk

i [co~+(1/2)iy~ ](t —t')+—'e
4

2n, +1
X — +

~k+ —~ 3'k
(3.9)

with

~k Pk 4yk

k+ = k/ kyk.

(3.10)

(3.11)

Obviously, yk can be interpreted as the decay width for
quasiparticle excitations of momentum k. Provided that
ak and yk are of the same order in A, (and we shall dis-
cover that each is of order A, ), the free particle limit
X~O may be taken, leaving a finite value for nk. In this
limit, with yk =0, (3.9) reproduces the standard unper-
turbed thermal propagator, with occupation numbers nk
for single-particle modes. In thermal equilibrium, these
should be given by the Bose-Einstein distribution

PcoI,
—a

nk =(e " —1) (3.12)

and we expect this distribution to arise from the bound-
ary conditions on (3.3) together with an appropriate
prescription for determining JM.

To accommodate time-dependent states, we allow ek,
pk, and yk in (3.8) to vary with time. Since the time
derivative must act either forwards or backwards in (3.3),
we make the replacement

k ~yk (t) yk (t)=3 k(t) + ql k(t) .
at at at

(3.13)

Thus, the diff'erential operator to be inserted in (3.3) is

a
'ai

1 0
0 —1,+P'"

at

0 1
+

1 0 yk(t) + pyk(t)

+ —1

—1

[—i'ak(t)] (3.14)

where the real constants ak, pk, and yk arise from ex-
panding A, B, and C in powers of ~.

A straightforward division of the Lagrangian into
free-particle and interaction terms obviously leads to the
identification Pk =m + Ic and ak =y k =0, with m in-
dependent of time to allow a stationary state. The quan-
tities ak, pk

—m —Ic, and yk must each be at least of
the order of the coupling constant A, , and these, of course,
constitute the counterterm A, . To clarify their physical
significance, consider the propagator which solves (3.3)
with Xlk given by (3.8). The function hk(t, t') from which
it is constructed may be written as

—i [co&
—() /2)i y& ](t —t')

(3.8) and the counterterm to be added to the self-interaction in
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(2.11) is, after spatial Fourier transformation,
/, (t)At, b /, (t)yb /, (t) with

1 0
[p/, (t}—k —m (t)]

hk(t, t')= —,'exp i—f [Qk(t")—,'i—yk(t")]dt"

X Ck(t, t')[1+N&(t, t')]

+ —,'exp i f [ Q/(t") +2iy/, (t")]dt"
0 1

+
1 0 yk(t) + ,'y„—(t)

Bt

1 —1

[ —i(zk(t)] . (3.15)

X Ck(t, t')[ —1+Nk*(t, t')] . (4.5)

We take Qk and Ck to be rea1, but make no further as-
sumption about Ck or Xk, so the representation is quite
general.

First of all, we discover that (4.1) and (4.2) are satisfied
The term involving yk(t) in (3.15) appears to make no net
contribution to the counterterm, but we retain it for fu-
ture convenience [see the discussion following (6.3)
below].

1
C~(t, t)=

Qk(t)
(4.6)

IV. THE BISSIPATIVE PROPAGATOR

[hk(t, t') —hk(t', t)]at (4.1)

In this section we obtain a formal solution of (3.3) with
the differential operator (3.14). We need to find the func-
tion h/, (t, t') which generalizes (3.9) when ak, P&, and yk
are time dependent. Given the structure (2.9) with hk re-
placing H, it is straightforward to show that both the for-
ward and backward versions of (3.3) are satisfied if
h k ( t, t ') obeys the following conditions:

C„(t,t') = [Q„(t)Q,(t') ]

and that Qk(t) and Nk(t, t') satisfy

2 Q„(t) +Q'„(t)=p„(t)——,'y„(t),

(4.8)

(4.9)

Re[N„(t,t') N„(t',—t)]
at

=yk(t)ReN/, (t, t) 2Qk(t—)ImNk(t, t) . (4.7)

Next, the positive- and negative-frequency parts of
(4.5) satisfy (4.3) provided that

[h„*(t,t') —h„(t',t)] =0, (4.2)
—2iQ„(t) N„(t,t') =0—.

at Q„(t) " at

Finally, to satisfy (4.4), we require, in addition,

(4.10)

+yk(t) +pk(t)+ ,'yk(t) h/, (t, t—')=0,
c}t2 at

(4.3)

Qk(t)
+y/, (t)+2i Q/, (t)—

at Qk t ~
+y/«t)

a
Bt

a2
, +p„(t) ia„(t) hk(—t', t)

at2

+ y„(t) + 'y„(t)+ia„—(t) h„*(t',t)=0 . (4.4)
8
Bt

Ciuided by (3.9), we write hk(t, t') in terms of three auxili-
ary functions Q/, (t), C/, (t, t'), and Nk(t, t') as

XN„(t',t) =2ia„(t). (4.11)

To write down the solution of (4.10) and (4.11) we
suppress the subscripts k and introduce the abbreviation

y(t), t&)= f y(t)dt
1

with Q( t i, t2) defined similarly. The general solution is
then given by

—y(, to, t')
N(t, t')=e ' (N, +N2e

(4.13)

/ / ( II $0' +N o' +N 2/D(/', t) )+ d ii — ( rt')/( 1
—2/B(t", /')

)

where N„N2,N3, and N4 are complex constants of integration, with ImN, =ImN4 to satisfy (4.7). On substituting this
solution into (4.5), we find that only the combinations (Ni +N4) and (N2+N3) appear independently, so it is sufficient
to set N3 =N~ =0 and make N, real Thus, N./, (t, t') depends only on t'.

In summary, our propagator matrix is constructed via the spatial Fourier transform of (2.9) from the function

h„(t,t'}=-,'[Q„(t)Q„(t')]'"exp ,' f y„(t")dt" —[1—+N„(t')]exp i f Q„(t")d—t"
r

+[—I+N/,*(t')]exp i f Q/, (t")dt"
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where Qk(t) is a solution of (4.9) and Nk(t) satisfies

Qk(t)
+yk(t)+2i Qk(t)

Bf Qk(t

X +yk(t) Nk(t)=2iak(t) .
at

(4.14)

At this point, a few comments are in order. First, we
observe that when the dissipative counterterm is re-
moved, so that ak(t)=yk(t)=pk(t) —k —m (t)=0, our
propagator matrix is consistent with that derived by
Semenoff and Weiss. ' These authors treat a more gen-
eral theory, allowing time-dependent coefficients yo(t)
and yi(t) for the time and space derivative terms in the
Lagrangian, so in our case yo(t)=y, (t)=1. Their mode
functions are given in our notation by

fi(k, t)=[2Qk(t)] ' exp +i J Qk(t')dt' . (4.15)
2

0

They determine the full 3 X 3 matrix of propagators
which arises from using the canonical density matrix in
(2.10) and, in effect, evaluate the constants Ni and N2 in
(4.12) by applying continuity and periodicity conditions
to the whole contour. Here, the initial conditions on
(4.14) are determined by the embedding of (2.11) in (2.10),
which amounts to the same thing. In particular, without
the dissipative counterterm, N, is given simply by the ini-
tial Bose-Einstein occupation numbers, and these are not
seen to evolve with time.

Up to a point, we are now able to remedy this situation
by interpreting Nk(t) in terms of a set of time-dependent
occupation numbers. To see this in outline, suppose that
a&, y&, and Q& are all slowly varying, and consider the
evolution of Nk(t) on a time scale sufficiently long for os-
cillations of frequency 0& to average to zero. Using
(4.12), we obtain the estimate

k(t0) )'k(/ —/O)
Nk(t) = N, — e

both hk(t, t') and hk(t', t), we see from (2.9) that the argu-
ment of X& is always the earlier of the two times. To the
extent that Nk(t) can legitimately be interpreted in terms
of time-dependent occupation numbers, it would seem,
therefore, that the evolution of these over the time inter-
val spanned by the propagator is not properly accounted
for. As stated earlier, we anticipate that gk ( t, t ') will at
best be a good approximation to Gk(t, t') only when
t =t'.

V. AN APPROXIMATE KINETIC EQUATION

2nk (t)+ 1
Nk(t) =

1 iy„(t)/2Q—k(t)

To this end, we formally rewrite (4.14) as

(5.1)

~, +rk(t) Nk(t)

=Qk(t) 1+[yk(t)+2iQk(t)] at

In the next section, we shall see that the functions
ak(t) and yk(t) are to be determined self-consistently at
the lowest nontrivial order by matching the counterterm
(3.15) against a two-loop diagram whose propagators are
themselves constructed from (4.13). It may be imagined
that some drastic approximation will be required to
reduce this task to manageable proportions. Before
proceeding, we wish in this section to pursue the inter-
pretation of the function Nk(t) in terms of a time-
dependent distribution of occupation numbers by exhibit-
ing an approximation to (4.14) which will subsequently be
shown to reduce to a kinetic equation of the Boltzmann
type. As well as making contact with established ideas of
kinetic theory, this will serve to suggest a possible means
of rendering explicit computations tractable.

Comparing (4.13) with (3.9), we would like, roughly, to
identify occupation numbers nk(t) through

ak(t)+
Yk(t)Qk(t)

(4.16) (5.2)
ak(t)

X
Q„(t)[Qk(t)—,'i yk(t)]—

Although we have yet to supply a precise means of deter-
mining ak, yk, and Qk, comparison with (3.11) for
thermal equilibrium indicates that memory of the initial
state decays, with a mode-dependent relaxation time
1/yk, while occupation numbers appropriate to the
changing state of the system are updated through ak(t).
It is worth noting, however, that the decay of correla-
tions is not necessarily exponential. If J ykdt should

turn out to depend logarithmically on time during some
stage of the evolution, we should obtain long-time tails
with power-law decay as is found in some situations. "

A final comment concerns the fact that in (4.13) we
have been able to decompose the propagator in terms of
functions with a single time argument. While this is con-
venient from the point of view of practical calculations, it
is possible only because we assumed a local counterterm.
We cannot expect a similar decomposition for the true
propagators. Although the propagator itself involves

Under suitable conditions, it may be permissible to use a
time-derivative expansion on the right-hand side, and the
lowest term of this expansion yields

at +y/, (t) Nk(t) =[a/, (t)/Q/, (t)]

X [ 1 i y k ( t ) /2Q—
k ( t ) ] (5.3)

d ak(t)
nk(t)

Q
rk(t) yk(t)nk(t)

t k t
(5.4)

The validity of such an approximation is very dificult to
assess reliably. As a rough estimate we observe, assum-
ing y& &(0&, that the first correction will be negligible if
~d(ak/Qk)/dt~ &&~ak/Qk~. If we further assume that
the denominator in (5.1) is slowly varying, which will be
true if y„«Qk, then (5.3) may be written as
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This is the approximation we wished to derive. %'hen, in
the following section, we have derived concrete expres-
sions for ak and yk, it will transpire that some further
approximations serve to cast the right-hand side in the
form of a scattering integral, which admits the Bose-
Einstein distribution as a stationary solution. In view of
(3.11), indeed, we may already anticipate that the right-
hand side of (5.4) vanishes in thermal equilibrium.

VI. EVALUATION OF THE DISSIPATIVE
COUNTERTERM

Our vaguely stated criterion for determining the arbi-
trary functions in the dissipative counterterm (3.15) was
to optimize the unperturbed propagator as an approxima-
tion to the full propagator by minimizing the second term

l

(6.1)

Now Fourier transform the first argument of X, separat-
ing components which are odd and even in the frequency:

&(~,&)= e' '[X"'(e,t )co+2' '(co, t )] .dc'
2K

(6.2)

The quantity G»(t, t') —g»(t, t') contains, among other
terms,

in (3.2). We now attempt to make this more precise,
working in momentum space, but suppressing momen-
tum arguments and integrations for clarity of notation.
First, we extract from X(t, t') the contribution of A, and
express the remainder in terms of the average and
difFerence of its time arguments:

i f dt"dt'"g»(t, r")X,2(t", r"')Gz, (r"', r')

=i fdr"dt"'g»(r, r") y(r ) „+ia(r) —iX'»"(co', i ) „+X",,'(~', r ) e' " ' 'G»(t"', r'),
7j t" (6.3)

where t= ,'(t"+t'—") We ha. ve been slightly cavalier in
our use of the Fourier representation of 5(t" t"') and i—ts '

derivative. To justify the appearance of y(t ) where JR
contained y( r "), consider that, for any diff'erentiable
function f (r),

f dr f(r) y(t+ —,'r) + ,'j(r + —,'r—) 5(r)

= fdr f(r) ) (t+ —'r)5(r)
a~

= —f'(0)y(& )

= f« f(~)yÃ) 5(r) .
at

The first few terms in the expansion of the full propa-
gator are given by the familiar set of diagrams drawn in
Fig. 1. The propagator lines represent the 2X2 propaga-
tor matrix. Each vertex contributes a factor of iA, if all
four propagators arrive at it with index 1, —i k if they all
arrive with index 2, and zero otherwise. Diagram (d)
contains the counterterm and is constructed by multiply-
ing matrices in the obvious way. We have not exhibited
any mechanism for taking account of the initial density
matrix, which may well involve additional diagrams. We
leave these aside for now, returning to discuss their eA'ect
at the end of this section.

We consider only the lowest nontrivial contribution to
(6.4)—(6.6). The first contribution to X&&(t, t') comes from
Fig. 1(b). It is real, and given by

Our course is clear from (6.3). The expression in large
parentheses cannot be made to vanish for all co. As in
other renormalization methods, we require it to vanish at
some reference frequency co, which may depend on k and

X„(k,t, t') = —,'A, f—
(6.7)

d k
, g» „(t,t)5(r t')—

(2ir )

d k
h&(t, r)5(r r') . —

(2ir )

yk(t) =i X",~'(k, co, t),
ak(t)=iX', 2'(k, co, t) .

(6.4)

(6.&)
Because of the 5 function, the right-hand side of (6.6) is
independent of 6 and we obtain simply

An obvious choice for co is Ak (t) which loosely represents
an instantaneous mass shell. In the same way, we shall
identify

d kP„(r)=k'+m'(r)+ —,'A,f,h„(r,r) .
(2ir )' (6.&)

Pq(r)=k +m (t) —ReX'„'(k,co, t) . (6.6)

The construction of the counterterm in Sec. III ensures
that the structure of A, matches that of X, so we could
have considered any components of X with identical re-
sults. There is obviously some measure of arbitrariness in
the procedure described here, although we have not actu-
ally succeeded in devising any satisfactory alternatives for
comparison. FICx. 1. Low-order contributions to the propagator matrix.
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Xg12, k —k1 —k2(t~ t ) . (6.9)

The first contribution to X,2(t, t') comes from Fig. 1(c):

d k,
X»(k, t, t')= —,

'A2 f (2m )

d k2

(2vr )

dS egg2~'
CO+

(
2 Il2 1 y2)2+ 2 2

,'i —(1—y/2Q)X

co —(0—iy/2)
—,'i(1+i y /2Q)X*

co (0—+i y /2)
(6.11)

It is scarcely possible to achieve concrete results from
(6.9) as it stands, since the functions ak(t), yk(t), and
Ak(t) in the integrand are unknown. We now introduce
a sequence of further approximations which, when the re-
sulting expressions for ak(t) and yk(t) are substituted
into (5.4), will lead to the promised Boltzmann equation.
We are not, in any case, bound to adhere rigidly to the
prescription (6.4)—(6.6). If, by whatever means, we can
produce functions ak(t), pk(t), and yk(t) which in some
measure reOect the properties of the self-energy matrix X,
then these can be used to construct the dissipative coun-
terterm, and we may expect an improved perturbation
theory to result.

According to (6.1), the counterterm should rellect most
accurately the properties of X in the neighborhood of
t = t' and we expect (or, more accurately, hope) that this
region supplies the most important contribution to the
X'" and X' '. On this assumption, denoting h„(t,, t2) by
hk(r, t) with r=t, t2 and t =

—,
'(—t, +t2), we approximate

(4.13) by

hk(r, t)=[40k(t)] 'e

where the t and k arguments have been suppressed. We
now define nk(t) through (5.1) and assume that it is real.
This is not generally true, but it will be a good approxi-
mation when, for. example, the assumptions leading to
(5.4) are valid. We then have

dc' i~~
g12 k(r, t)= 2'

Q)f

(
2 ~2 1 2)+ 2 2

(2n + 1)Ay
(

2 I12+ 1 2)2+ f12 2

(6.12)
This represents a considerable simplification, and may
perhaps serve as a starting point for numerical calcula-
tions. For illustrative purposes, however, we go a step
further and observe that, since (6.4) is already of order A, ,
the limit y~O may reasonably be taken in (6.12) for the
purpose of evaluating X,2 at our low order of approxima-
tion. This finally yields the result

g» k(r, t) = f
defoe'"'[9(co)+nk(t)]

X I [1+Nk(t)]e X 5(co —Qk ( t) ), (6.13)

+[—1+Nk(t)]e '
I .

For the propagator in (6.9), we then obtain

g, 2 k(r, t)=hk*(r, t)0(r)+hk( —r, t)8( —r)

(6.10)
familiar from the equilibrium theory. ' ' In the limit of
zero decay width, we naturally encounter a well-defined
mass shell.

It is now straightforward to obtain the Fourier trans-
form 212(k, co, t) of the relevant component of (6.2):

—k2
212(k, &, t) —

5 f d kid k2d k3 f dcoidco2dco35(ki +k2+k3 —k)5(coi+co2+ co3 Q) )
6(2m. )

(6.14)

y„(t)= [i/20k(t) ][X»(k,Qk(t), t )

—X»(k, —Ak(t), t)] . (6.16)

The energy-momentum constraints in (6.14) are those of

On selecting Qk(t) as the renormalization point, we iden-
tify

a„(t)= —,'i [X»(k, Qk(t), t )+X»(k, —Ak(t), t )],
(6.15)

two-body scattering. If the dispersion relation for quasi-
particles were Qk(t)=k +m (t), we should conclude
that, of the four quantities co„co2,cu3,

—m, two should be
positive, representing incoming particles, and two nega-
tive, corresponding to outgoing particles. We assume
this to be true, although we have not been able to deter-
mine the exact conditions on Qk [a solution of (4.9)]
which make it so.

With all these approximations, we can write the kinetic
equation (5.4) as
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nq(r)= f d k, d k~d k~5(k, +k~ —k~ —k)
dt 32(2~)

5(A, +Q~ —Q~ —Aq )

QiO~QqQg

largely academic exercise. At the order of approximation
considered here, it is sufficient simply to insert the re-
quired initial conditions by hand.

VII. A NUMERICAL ILLUSTRATI(3N

X [n, nz(1 +n~ )(1+n& )

—
( I+n, )(1+nz)n&ng],

(6.17)

By way of illustration, we describe an attempt to follow
numerically the evolution described by (6.17) and (6.19)
with yA. (t) =0, for a specific choice of m (t) W.e simplify
(4.9) to the form Q&(t) =Pz(t), assume that Qf, (t) has the
form

where, for example, 0, stands for Q& (r). This is indeed
1

a Boltzmann equation which admits a stationary solution
of the Bose-Einstein form

n„=jexp[P(Q„—p)] —1 j (6.18)

with inverse temperature P [not to be confused with
P&(t)] and chemical potential p.

The one-loop contribution in (6.8) is much easier to
compute:

d kP&(t)=k +m (t)+ ,'Af—, [—,'+nq(t)]
(2m)

It would be consistent with the foregoing approximations
to set y z(t) =0 in this integral also.

Equations (4.9) and (4.11) or its approximation (6.17)
now constitute a closed set which in principle can be
solved numerically to determine the evolution of the state
of the system, to the extent that this state is described by
the propagator. Initial conditions on this evolution are
set by the initial density matrix and we must now consid-
er how this enters the formalism. We are able to consider
seriously only the case that p is the canonical density
operator mentioned in Sec. II. Its presence in (2.10) is
taken fully into account when, as described in Sec. II, the
2X2 matrix of real-time propagators is augmented to a
3 X 3 matrix and interaction vertices arising from the ini-
tial Hamiltonian are added. In the absence of the dissipa-
tive counterterm, the Feynman rules are those given by
Semenoff and Weiss. ' The effect on the real-time propa-
gators is twofold. First, as stated earlier, continuity and
periodicity conditions determine, in effect, the initial con-
ditions on (4.9) and (4.11). Second, there are additional
diagrams which propagate correlations in the initial state
to later times. At the lowest order of perturbation
theory, the latter effect is trivial, and may be described as
follows. The initial conditions supply occupation num-
bers of the form (3.12), in which coA. is derived from the
quadratic part of the initial Hamiltonian appearing in p.
The additional diagrams serve, in lowest order, merely to
renormalize these occupation numbers in accordance
with interactions in the initial Hamiltonian. Higher-
order effects of initial correlations are not so simple. To
describe them correctly, it would be necessary to extend
the considerations of the present paper to construct a
3 X 3 dissipative counterterm. While this can no doubt be
done, it seems to us that the technical diKculty of actual-
ly computing higher-order corrections would make-it a

0', (r) =k'+M'(r) (7.1)

nq(t)=
dr 16 4~' k Q„(r)

L

X f d&&d&&dp ~~~&~3

X[(1+n~ ')(I+nq ')
—(I+n, ')(I+nz ')] . (7.2)

Here, p is the magnitude of the total three-momentum in
the scattering process. It does not appear in the in-
tegrand, but the domain of integration D is over all posi-
tive 0,

&
and Az consistent with the double triangle rela-

tion summarized by Fig. 2. In various regions of the
(A„Q~)plane, f dp is the equal to one or another of the
k's. As discussed in the Appendix, a conformally coupled
scalar field is described by (2.1) with m (t)=a (t)mo,

FICi. 2. Double-triangle relation between magnitudes of
three-momenta in the scattering integral of Eq. (7.2).

and determine M (t) self-consistently from (6.19). The
equations we obtain after all these approximations owe
relatively little to our original formulation, in the sense
that they might well have been guessed at by elementary
informal arguments. We offer the following account first
to provide a little qualitative insight and second in the
hope of convincing the reader that our formalism really is
capable of producing hard numerical information. On
the other hand, we happily concede that more sophisti-
cated approximations than those we have so far devised
may be required to make this information reliable.

When Q~(t) has the above form, (6.17) can be reduced
to
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where a (t) is the Robertson-Walker scale factor and mo
is the bare mass. A straightforward mass renormaliza-
tion removes the divergent part of the integral in (6.19),
and we choose units of momentum such that
a (to)m~ = 1. Then (6.19) takes the form

10- (a)

k nk(t)
M (t)=a (t)+ J dk

4~2 o Qk t
(7.3)

0.5-

where the scale factor is now normalized to a (to) =1 and
the frequency is given by Ok(t)=k +M (t). We chose
an initial distribution of the form (3.12) with cok =Ok(to)
and a =0 and a scale factor of the form

a (t) = 1+3 [tanh(t/i ) —tanh(to/r) j . (7.4)

This has the Bose-Einstein form, but it coincides with the
stationary solution of (7.2) only when M=M. The fit pa-
rameters p(t), M(t), and a(t) also provide a convenient
parametrization of the results. We solved (7.2) using a
fourth-order Adams-Bashforth forward integration
method, using the Euler point-shape formula to start the
solution and vary the time step. At each step, (7.3) was
solved for M (t) by the secant method.

Figure 3 shows our solution for parameter values
(X/4m )=—,', p(to)=1, 2 =5, and to= —6r. At first
glance, these results are encouraging, and may be under-
stood as follows. Interpreted in terms of an expanding
universe, our Hamiltonian generates translations in con-
formal time, so p(t) is the inverse of a "conformal tem-
perature. " Roughly speaking, it is related to the physical
temperature by p(t)=p»„,(t)/a (t). For a massless free
field, this quantity remains constant during the expan-
sion, the physical temperature being redshifted as 1/a(t).
In Fig. 3 we see that for our massive interacting field also,

If A ))1, and to « —r, then a (t ) remains approximate-
ly constant at early times, expands by a factor of approxi-
mately 2A with a time scale of ~ near t =0, and remains
approximately constant thereafter. We, therefore, hope
to see a transition from an initial equilibrium state to a
final one, relaxation towards the final state occurring on a
time scale which is implicit in (7.2), but not easily deter-
minable in advance. The function (7.4) was chosen to il-
lustrate such behavior and has no deeper significance.

Even when reduced to the skeleton form of (7.2) and
(7.3), the numerical problem is not an easy one. We
adopted the following strategy. .The integral in (7.3), and
similar integrals in the one-loop approximation to any ex-
pectation value we may wish to calculate, can be estimat-
ed using a Gauss-Legendre quadrature formula, via the
mapping k =(1+x)/(1 —x) from the interval —1 &x & 1

where the formula is defined. We chose a 20-point for-
mula, and solved (7.2) for the twenty nk's associated with
the quadrature points. These values are not sufficient to
estimate the double integral in (7.2), where k„kz,and k3
are constrained by momentum conservation. To evaluate
this integral, we adopted the expedient of fitting the cal-
culated nk's to a function

nk (t)=(expIP(t)[M (t)+k ]'~ —a(t)I —1)

(7.5)

0 0
-5 01 10 20 00 80 200

FIG. 3. Evolution with time of (a) p(t), (b) M (t}/M (t},and
(c) a(t)). Time is measured in units of ~ on a scale which is
linear for negative times and logarithmic for positive times.

p(t) is almost constant, increasing by less than 1% during
the whole run. The thermal correction to the effective
quasiparticle mass in (7.3) is, for our chosen parameter
values, fairly small —about 30%%uo at the higher initial
physical temperature and about 10%%uo at the final temper-
ature. Thus, M(t) increases roughly in proportion to
a(t), but M(t) in (7.5) remains close to its initial value
M(to)=M(to), so long as the occupation numbers have
had no chance to relax. Clearly, the relaxation time is
much greater than r, so the ratio M (t)/M (t) falls
sharply during the expansion and then slowly recovers to
the value 1 characteristic of the final equilibrium state.

The quantity

N „=f k nk(t)dk (7.6)
0

is proportional to the total number of quasiparticles per
unit comoving volume and is conserved by (7.2). The ma-
jor contribution to the integral is from small-k modes,
whose occupation numbers we find to remain essentially
constant. Therefore, as M( t) in (7.5) increases, the
effective reduced chemical potential a(t) increases from
its initial value of zero to maintain the quasiparticle num-
bers, as seen in Fig. 3.

What is less encouraging is that (7.5) is not a particu-
larly good fit to the numerically generated distribution, so
the apparent approach to a final equilibrium state in Fig.
3 is to some extent illusory. In particular, nk(t) appears
to develop an oscillatory modulation as a function of k.
We know of no good reason for this, and our numerical
method is far too crude to allow a detailed investigation.
From time to time, we evaluated the integral (7.6) and
found its value to be preserved within 1% up to times of
about 40', which suggests that (7.2) may be fairly insensi-
tive to inadequacies of the analytic representation (7.5).
By, the end of the run, however, % was about 50% too
high, presumably owing to the accumulation of numeri-
cal errors. Changing the detailed procedure for fitting
(7.5) to the data had only a minor eff'ect, leaving the qual-
itative form of the curves unchanged.

One highly desirable feature of this investigation is
perhaps worth emphasizing. If our system does indeed
relax towards equilibrium, then it does so of its own ac-
cord. We have not coupled it to an external heat bath
which would prescribe the final ensemble in advance.
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Admittedly, though, in our actual calculation, the initia1
equilibrium state and the use of (7.5) may well have had a
propitious infiuence. Since (7.1)—(7.3) are an extreme
simplification of the ones we actually derived, this calcu-
lation is essentially only of qualitative interest, and we
have, therefore, not striven for great numerical accuracy.
It does, however, give reassurance that there is at least
one starting point from which we may expect to develop
more reliable methods of calculation.

VIII. SUMMARY AND DISCUSSIQN

Using the closed-time-path approach to nonequilibri-
um field theory, we have shown how dissipative effects
may be incorporated in unperturbed propagators. Be-
cause of the finite relaxation times thus introduced, the
propagators evolve with time in accordance with the
changing state of the quantum fields, and so, therefore,
do the expectation values of physical quantities when
evaluated using low-order perturbation theory. We stress
that this evolution is not adequately described by stan-
dard perturbation theory. Our method is to add and sub-
tract a suitably constructed counterterm in the composite
Lagrangian, which can be used to effect an approximate
resummation of the absorptive parts of higher-order con-
tributions to the full propagators. Because we used a lo-
cal counterterm, we expect this resummation to be most
useful when the time arguments of Green's functions
span an interval considerably smaller than the relevant
relaxation times. This method makes sense only within
the closed-time-path formalism, since the counterterm
mixes fields defined on different segments of the path. It
seems that the more naive idea of adding and subtracting
a non-Hermitian part to the canonical Hamiltonian to
obtain finite quasiparticle decay rates could not be imple-
mented in a consistent manner. Such a procedure would,
of course, involve expanding about a theory with explicit-
ly nonunitary time evolution. In a rough sense, the ele-
ments of the counterterm matrix which describe dissipa-
tive effects may be understood as assigning suitable finite
values to the i e terms which, for time-independent states,
define contours of integration for the various propagators
in the complex frequency plane [see, for example, Eq.
(4.3) of Ref. 14 where, however, a different time path is
used].

We exhibited an approximation in which time-
dependent occupation numbers for quasiparticle modes
can be identified, and further approximations which lead
to a Boltzmann equation for their time evolution. Final-
ly, we presented a numerical solution of this equation
which demonstrates, at a qualitative level, that our for-
malism is indeed capable of describing the time evolution
in concrete terms. The approximations essentially as-
sume that time evolution at a momentum scale k is slow
compared with the inverse of e1ementary excitation ener-
gies Ak, and are especially vulnerable in the neighbor-
hood of a critical point, where infrared singularities must
be handled with care.

We are aware of two other approaches to nonequilibri-
um field theory which have features in common with that
described here. The closed-time-path formalism has been

used by Calzetta and Hu' to study scalar field theory
with a time-independent Lagrangian, but with a general
Gaussian initial density matrix. By truncating the hierar-
chy of Dyson-Schwinger equations, and by imagining
space-time to be divided into cells such that the state of
the field is approximately uniform within each cell, they
derive a Boltzmann equation which is essentially
equivalent to that exhibited here. Their considerations
can probably be generalized to the time-dependent case
without undue difficulty. Nevertheless, we believe our
formal development to be advantageous, inasmuch as it
provides a systematic means both of describing dissipa-
tion within low-order perturbation theory and of improv-
ing upon the severe approximations needed to obtain the
Boltzmann equation. Calzetta, Habib, and Hu' have
considered noninteracting theories in a general curved
spacetime, and derived a kinetic equation of the Vlasov
type within an adiabatic expansion.

The thermo field dynamics (TFD) of Umezawa and his
co-workers has recently been generalized to deal with
nonequilibrium states, ' ' and this generalization intro-
duces a "semifree" Hamiltonian in a similar spirit to our
dissipative counterterm. This theory is based on an ex-
tension of canonical field theory, but for equilibrium
states is equivalent to the closed-time-path formulation of
quantum statistical mechanics. We doubt whether the
same is true for nonequilibrium states. One reason for
this is that TFD contains a free parameter (denoted by a
in Ref. 20) which, in equilibrium, mirrors the freedom to
choose different time paths. For nonequilibrium states,
only the path described in Sec. II is allowed, either be-
cause the initial density matrix does not have the canoni-
cal form or because the Hamiltonians at two different
times do not commute. However, the corresponding free-
dom does not disappear from TFD and, indeed, the au-
thors of Refs. 20 and 21 have been able to complete their
analyses only for the value n= —,', which corresponds to a
disallowed time path. The propagators obtained in Ref.
21 are rather different from ours, but we have not suc-
ceeded in establishing whether or not some deeper
equivalence between the two formalisms exists. Our own
view is that TFD is useful only to the extent that it can be
shown to be equivalent to quantum statistical mechanics,
but some authors would no doubt wish to contest this
view.

Finally, we recall that several quite different ap-
proaches to the nonequilibrium evolution of quantum
fields in the early Universe have been proposed. Hosoya
and Sakagami have derived an equation of motion on
the basis of both elementary kinetic theory and a phe-
nomenological nonequilibrium statistical operator.
Whether this yields an adequate approximation to the
true statistical mechanics problem is not clear to us at
present. Guth and Pi have used a Schrodinger picture
approach to calculate the time evolution of field modes
and wave functionals for an effective free field model, and
an extension of this line of investigation to study the evo-
lution of more general Gaussian density matrices has
been described recently by Eboli, Jackiw, and Pi. This
approach is appealing in its directness, and provides a
characterization of the state of the field which cannot
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readily be obtained from Green's functions. At present,
however, a systematic means of dealing with interacting
theories and non-Gaussian density matrices is lacking.
Yet another approach, calling upon Fokker-Planck-type
equations for Wigner distributions or their associated
Langevin equations, has been pursued by several au-
thors.

(A4)

which introduces the conformal time t, leads to a new ac-
tion

S, = J dt, d x —,'(t, —
—,'VP, .VP,

APPENDIX

In a Robertson-Walker universe with line element

ds =dt a(t)dx— (A l)

the covariant action for a self-interacting scalar field may
be written as

SRw= J dt d x a —,'P —
—,'a VP VP —

—,'moP

(A2)

where g measures the strength of the unique renormaliz-
able coupling to the Ricci scalar curvature R. The coor-
dinate t in (Al) is physical time, in the sense that it
represents the time measured by an observer with fixed
comoving spatial coordinates x. The transformation

0=a (A3)
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—,'a [m(~)+(g —

—,')R]P, ——,XP,

—a 'a [vr„P,}], (A6)

where m, is the momentum conjugate to P, . Although
the two Hamiltonians describe the same dynamics, densi-
ty matrices of the form exp[ /3RwHRw (r p ) ] and
exp[ P,H, (t—o )] do'not describe equivalent statistical en-
sembles, on account of the additional term in (A6).
Indeed, it is well known that field theories in curved
spacetimes do not possess unique vacua, and the zero-
temperature limits of the above ensembles correspond to
two inequivalent candidate vacua. Naively, it seems to us
that, at sufficiently early times, a mo is very small, lead-
ing to an almost time-independent Hamiltonian in the
conformal description, and that this description is, there-
fore, the best means of setting up an initial equilibrium
state. This consideration, devoid though it is of aH rigor,
serves to motivate the particular version of the problem
studied in this paper.

(A5)

where now the overdot means 8/Bt, . The case of confor-
mal coupling g= —,

' was used in Sec. VII.
The two actions (A2) and (A5) differ by the space-time

integral of a total derivative, and describe the same dy-
namics. The Hamiltonians obtained from them are relat-
ed by

=a 'II +—'a ' d x a 'a +—'a
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