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It is well known that when gravitational plane waves propagating and colliding in an otherwise
Aat background interact they produce singularities. In this paper we explore the structure of the
singularities produced in the collisions of arbitrarily polarized gravitational plane waves and we
consider the problem of whether {or under what conditions) singularities can be produced in the col-
lisions of almost-plane gravitational waves with finite but very large transverse sizes. First we ana-
lyze the asymptotic structure of a general arbitrarily polarized colliding plane-wave spacetime near
its singularity. We show that the metric is asymptotic to a generalized inhomogeneous-Kasner solu-
tion as the singularity is approached. In general, the asymptotic Kasner axes as well as the asymp-
totic Kasner exponents along the singularity are functions of the spatial coordinate that runs
tangentially to the singularity in the non-plane-symmetric direction. It becomes clear that for
specific values of these asymptotic Kasner exponents and axes the curvature singularity created by
the colliding waves degenerates to a coordinate singularity, and that a nonsingular Killing-Cauchy
horizon is thereby obtained. Our analysis proves that these horizons are unstable in the full non-
linear theory against small but generic plane-symmetric perturbations of the initial data, and that in

a very precise and rigorous sense, "generic" initial data for colliding arbitrarily polarized plane
waves always produce all-embracing, spacelike curvature singularities without Killing-Cauchy hor-
izons. Next we turn to the problem of colliding almost-plane gravitational waves, and by combining
the results that we obtain in this paper and in other previous papers with the Hawking-Penrose
singularity theorem and the Cauchy stability theorem, we prove that if the initial data for two col-
liding almost-plane waves are sufficiently close to being exactly plane symmetric across a sufficiently

large but bounded region of the initial surface, then their collision must produce spacetime singular-
ities. Although our analysis proves the existence of these singularities rigorously, it does not give

any information about either their global structure {e.g., whether they are hidden behind an event
horizon) or their local asymptotic behavior {e.g., whether they are of Belinsky-Khalatnikov-Lifshitz
generic-mixmaster type) ~

I. INTRODUCTION AND OVERVIEW

With a short paper' published in Nature in 1971, Khan
and Penrose announced their discovery of a new exact
solution to the vacuum Einstein field equations; it de-
scribed the interaction between two impulsive, plane-
symmetric gravitational waves, propagating and colliding
in an otherwise Hat background spacetime. The collision
was followed by a spacetime region in which the non-
linear interaction between the waves generated a gravita-
tional field qualitatively different from the linear superpo-
sition of the two incoming fields. In fact, the spacetime
curvature generated by the collision increased without
bound along all timelike world lines in the interaction re-
gion, and it ultimately diverged to form a spacetime
singularity where the observers' world lines reached and
terminated in finite proper time. Despite its complicated
local and global structure, the physical interpretation of
this solution was simple: Each of the two colliding plane
waves generated a spacetime geometry in its wake which
acted like an infinite, perfectly converging lens, focusing
any radiation field which passed through the plane wave
while propagating in the opposite direction. When the
two plane waves collided, each of them was thus perfectly
focused by the other's background geometry; diffraction

effects were prevented from counterbalancing this perfect
focusing by the global exact plane symmetry of space-
time. As a result, while they propagated through the in-
teraction region the amplitude of the colliding waves
grew without bound and ultimately diverged, creating a
spacelike curvature singularity which bounded the in-
teraction region in all future directions.

In the nearly two decades since the discovery of the
Khan-Penrose' solution (and of the simultaneous
discovery of other similar solutions by Szekeres ), the
progress in the search for exact solutions describing col-
liding plane waves has been phenomenal, with significant
contributions by many workers. Recent research in this
field has particularly benefited from the carrying over of
the inverse-scattering techniques for generating station-
ary axisymmetric solutions (one spacelike and one time-
like Killing vectors) of Einstein s equations to the prob-
lem of generating plane-symmetric solutions (two com-
muting spacelike Killing vectors). For a brief description
of the history of these developments and a (necessarily in-
complete) list of references, we refer the readers to Refs.
5 and 6 (especially Sec. I of Ref. 5 and Sec. I of Ref. 6)
and to the references cited therein.

In our view the greatest significance of the problem of
colliding gravitational waves lies not with those aspects
of it that are peculiar to specific exact solutions, but rath-
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er with its potential to provide insight into some of the
broader issues in general relativity (such as cosmic cen-
sorship, structure of singularities, . . .) which arise natu-
rally in studying the dynamics of fully nonlinear gravita-
tional fields. From this point of view, gravitational-wave
collisions can be considered as the vacuum analogues of
gravitational collapse, and as such they provide a frame-
work in which issues such as cosmic censorship can be
discussed without the undue complications of a
specifically chosen nonzero stress-energy tensor. In fact,
we contend that among all the issues raised by the last
two decades of exact-solution research on colliding plane
waves the following two are the most important, and that
owing to their inherent generality these issues are not
likely to be completely resolved by work on exact solu-
tions alone.

On the one hand, thanks to the work of Chandrasekhar
and Xanthopoulos who first discovered this
phenomenon, we now know that colliding plane waves do
not always create spacelike curvature singularities with a
global structure similar to the singularity of the Khan-
Penrose solution: for some choices of the incoming plane
waves, their collision produces a nonsingular Killing-
Cauchy horizon at the points where ordinarily one
would expect curvature singularities to form. The space-
time can then be extended smoothly across this horizon
(in nonunique ways) to obtain several inequivalent, maxi-
mal solutions, which all evolve from the same initial data
posed by the incoming, colliding plane waves (breakdown
of predictability). It is therefore of fundamental impor-
tance to determine (i) under what conditions on the initial
data (the incoming plane waves) the collision creates
singularities and under what conditions it creates hor-
izons, (ii) what are the local structures of the singularities
and horizons thus created, and (iii) whether "generic" ini-
tial data {with respect to some appropriate notion of gen-
ericity) always produce "pure" spacetime singularities
without Killing-Cauchy horizons, i.e., whether any
breakdowns in global predictability can occur in "gener-
ic" gravitational plane-wave collisions. The issue here is
then that of the structure of singularities produced by col-
liding plane waves.

On the other hand, it is natural to raise the issue of
whether (or under what conditions) spacetime singulari-
ties can be produced by the collisions of gravitational
waves which are not exactly plane symmetric, but which
have finite but very large transverse "spatial" sizes; i.e.,
by the colhsions of almost-plane gravitational waves.
This second issue is then that of the existence (and possi-
bly also the structure) of singularities created in the col-
lisions of almost-plane gravitational waves.

In a series of two papers published previously in this
journal (Refs. 6 and 9), we attempted to resolve the above
issues in the special case where the colliding waves had
parallel constant-linear polarizations. Thus, in Ref. 6 we
showed that the asymptotic structure of a colliding
parallel-polarized plane-wave spacetime near its singular-
ity can be completely and explicitly determined in terms
of the initial data posed by the incoming waves. Our
analysis proved that a1though Killing-Cauchy horizons
can be produced in the collisions of parallel-polarized

plane waves, these horizons are unstable in the full non-
linear theory against small but generic plane-symmetric
perturbations of the initial data, and that in a very pre-
cise sense, "generic" initial data always produce all-
embracing, spacelike curvature singularities without
Killing-Cauchy horizons. In Ref. 9, we analyzed the col-
lision between two almost-plane gravitational waves
whose initial data across a bounded region of the initial
surface were identical with the initial data posed by col-
liding parallel-polarized exactly plane waves, but fell off
in an arbitrary way at larger transverse distances. We
proved that if this bounded region of exact plane symme-
try in the initial surface is sufficiently large, then the col-
lision between the almost-plane waves is guaranteed to
produce a spacetime singularity with the same local
structure as in an exact plane-wave collision.

The work described in the present paper is a continua-
tion of the work reported in Refs. 6 and 9. The main re-
sults of this paper are (i) the generalization of the results
of Refs. 6 and 9 to the case where the polarizations of the
colliding waves are entirely arbitrary (i.e., neither parallel
nor constant linear), and (ii) the proof of a much stronger
version of the singularity theorem of Ref. 9; specifically,
that if the initial data for two colliding almost-plane
waves are sujPciently close to being exactly plane sym-
metric across a suSciently large but bounded region of
the initial surface, then their collision must produce
spacetime singularities. Sections II and III and Sec. IV A
below describe the above-mentioned generalization of the
results of Ref. 6 and Ref. 9, respectively, whereas Sec.
IV 8 is devoted to the new singularity theorem. The five
appendixes at the end of the paper deal with a number of
issues of a more technical nature that are raised during
the course of the analyses in Secs. II—IV. We note, how-
ever, that these appendixes (especially Appendixes A, C,
and D) contain a large amount of information, some of
which might be useful in future research on questions
that are left unresolved in this paper. We feel that any
serious reading of the paper must include at least the
three Appendixes A, C, and D.

The more precise plan of this paper is as follows.
In Sec. II A, we give a very brief review of Szekeres's

formulation of the field equations and the characteristic
initial-value problem for colliding arbitrarily polarized
plane waves, in the (u, U, x,y) coordinate system which we
call "Rosen-type" and which is tuned to the plane sym-
metry of the spacetime. This formulation is entirely
analogous to the corresponding formulation for the
parallel-polarized case which we have discussed in Sec.
IIA of Ref. 6. Consequently, here we only present the
essential facts and formulas that will be needed in later
sections, and refer the reader to Sec. II A of Ref. 6 for the
details of their derivation and meaning. In this section
and throughout the paper, we try to maintain as much
parallelism as possible between our presentation here and
the presentation in Refs. 6 and 9. For this reason, the
readers may find it helpful to carry along and look at
these two previous papers ' while reading the present pa-
per.

In Sec. II 8, we perform a coordinate transformation to
a new (a,P,x,y) coordinate system, in which the field
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equations and the initial-value problem associated with
them take simpler forms. Again the construction and the
properties of this new coordinate system are straightfor-
ward generalizations of the construction and properties
of the (a,P) coordinates discussed in Sec. II B of Ref 6.
However, while the field equations for colliding parallel-
polarized plane waves (Sec. II B of Ref. 9) reduced in the
(a,P) coordinates to a single linear hyperbolic equation
for which an explicit Riemann function could be found, '

in the general case the simplification achieved by this
coordinate change, though substantial, is not as great:
The field equations in the (a,P) coordinates reduce to a
system of nonlinear, coupled hyperbolic partial
differential equations (PDE's) for two functions which
represent the dimensionless amplitudes for the two in-
dependent modes of polarization. Although at present it
seems unlikely (because of their high nonlinearity) that an
explicit general solution (Riemann function) can be found
for these equations, in Appendix C we discuss some in-
teresting and suggestive aspects of this particular system
of nonlinear PDE's which might later prove useful in the
search for such a general solution. A further disturbing
consequence of this fundamental nonlinearity in the field
equations for colliding nonparallel-polarized plane waves
is that the global existence and uniqueness of their solu-
tions may not be guaranteed. In the parallel-polarized
case, it is guaranteed by the linearity of the single non-
trivial field equation that there exists a unique, global
solution defined throughout the domain of dependence of
the initial surface, i.e., throughout the entire interaction
region up to the "singularity" ta=O} at which either
spacetime singularities or Killing-Cauchy horizons form
(Secs. II B and III A of Ref. 6). In contrast, the field equa-
tions in the nonparallel-polarized case are nonlinear, and
it is well known that solutions of nonlinear hyperbolic
PDE's do not in general exist globally. This raises the
possibility that solutions of the field equations might
break down at points which lie within the interaction re-
gion before the "singular" surface Ia=O}, and conse-
quently the possibility that colliding nonparallel-
polarized plane waves might create spacetime singulari-
ties in the region where a & 0; such singularities, if
present, would not be treatable by analyzing the asymp-
totic structure of spacetime near a =0. Fortunately,
however, a careful analysis which we undertake in Ap-
pendix A shows that thanks to some very special proper-
ties possessed by the field equations, the global existence
and uniqueness of their solutions can be proved despite
the presence of strong nonlinearities. Therefore, the
singularities and horizons created by colliding plane
waves always lie on or beyond the surface l a=0}.

Our discussions in Sec. II B and in Appendix A bring
us to the analysis of the asymptotic structure of space-
time near e=O. Relying on the results of Appendix B
which show that as e~O the spatial-derivative terms in
the field equations are asymptotically negligible com-
pared to the cx-derivative terms, we begin Sec. IIIA by
studying the ordinary differential equations that are ob-
tained by eliminating the spatial P-derivative terms from
the field equations; this allows us to determine the asymp-
totic behavior of the metric functions near a=0. We

show that the spac ctime metric asymptotically ap-
proaches a generalized inhomogeneous Kasnerlo solution
as a approaches zero, where the time coordinate t of the
asymptotic Kasner spacetime is monotonically related to
cx, and the Kasner singularity at t =0 corresponds to the
singularity at a =0. We call this asymptotic
inhomogeneous-Kasner structure "generalized" because
unlike the parallel-polarized case in which the asymptotic
Kasner exponents were associated with the fixed set of
axes Ix,y } throughout the singularity (Sec. III A of Ref.
6), here in general the asymptotic Kasner axes are linear
combinations of x,y and they vary across the singularity
as functions of the spatial coordinate P. Since we do not
have a general solution for the field equations in the
nonparallel-polarized case, in contrast to Sec. IIEA of
Ref. 6 we cannot in general relate the asymptotic Kasner
exponents and/or axes along the singularity to the initial
data posed along the wave fronts of the incoming, collid-
ing plane waves. (See, however, Appendix C where one
such relation is obtained in a special case. ) As in Ref. 6,
in general these asymptotic Kasner exponents as well as
the asymptotic Kasner axes depend on P, the spacelike
coordinate running along the nontrivial spatial (z) direc-
tion in the spacetime.

We begin Sec. III B with a discussion of Tipler's
theorem, "' which proves that in any vacuum, nonflat
plane-symmetric spacetime there must exist either a
spacetime singularity (where null geodesics terminate) or
a Killing-Cauchy horizon (where the strict plane symme-
try of spacetime breaks down). We note that the content
of Tipler's theorem is made particularly transparent by
our analysis of the asymptotic structure of colliding
plane-wave spacetimes. On the one hand, it becomes
clear from our discussion in Sec. III A that the asymptot--
ic Kasner exponents and axes (throughout a connected
interval in the spatial coordinate P) may take on the
values associated with a degenerate Kasner solution.
Since a degenerate Kasner spacetime is flat and possesses
a Killing-Cauchy horizon at t =0 instead of a singularity,
it follows that when the asymptotic Kasner exponents for
the colliding plane-wave metric are degenerate a non-
singular Killing-Cauchy horizon forms at a=O across
which spacetime can be extended smoothly. On the other
hand, it is easily seen from the expressions of the
Newman-Penrose curvature quantities in the (a,P) coor-
dinates that if the asymptotic Kasner exponents are non-
degenerate, then a =0 is a curvature singularity. Next we
observe that when a Killing-Cauchy horizon forms at
a =0, the spacetime can be extended through it in
infinitely many different ways; the geometry beyond the
horizon cannot be determined from the initial data posed
by the incoming, colliding plane waves. We then briefly
recall our earlier work in Ref. 8, where we proved general
theorems stating the instability of such Killing-Cauchy
horizons in any plane-symmetric spacetime against gener-
ic, plane-symmetric perturbations. For the special case of
the Killing-Cauchy horizons which occur in collisions of
parallel-polarized plane waves, our discussions in Sec.
IIIC of Ref. 6 proved that in fact these instabilities
render the set of "all" horizon-producing initial data
"nongeneric" with respect to a very precise notion of
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nongenericity. More specifically, our analysis in Ref. 6
proved that the subset of all initial data which produce at
least one connected Killing-Cauchy horizon larger than
Planck size is nongeneric within the set of all colliding
parallel-polarized plane-wave initial data. Correspond-
ingly, by making use of the discussions in Appendixes A
and 8, we prove in Sec. III 8 the generalization of this re-
sult (with the same notion of genericity as in Ref. 6) to
the case of colliding arbitrarily polarized plane waves. In
addition, by introducing a more sophisticated notion of
genericity which we describe in greater detail in Appen-
dix D, we prove that the subset of aO horizon-producing
initial data (and not just the subset of those data which
produce horizons larger than Planck size) is nongeneric
within the set of all initial data for colliding plane waves.
We also discuss why-we believe that our topological no-
tion of genericity (described in Appendix D) is more ap-
propriate in general relativity than other possible "proba-
bilistic" notions based on measure theory.

In Sec. IV A, using the conclusions we obtained in the
previous sections, we prove the generalization of the
singularity result that was proved for parallel-polarized
colliding almost-plane waves in Sec. II of Ref. 9 to the
case of colliding almost-plane waves with arbitrary polar-
izations. More specifically, we prove that if the initial
data posed by two colliding almost-plane gravitational
waves are (i) identical with the initial data posed by two
colliding exactly plane waves (with arbitrary polariza-
tions) across a bounded but sufficiently large region of the
initial surface, and (ii) fall off in an arbitrary way (con-
sistent with the constraint equations) at larger transverse
distances, then the collision between the almost-plane
waves is guaranteed to produce a spacetime singularity
with the same local structure as in an exact plane-wave
collision.

In Sec. IV 8, we combine the Hawking-Penrose singu-
larity theorem (Ref. 13 and Sec. 8.2 of Ref. 14), the Cau-
chy stability theorem, ' and a lemma about the null cones
in a nondegenerate Kasner spacetime which we discuss in
Appendix E, to prove that the conclusion of the singular-
ity theorem of Sec. IV A about the existence of singulari-
ties remains valid when the colliding almost-plane waves
are not exactly plane-symmetric over any region, but are
only approximately plane-symmetric across their central
regions. In other words, we prove that if the initial data
for two colliding almost-plane waves are sufficiently close
to being exactly plane symmetric across a sufficiently
large but bounded region of the initial surface, then their
collision must produce spacetime singularities. Although
our analysis proves the existence of these singularities
rigorously, it does not give any information about either
their global structure (e.g., whether they are hidden
behind an event horizon) or their local asymptotic behav-
ior (e.g. , whether they are of Belinsky-Khalatnikov-
Lifshitz' generic-mixmaster type).

Our notation and other conventions throughout this
paper are the same as in Refs. 6 and 9. Equation numbers
that refer to equations of Refs. 6 or 9 will be denoted by a
prefix 6 or 9; for example, Eq. (6.3.13) and Eq. (9.2.6)
refer, respectively, to Eq. (3.13) of Ref. 6 and Eq. (2.6) of
Ref. 9.

As in our previous papers, ' here we are concerned ex-
clusively with the collisions of purely gravitational (vacu-
um) waves. Whether the conclusions of Secs. II and III in
this paper remain valid in the presence of matter fields
coupled to the colliding plane waves is an interesting and
unexplored question.

H. FIELD EQUATIONS FOR COLLIDING
GRAVITATIONAL PLANK WAVES

m=Ni +%2
Bx Bp

with

N, = —e' ' &coshW1

v'2

X exp Pi[arcsin(tanh W) ]J,
N2 = —e' + ' &coshW

V2

X exp [
—

—,
' i [arcsin( tanh W) ]],

(2.2)

where M, U, V, and 8 are real functions of u and v only.
(Notice the slight phase difference between our choice for
N, and Nz here and that in Sec. II A of Ref.6 [Eqs.
(6.2.4)]. The only equations in this paper that are aff'ected

by this discrepancy are the expressions for the Newman-
Penrose curvature quantities [Eqs. (2.12) below] which
diff'er from the corresponding expressions in Ref. 6 [Eqs.
(6.2.19)] by factors of 2 or i )The null t. etrad given by
Eqs. (2.1) and (2.2) gives rise to the metric

g = —e™dudu + e [coshW(e dx e dy )

—2 sinh W dx dy ] . (2.3)

Thus, the functions V(u, u) and W(u, u) represent the di-
mensionless amplitude of the two independent polariza-
tion modes in the gravitational radiation field (2.3).

A. Formulation of the problem in the Rosen-type
{u, u, x,y) coordinate system

In any plane-symmetric spacetime (see Sec. III B of
Ref. 12, or Sec. II of Ref. 8 for a careful definition of
plane symmetry), there exists a canonical null tetrad'
whose construction is described in Sec. III 8 of Ref. 12.
In this null tetrad, which we call the standard tetrad, l
and n are tangent to the two null geodesic congruences
everywhere orthogonal to the plane-symmetry generating
Killing vector fields g& and g2, and m and its complex
conjugate are linear combinations of the g, , i = 1,2. As is
shown by Szekeres in Ref. 4 and discussed brieAy in Sec.
II A of Ref. 6, the special geometry of a colliding plane-
wave spacetime allows us to find a local coordinate sys-
tem (u, u, x,y) in which g; =3/Bx' [(x',x )—:(x,y)], and
in which the standard tetrad can be brought into the
form

l =2e~ a
Bu

(2.1)
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2(U„+M, U, ) —U, —V, cosh W —W„=O,
(2,4b)

U„, —U„U, =0,
V„, —

—,'(U„V„+U„V„)
+ ( V „W', + V „W„)tanh W = 0,

W„, —
—,'(U„W„+ U„W„)

—V „V,sinh 8'cosh'' = 0,

(2.4c)

(2.4d)

(2.4e)

where the integrability condition for the first two equa-
tions is satisfied by virtue of the last three, and yields the
remaining field equation

M „,——,
'

( V „V„cosh W —U „U „)—
—,
' W „W„=0 .

(2.5)

The vacuum Einstein field equations for the metric
(2.3) can be written in the form

2( U „„+M „U „)—U „—V „cosh W' —W „2 = 0,
(2.4a)

form the initial wave fronts of the incoming plane waves,
and which, by a readjustment of the null coordinates u
and U if necessary, can be arranged to be the surfaces
Iu =Oj and tu =Oj. The geometry of the resulting
characteristic initial-value problem is depicted in Fig. 1.
The initial data supplied by the plane wave propagating
in the v direction (to the right in Fig. I) are posed on the
u ~ 0 portion of the surface I u =Oj, and the initial data
supplied by the plane wave propagating in the u direction
(to the left in Fig. I) are posed on the v ~ 0 portion of the
surface Iu =Oj. In region IV, which represents the
spacetime before the passage of either plane wave, the
geometry is Aat and all metric coefficients M, U, V, and
8' vanish identically. Now recall our discussions in Sec.
IIA of Ref. 6 about the gauge freedom in the choice of
the (u, v, x,y) coordinate system, and about how this free-
dom manifests itself in the choice of initial data on the
characteristic initial surface tu =Oj U tv =Oj. For ex-
actly the same reasons as described in those discussions,
here as well as in Ref. 6, the choice of the initial data
tM(u =O, v), M(u, v =0)j for the metric function M is
completely arbitrary. As we did in Ref. 6, we will fix this
gauge freedom once and for all by posing our initial data
so that

It is sufficient to solve Eqs. (2.4c)—(2.4e) first and to ob-
tain M by quadrature from the first two equations (2.4a)
and (2.4b) afterward, since Eq. (2.5) as well as the integra-
bility condition for Eqs. (2.4a) and (2Ab) are automatical-
ly satisfied as a result of Eqs. (2.4c)—(2.4e).

The initial-value problem associated with the field
equations (2.4) and (2.5) is best formulated in terms of ini-
tial data posed on null (characteristic) surfaces. A natural
choice for the initial characteristic surface is the surface
made up of the two intersecting null hyperplanes which

M(u =O, v) = M(u, u =0) —= 0 . (2.6)

After making this gauge choice, it becomes clear from
the field equations (2.4) that the initial data on
tu =Oj U Iv =Oj are completely determined by only the
four freely specifiable functions V, (u)= V(u, v =0),
Wi(u ) = W(u, v =0), V2(v)—:V(u =0,u), and
Wz(v)—= W(u =O, v). In other words, the initial data
consist of

~=0 =- r+s=1

(~A) =to,
(r,s)=(-1,

FIG. 1. The two-dimensional geometry of the characteristic initial-value problem for colliding plane waves. The null surfaces

ju =Oj and I v =Oj are the past wave fronts of the incoming plane waves I and 2. Initial data corresponding to waves I and 2 are
posed, respectively, on the upper portions of the surfaces I v =Oj and tu =Oj that are adjacent to the interaction region I. The
geometry in region IV is Hat, and the geometry in regions II and III is given by the metric describing the incoming waves 1 and 2, re-

spectively. The geometry of the interaction region I is uniquely determined by the solution of the above initial-value problem. The
directions in which the various lines of constant coordinates u, v, a, P, r, and s run are also indicated, along with the descriptions
of the initial null surfaces in these di8'erent coordinate systems.
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I Vi(u), W](u), Vz(u), Wz(u)I (2.7)

where V, (u), W, (u) and Vz(v), Wz(u) are C' (and piece-
wise C ) functions for u & 0 and u ) 0, respectively,
which are freely specified except for the initial conditions
V, (u =0)= W, (u =0)= Vz(u =0)= Wz(u =0)=0. The
remaining functions Ui(u)—= U(u, u =0) and Uz(u)=U(u
=O, u) which specify the initial values of the metric func-
tion U(u, u) are uniquely determined, by the initial data
(2.7), through the constraint equations [cf. Eqs. (2.4a) and
(2.4b)]

2U] „„—U] „—V) „cosh 8') + 8 ) „
2U2 „U2, —V2, cosh 8'2 + 8'2

(2.8a)

(2.8b)

with the initial conditions Ui(u =0)= Uz(v =0)=0,
Ui „(u =0)= Uz, (u =0)=0. Note that, if we define two
new functions f (u) and g(v) by

—
U& (u)/2 —U2(v)/2

g(u) = e (2.9)

= —
—,'(V, „cosh W, + W, „), (2.10a)

= —
—,'(Vz, cosh Wz + Wz, ), (2.10b)

we can express Eqs. (2.8) in the form of "focusing" equa-
tions:

with the initial conditions f (0)=g (0)= 1, f'(0) =g'(0)
=0. It immediately follows from Eqs. (2.10) and (2.9)
that

f(u)&1, f'(u)&0 Vu)0,
g(u) &1, g'(u) &0 V v &0,

(2.11a)

Ui(u) &0, U', (u)) 0 V u )0,
Uz(u) )0, U'z(u) )0 ii u )0,

(2.11b)

as long as the initial data (2.7) are nontrivial for both in-
coming waves [i.e., as long as neither V~(u) and W, (u)
nor Vz(u) and Wz(u) are identically zero], and as long as
the initial surfaces Iu =OI and [u =0] correspond to the
true initial wave fronts of the colliding waves [i.e., as long
as either V, (u)WO or W, (u)WO and either Vz(v)%0 or
Wz(v)%0 for all sufficiently small but positive u and v],
both of which conditions we will always assume
throughout this paper.

In Secs. IIIA and IIIB below, when we discuss the
asymptotic structure of the colliding plane-wave space-
time described by Eqs. (2.1)—(2.3), we will need the fol-
lowing equations which express the Newman-Penrose'
curvature quantities in the null tetrad (2.1) and (2.2) in
terms of the metric coe%cients M, U, V, and 8' the
derivation of these equations can be found in Ref. 4:

%o = —2e I[2V „W „sinhW —V „(U„—M „)coshW+ V „„coshW]
—i [W „„—(U „—M „)W„—V „sinhWcoshW]],

%'z = e [M „, —i(V„W „—V„W, ) coshW],

%~ = —
—,
'

I [2V, W, sinh W —V, ( U „—M „)cosh W + V „,cosh W]

+ i[W „, —(U „—M, ) W, —V, sinhWcoshW]I,

P, =%, =0.

(2.12a)

(2.12b)

(2.12c)

(2.12d)

B.Field equations in the (a,P) coordinates o;„, =0, (2.14)

a(u u) —= e (2.13)

then, throughout the interaction region, a(u, u) satisfies

We now construct a new coordinate system in which
the field equations and the initial-value problem associat-
ed with them take simpler forms. The construction and
the properties of this new coordinate system are straight-
forward generalizations of the construction and proper-
ties of the (a,p) coordinates discussed in Sec. II B of Ref.
6. Consequently, here we will be somewhat concise in our
presentation and refer the reader to Ref. 6 for details.

Consider the interaction region (region I in Fig. 1)
where u ) 0 and u ) 0. This region is the domain of
dependence' of the characteristic initial surface
[u =OI U Iv =OI, on which the initial-value problem
defined by Eqs. (2.4) and (2.6)—(2.8) is to be solved. Con-
sider the field equation (2.4c) in the interaction region. It
follows from this equation that if we define

the Oat-space wave equation in two dimensions. Equation
(2.14) suggests that we define the complementary vari-
able, p(u, u), such that

p„= —a„, p, =a, . (2.15)

—Ul ( u) —U&( v)
a(u, v) =e ' +e ' —1,

U2( U) Ul (u)
p(u, v) = e ' —e

(2.16a)

(2.16b)

which complete the construction of the new variables
(a,p). To see that these variables actually define a new
coordinate system, note that, by Eqs. (2.16),

Clearly, the integrability condition for Eqs. (2.15)
satisfied by virtue of Eq. (2.14). The initial-value problem
for a(u, v) is easily solved, and when combined with Eq.
(2.15), it yields the expressions
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dab d/3 = 2Ui'(u)U2'(U)e ' ' du h du .

(2.17)

Therefore, from Eqs. (2.lib), (2.17), and the inverse func-
tion theorem, ' it follows that the functions (a, /I, x,y)
constitute a regular coordinate system wherever the coor-
dinate system (u, U, x,y) is regular in the interior of the in-
teraction region, where u )0, U &0. On the other hand,
by Eq. (2.17) and the initial conditions for Eqs. (2.8), the
coordinates a,P are singular along the initial null surfaces
[u =0] and [U =OJ. In other words, the singularities of
the coordinate system (a,P, x,y) consist of the singulari-
ties of the (u, u, x,y) coordinates (when there are any), and
the singularity along the initial characteristic surface
[u =0] U [U =OJ. Since the only place in the interaction
region where the coordinates (u, u, x,y) can develop
singularities is the "surface" Ia=OJ (see Sec. III A), it
follows that the coordinate system (a,P, x,y) covers the
domain of dependence of the initial surface
t u =0] U I U =0] regularly except for the singularities on
Iu =0] and tu =OJ.

The coordinates (a, /3, x,y) enjoy a number of proper-
ties which make them useful in studying the field equa-
tions for colliding plane waves. We will not list these
properties here as they are discussed in detail in Sec. II 8
of Ref. 6; instead, we will proceed directly with the
analysis of the initial-value problem (2.4) and (2.6)—(2.8)
in the new coordinate system (a, /3, x,y). First we note the
transformation rules

(2.18a)

(2.18b)

and their inverses

8 Bp CI„B
1

+,u+, V

(2.22)

(2.23a)

1
W ~ + —W —W pp

= ( V —V p ) sinh W cosh W .

(2.23b)

To obtain the remaining field equations, we proceed as
follows: .First we note that after defining a new function P
by

e = 4ce U„U, , (2.24)

where c is an arbitrary constant having the dimensions of
(length) [we will fix c later with our normalization con-
dition Eq. (2.28)], we can rewrite the field equations (2.4a)
and (2.4b) in the form

2P „=3 U „+ ( V „cosh W + W „),1

, Q

2P, =3U, + (V, cosh W+W„).1

, V

(2.25a)

(2.25b)

Combining Eqs. (2.25) with Eqs. (2.18) and using Eq.
(2.13) we obtain, after some rearrangements,

(2P + 3lna) = —a[(V + V p ) cosh W

Combining Eq. (2.22) with the field equations (2.4d) and
(2.4e) and using Eqs. (2.18) and (2.19), we obtain the field
equations satisfied by the amplitudes V and 8' in the
(a,P, x,y) coordinate system:

1
V + —V —V pp

= 2(V pW p
—V W ) tanhW,

1
a

CX

1 + a.1

CX~ CXV
(2.19a)

+W +Wp ], (2.26a)

(2P+31na) p= —2a( V Vpcosh W+W Wp) .

1 a.
O', u

(2.19b)

which are derived using Eq. (2.15). [For our notation, see
the explanations following Eqs. (6.2.31) and (6.2.34) in
Ref. 6.] A short computation involving Eqs. (2.18) and
(2.19) now gives

(2.26b)

Equations (2.26) suggest that it will be convenient to
define the combination 2P + 31na as a new variable,
which, together with the variables V and W, would
uniquely determine the metric in the (a,/I, x,y) coordi-
nate system. Thus, after first introducing the two "nor-
malization" length scales I, and l2 by the equations

1
du dU

4o. „a, ( —da +d/3). (2.20) 1 1
l&=, l2=2U „(uo~vo) 2U (uo~uo)

(2.27a)

When inserted into Eq. (2.3) and combined with Eq.
(2.13), Eq. (2.20) yields the expression

( —da +d/3)
4o, U„U,
+ a [coshW(e dx + e dy ) —2sinhWdx dy]

(2.21)

for the spacetime metric, which is valid throughout the
interaction region (region I in Fig. 1). Next, another short
calculation using Eqs. (2.18) and (2.19) together with Eq.
(2.14) gives

where (u o, Uo ), uo )0, Uo )0 is an arbitrary, fixed point
in the interior of the interaction region, we define a new
function Q (a, /3) by the relation

(2.27b)

Using Eqs. (2.27a), we then fix the constant c which
occurs in Eq. (2.24):

c = l, l2 . (2.28)

Note that the length scales l, and lz are determined by
Eqs. (2.27a) in a well-defined manner, since by Eqs. (2.13)
and (2.16a)
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U(u, v) = —ln a(u, v) Q p
= —2a( V Vpcosh W+ W Wp ), (2.30b)

so that

U1 ( Q) U2( v)—ln(e ' +e ' —1), (2.29)

1 —U1(Q)
U „(u,v) = Ui'(u)e

Q, U

—U (v)
U „(Q,U) = Ui'(v)e

a(u, v)

and, therefore, by Eqs. (2.11b), U „(u,v)) 0, U, (u, v)) 0
for any point (u, v) in the interior of the interaction re-
gion, where u )0, v )0, and where [as long as (u, v) is in
the domain of dependence of the initial surface
[u =0}U [v =0}]a(u, v) )0. It is now easy to obtain the
remaining field equations, satisfied by the new variable
Q(a, P): Combining Eq. (2.27b) with Eqs. (2.28) and
(2.24), and then using Eqs. (2.26), we find

where the integrability condition for Eqs. (2.30) is
satisfied by virtue of the field equations (2.23) for V(a, p)
and W(a, P).

We now combine Eq. (2.27b) with the expression (2.21)
for the metric in the interaction region. This gives us the
expression of the interaction region metric in terms of the
three unknown variables V, W, and Q. Then, by using the
initial value of Q that follows from our normalization
conditions Eqs. (2.27), we construct the unique solution
Q(a, p) of the field equations (2.30) by quadrature. As a
result, we obtain the following expressions for the metric
and the field equations, valid in the interaction region of
any arbitrarily polarized colliding plane-wave spacetime:

g =e & p 2
( —da +dp2)

l, $~

&a
+ a [cosh W(a, P) (e i'~ '~~ + e i' i3'dy& )

Q = —a[(V + V& )cosh W+W + W& ], —2sinhW(a, P) dx dy], (2.31)

(2.30a) where V, W, and Q satisfy the field equations

V + —V —
Vpp = 2(VgWii —V W ) tanhW, (2.32a)

W + —W —
W&&

= ( V —V& ) sinhWcoshW .

Q(a P) = f '
[
—a[(V +V )cosh W+ W + W ]da

0' 0

—2a(V V&cosh W+ W W&)dP j+ 2M(ao, Po ) + 3lnao .

(2.32b)

(2.33)

Here, ao—=a(uo, vo) Po= P(uo vo) M—(ao~Po)—=M("o~rvo)~
and C is any (differentiable) curve in the (a,P) plane that
starts at the initial point (ao, po), and ends at the field
point (a,p) at which Q is to be computed. The result of
the integral in Eq. (2.33) depends only on the end points
of the curve C, since the integrability condition for Eqs.
(2.30) is satisfied by virtue of the field equations (2.32).

Equations (2.31)—(2.33) summarize the initial-value
problem for colliding plane waves in a conveniently com-
pact form. The only unknowns that must be found by
solving partial differential equations (PDE) are the func-
tions V(a, /3) and W(a, p) which satisfy the nonlinear sys-
tem of coupled hyperbolic PDE (2.32). Once V(a, P) and
W(a, p) are known, Q is determined by the explicit ex-
pression (2.33) up to an unknown additive constant,
which —by suitably choosing the initial point (u„,vo) [or
(ao, Po)]—can be made arbitrarily small. The only disad-
vantage of the formalism (2.31)—(2.33) is the coordinate
singularity that the (a,p) chart develops on the charac-
teristic initial surface [u =0}U [v =0}. This coordinate
singularity causes, among other things, the function
Q(a, p) to be logarithmically divergent (to —oo) on the
surfaces [u =0} and [v =0}.However, it is still possible
to set up a well-defined initial-value problem for the func-
tions V(a, p) and W(a, p), using initial data posed on the
same characteristic surface [u =0}U [v =0}. In addi-

[u =0}= [a —P= lj, [v =0}:—[a+P = lj .

(2.34)

Equations (2.34) suggest introducing "characteristic"
coordinates

r =—a —p,
so that the initial null surfaces become (see Fig. 1)

(2.35)

[u =Oj = [r = lj, [v =0}=[s=l (2.36)

The initial-value problem for the functions V and 8'con-
sists of the field equations (2.32), and the initial data on
the characteristic initial surface [r =1}U [s =1} given

by the freely specifiable functions V(r, s =1), W(r, s =1)
and V(r =l,s), W(r =l, s). More precisely, the initial
data consist of

tion, since we are primarily interested in the behavior of
spacetime near the singular "surface" [a =0 j well away
from the coordinate singularity on the initial null sur-
faces, the above formalism based on (a,p) coordinates is
well suited to our objectives.

To understand how to pose initial data for the field
equations (2.32), first note that [cf. Eqs. (2.16)] in the a,p
coordinates the initial null surfaces [u =0} and [v =0}
are expressed as (Fig. 1)
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V(r, 1), W(r, 1), V(l, s), W(l, s) j, (2.37)

(2.38)

where V(r, 1), W(r, 1) and V(l, s), W(l, s) are C' (and
piecewise C ) functions for rH( —l, l] and sH( —1, 1],
respectively, which are freely specified except for the
initial conditions V(r =1,1)=W(r =1,1)=V(l,s =1)
= W(l, s =1)=0.

There is a one-to-one correspondence between the ini-
tial data of the form (2.7), and initial data of the form
(2.37) for the initial-value problem of colliding plane
waves. When initial data are given in the form of Eq.
(2.7), i.e., when the functions Vi(u), Wi{u) and V2(v),
W2(v ) are specified, initial data in the form of Eq. (2.37)
are uniquely determined in the following way: First, Eqs.
(2.8) are solved with the given data V&(u), W, (u) and
Vz(v), W2(v), and the functions U, (u ) and U2(v) are ob-
tained as the unique solutions [cf. the discussion follow-
ing Eqs. (2.8)]. Then, using the identities [cf. Eqs. (2.16)
and Eq. (2.35)]

—U)(u) —U, (U)
r =2e ' —1, s=2e ' —1

(2.39)

Finally, the initial data I V(r, 1), W(r, 1), V(l, s),
W( l, s) j in the form (2.37) are determined uniquely from
the data ( V, (u), W&(u), V2(v), W2(v) j by

V(r, l) = V, [u =u(r)], W(r, 1) = Wi[u =u (&)] .
(2.40)

V( l, s) = Vz [v =v (s)], W( l, s) = W2[v =v (s)] .

Conversely, when initial data are given in the form of Eq.
(2.37), i.e., when the functions V(r, 1), W(r, 1) and
V(l, s), W(l, s) are specified, initial data in the form of
(2.7) are uniquely determined in the following way: First,
the differential equations

along the initial null surfaces Iu =Oj and Iv =Oj, u(r)
and v (s) are defined as the unique solutions to the impli-
cit equations

—U2[v(s)]
s =2e ' —1.

2U, „„—U, „=4e ' Ui „ I[V„(r=2e ' —l, l)] cosh W(r =2e ' —l, l) + [W„(r=2e ' —l, l)]
(2.41a)

2Uz „—Uz, = 4e ' U2, I[V,(l,s =2e ' —1)] cosh W(l, s =Ze ' —1) + [W, (l, s =2e ' —1)]

(2.41b)

for the functions Ui(u) and Uz(v) are solved with the ini-

tial conditions U, (u =0)= Ui(v =0)=0, Ui „(u =0)
= U2, (v =0)=0 [cf. Eqs. (2.8)]. Then, using Eqs. (2.39),
the initial data I V, (u), W, (u), V2(v), Wz{v)j in the
form (2.7) are determined uniquely from the data

I V(r, l), W(r, l), V(l, s), W(l, s)j by

V, (u) = V(r =2e ' —l, l),
W, (u) = W(r =2e ' —l, l),
Vz(v) = V(l, s =2e ' —1),

(2.42)

III. ASYMPTOTIC STRUCTURE OF COLLIDING
PLANE-WAVE SPACETIMKS NEAR a =0

A. Singularities and horizons at a=0:
A generalized inhomogeneous Kasner asymptotic structure

It is clear from the expression (2.31) of the metric that
the "surface" [a=Oj represents some kind of singularity
[either a spacetime singularity or (at least) a coordinate
singularity] of the colliding plane-wave spacetime. In
this section and in Sec. III 8, we will study the asymptot-
ic behavior of the colliding plane-wave metric (2.31)—

W2(v) = W(l, s =2e ' —1) .

This completes the formulation of the initial-value prob-
lem for the system of coupled nonlinear hyperbolic PDE
(2.32).

I

(2.33) near this singularity [a=Oj.
Before proceeding with the analysis of asymptotic

structure, recall the conclusions of Sec. IIB in Ref. 6,
where the field equations for colliding parallel-polarized
plane waves were studied in (a,P) coordinates. [Compare
Eqs. (6.2.43) and (6.2.44) with Eqs. (2.31)—(2.33) above. ]
There the field equations reduced to a single linear hyper-
bolic PDE for V(a, P) [Eq. (6.2.44a)], followed by a quad-
rature for Q(a, /3) [Eq. (6.2.44b)] similar to Eq. (2.33)
above. [The readers can rederive these equations by sim-
ply putting W=O in Eqs. (2.31)—(2.33).] It is well known
that, for linear hyperbolic PDE of the kind (6.2.44a),
solutions with sufficiently smooth initial data exist global-
ly (see, for example, Secs. 5.2 and 5.3 of Ref. 18 and p.
115 in Sec. 4.2 of Ref. 19). Therefore, it was guaranteed
by the linearity of Eq. (6.2.44a) in Ref. 6 that the field
equations for V and Q had unique global solutions defined
throughout the domain of dependence of the initial sur-
face, i.e., throughout the interaction region (a) Oj. In
fact, a general solution (Riemann function' ) for Eq.
(6.2.44a) could be found in closed form [Eq. (6.2.59)],
which yielded an explicit representation [Eq. (6.2.60)] of
the global solution V(a, P) (for a) 0) in terms of initial
data. This assured that the singularities [or Killing-
Cauchy horizons (coordinate singularities)] created by
colliding parallel-polarized plane waves always lie at or
beyond the surface Ia=Oj; this surface is in fact the
boundary of the domain of dependence, and as Eq.
(6.2.43) makes clear, some kind of singularity is always
present there.
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In contrast with the parallel-polarized case, the field
equations (2.32) for arbitrarily polarized colliding plane
waves are nonlinear. It is a standard result (see, e.g. , Ref.
20 and Sec. VI.6 of Ref. 21) that quasilinear hyperbolic
PDE's of the form (2.32) always have unique, local solu-
tions, defined in a neighborhood of the initial surface on
which regular initial data are posed. On the other hand, it
js also well known that in general these local solu-
tions do not exist globally; i.e., in general solutions of
nonlinear hyperbolic PDE's blow up or otherwise break
down in finite time within the interior of their domain of
dependence. [A particularly lucid example of this break-
down-in-finite-time phenomenon for solutions of non-
linear hyperbolic PDE s is discussed by Klainerman, fol-
lowing his Eq. (13) in Ref. 23.] We also note in this con-
nection that thanks to the recent work of Klainer-
man, ' ' ' Shatah, Sideris, Klainerman and Ponce,
and Christodoulou, it is now known that for initial data
which are sufticiently "small" in some appropriate sense,
solutions of nonlinear hyperbolic PDE's of the kind (2.32)
do exist globally, i.e., throughout the domain of depen-
dence of the initial surface. (See Appendix A for a some-
what more detailed discussion of this point. ) In any case,
as we have also discussed in the Introduction (Sec. I), if
the global existence of solutions with arbitrary (not neces-
sarily small) initial data were false for the field equations
(2.32), then this would have the disturbing consequences
that (i) colliding nonparallel-polarized plane waves might
create singularities in the interior of the interaction re-
gion where a )0, and (ii) these singularities, if present,
would not be analyzable by studying the asymptotic
spacetime structure near o.'=0. Therefore, before the
asymptotic-structure analysis of this section can be relied
on to fully describe the singularity structure of colliding
plane-wave spacetimes, it is necessary to have a proof
that solutions of Eqs. (2.32) exist globally for all initial
data.

Obviously, one way to prove this global existence result
would be to obtain a general solution (Riemann func-
tion' ) for Eqs. (2.32), in the same way as the Riemann
function [Eq. (6.2.59)] of Ref. 6 yielded the explicit ex-
pression (6.2.60) of the solution V in terms of initial data,
and thus provided a constructive proof for the global ex-
istence of V in the parallel-polarized case. It seems un-
likely, however, that such a general solution can be found
for the nonlinear system (2.32); hence the global existence
of solutions for (2.32) must be proved using nonconstruc-
tive arguments. Indeed, such a nonconstructive proof can
be provided, as we discuss in detail in Appendix A,
thanks to some very special properties possessed by the
field equations [especially the existence of the positive-
definite conserved energy form Eq. (A 18)]. Thus, our dis-
cussions in Appendix A prove that the singularities and
Killing-Cauchy horizons (see below) created by colliding
plane waves always lie at or beyond I a =0];no singulari-
ties ever occur in the interior of the interaction region
where a) 0. [Incidentally, Appendix A also proves as a
special case that the global solution (6.2.60) for V(a, P)
coupled with W= 0 is the unique solution of Eqs. (2.32)
corresponding to initial data (2.37) with W(r, 1)
= W(l, s) = 0; i.e., colliding plane waves which are ini-

tially parallel polarized remain parallel polarized every-
where after they scatter each other. ] Furthermore, in Ap-
pendix B we use the results of Appendix A to prove that
the spatial (P) derivative terms in the field equations
(2.32) are asymptotically negligible compared to the time-
like (a) derivative terms as the singularity Ia=OI is ap-
proached. As we will heavily rely on these results in the
discussions below, we suggest to those readers who desire
greater logical completeness that they read Appendixes A
and B at this point, before proceeding with the rest of
Secs. III.A and III B.

Since as a~O the P derivative terms in Eqs. (2.32) are
asymptotically negligible compared to the o.-derivative
terms (Appendix B), the asymptotic behaviors of V and
W near a=O are identical with those of the solutions of
the ordinary differential equations

V + —V = —2V W tanh W,1 (3.1a)

1
W + —W = V sinhWcoshW (3.1b)

obtained from Eqs. (2.32) by ignoring all terms with P
derivatives.

Consider first Eq. (3.1a) for V. Dividing both sides by
V and integrating, we obtain

ln ~a V
~
+ 2 ln (cosh W) = C, (3.2)

which immediately yields

C
ncosh W

(3.3)

where

lim H, (a,P) = 0 .
a~O

(3.4b)

Equations (3.4) determine the asymptotic behavior of
V(a, P) once the asymptotic behavior of W is known.

To find the asymptotic behavior of W(a, P), consider
Eq. (3.1b) for W and insert into it the expression for V
given by Eq. (3.3); this yields

1—(aW ) =, sinhW .
a ' ' n2cosh3 8' (3.5)

Multiplying both sides of Eq. (3.5) by 2a W and in-

tegrating once after collecting all terms on the left-hand
side, we obtain

2

(aW ) + =C=ez
cosh W

(3.6)

C

[Here and henceforth C will stand for an arbitrary
(indefinite) constant. ] Clearly, the constant C in Eq. (3.3)
will in general depend on 13. Thus, we rename the con-
stant C of Eq. (3.3) as e, (P), and then apply a further in-

tegration to obtain

V(a, P) = e)(P) f 2
+ 5,(P) + H, (a,g),

acosh W

(3.4a)
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where we have renamed the P-dependent constant C as
e2(P). We will always assume, without loss of generality,
that by convention ez ~ 0. Equation (3.6) can then be
rewritten in the form

8cx d8'
[e2 —(e, /cosh W)]'i

is obtained by combining Eqs. (3.9) and (3.10) with the
field equation (2.33). The final result can be described as

Case (a): Q(a, p) = —e, (p}lna + p(p) + I (a,p),
(3.11a)

Case (b): Q(a, p) = —e (p) lna + p, (p) + L(a,p),

= 1 cosh''d8'
[ oh W —(e'/e'"''

The integration of Eq. (3.7) is elementary, and it yields
the following two possibilities for the asymptotic behav-
ior of W(a, P) near a=O:

Case (c): Q(a, P) = p(P) + L(a,P),
where

lim L(a,P) —= 0,
a~O

(3.11b)

(3.11c)

(3.12)

W(a, P) = 52(P) a ' + H2(a, P)

in which case [e,(P)/ez(P)] must equal 1,

W(a, P) = + e~(P) lna + 5~(P) + H2(a, P)

in which case [e,(p)/e2(p}] is arbitrary, where

lim H2(a, P) = 0 .
a~O

(3.8a)

(3.8b)

(3.8c)

V(a, P}= e, (P) lna + 5&(P) + H, (a,P),
W(a, P) = 5,(P) a ' + H, (a,P) .

(3.9a)

Case (b). In this case [E&(p)/e2(p)] is arbitrary, and
e2(p) )0:

Combining Eqs. (3.8) with Eqs. (3.4), we find that there
are three and only three distinct possible asymptotic be-
haviors for V and 8' near +=0. We can express these
three possible cases in the following final form.

Case (a). In this case [e,(P)/ez(P)] must equal 1, and
e2(p) &0:

but L(a,p) does not necessarily have the general form
(3.10).

With Eqs. (3.9)—(3.12), we have completed our analysis
of the asymptotic forms of the metric functions V, 8'
and Q near a =0; at this point readers might find it useful
to compare Eqs. (3.9)—(3.12) with the corresponding Eqs.
(6.3.4)—(6.3.7) of Ref. 6 for the parallel-polarized case.

Now we are ready to analyze the asymptotic behavior
of the arbitrarily polarized colliding plane-wave metric
(2.31) near the singular surface [a=OI. We first note
that the x-y part of the metric (2.31), when considered as
a two-dimensional symmetric tensor field on
Iu = const, U = constI sections, is positive definite and
nondegenerate; i.e., it is a Euclidean metric. (That this
must be the case becomes clear when one recalls that by
the definition of plane symmetry ' the Killing vectors
8/Bx and 8!By must span a spacelike two-dimensional
plane in each tangent space. Only asymptotically, as
a~O, can this 2-plane become null. ) Consequently, it is
possible to diagonalize the x-y part of the metric by using
two spacelike, orthonormal 1-forms defined throughout
the interaction region. When this is done, we find that the
metric (2.31) can be brought into the diagonal form

e2(p)

+ 5,(P) + H, (a,P),
W(a, P) = + e2(P) lna + 5z(P) + H2(a, P) .

l

Case (c). In this case ez(p) =e, (p) =0:

(3.9b)

Q(a, P)/2
( da2 + dP2 }

l, l2

V'a

+a(co S co +Ql S co )

with the orthogonal spacelike 1-forms

(3.13a)

V(a, P) = 5,(P) + H, (a,P),
W(a, P) = 52(P) + Hi(a, P) .

(3.9c)
P/2

P dx — dy, (3.13b)
(2 sinh 0')'

In all three cases (a) —(c) above the terms H;(a, p) have
the general form (i —= 1, 2)

e
—V/2

(2 sinh V)'~
dx + P dy, (3.13c)

H;(a, P) = g c"k(P) a"
k=2

where,

P—:( sinh P' + sinh V cosh W }' (3.13d)

+ g d"kr(P) a" ( lna )'.
k=2, 1=1

(3.10) lP' —= ln [ cosh V cosh W + ( cosh V cosh W —1 )
' ] .

[Equation (3.10} follows from the expressions (3.3) and
(3.6) for V and W . In fact, Eqs. (3.3) and (3.6) con-
strain the form of H;(a, p) even further than Eq. (3.10),
and we will use these extra constraints below in deriving
the asymptotic form of Q(a, p) near a =0.]

The asymptotic behavior of the metric function Q(a, p)

(3.13e)

A short computation using Eqs. (3.13) shows that when
considered as functions of the variables V and 8' the 1-
forms co' and co are discontinuous at 8'=0; the 1-form
co' (as well as co ) tends to two different limits as W~O
depending on whether 8'—+ +0 or W~ —0. In contrast,
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the tensor field co' cu'+ co co depends on V and 8'
smoothly; in fact

co m +m co ~e dx +e dy

as &~+0.

Case (a):

g(p) ——16 l1l2 e
p(P—)/2 &) dp2

[&) '(P)+ 3]'
61(P) 2P ) 2

—6)(P) 2P~+ e t dx + e ' t dy, (3.1/a)
Therefore, the discontinuities in the dependence of co' on
V and 8 are unimportant when analyzing the asymptotic
structure of the spacetime geometry (3.13a) near a=O.

We now combine Eqs. (3.13) with Eqs. (3.9)—(3.12), and
obtain the following final results for the asymptotic form
of the metric (2.31) as a~O.

Case (a). In this case [e)(p)/e2(p)] must equal 1, and
e2(p) )0:

(P) —1]/2
g(P) —/ l2e "'P' ct '

(
—da + dP )

6](P) 1 +E'](P) 2 61(P) 1 e](P)+e ' o. ' dx +e ' a ' dy

(3.14a)

where

[,'(P)+ 3]/4t:—a '

e) (P) —1 2[l+e, (P)]
e) (P)+3 e, (P)+3
2[1—e, (/3) ]

P2( )=
e, (P)+3

Case (b):

(3.15b)

(3.15c)

Case (b). In this case [e)(p)/e2(p)] is arbitrary and
e2(p) &0:

[e' (P) —1]/2
g(P) / $ e P(P)/2 ct 2

(
—dc22 + d/32 )

g(p) ——16l, l e
dt2+ /) l2 e "'p)/'t ' dp'

[&2'(P)+31'
+6 (P) 2p+ e t dX(p)

+ cC( co' co'+ co e co ),
+ 52(P)/2 —e2(P)/2 51(P)/2

+6 (p)
e

cosh 5, (P) (p)
2 dp 2 (3.168)

co (p)—

—5((P)/2+e '
dy

+6,(P)/2
e e2(P)/2 —51(P)/2

ct +e dx
cosh5, (P)

( .1 b) where

[e2 (p)+3]/4t=—a (3.16b)

51(P)/2+e' dy

Case (c). In this case e2(p) =e, (p) =0:

g (p) / / e
—p(P)/2 c2

—1/2
( d(x2 + dp2 )

+ cl(co S co + co S co )

and

P3(P) =

P2(P) =

e2 (p) —1

e2 (p)+3
2[1—e2(p)]

e2 (p)+3

2[1+e2(p) ]
P)( )=

e,'(P)+ 3
(3.16c)

s(/3)
( ) d

[ 2(p) 1]1/2

sinh52(/3)

q(p)

1

[ 2(p) 1 ]1/2

sinh52(P)
dx + q(P) dy

q

(3.14c)
1/2

5)(P)/2 —51(P) /2
X(p) =— e ' x+e '

y
—51(P)/2 51(P)/2

Y'(p)
—= +e ' x+e '

y
(3.16d)

Case (c):

g(p) ———"/)/2e "'p'dt + I)l2e "'p' t 'dp
1 2

q(P) = + sinh5)(P) cosh52(P)
s (p) —s(p)

2s )

s (p)—:cosh51(p) cosh52(p)

+ [ cosh 5,(P) cosh 52(P) —1 ]'
(p)

~2dy 2

+ ''P' t" dX '2

s (P) —1

+ 1

s (P) —1
(3.17a)

V

In all three cases (3.14a)—(3.14c), the asymptotic struc-
ture of the metric is generalized inhomogeneous Kasner.
The following equations are derived from Eqs. (3.14) in
order to express this inhomogeneous-Kasner structure
more precisely [compare also Eqs. (6.3.14)—(6.3.19) of
Ref. 6].

where

3/4

p)(» = -', p, (p) = -', ,

(3.17b)

(3.17c)
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sinh52(P }
X(p~ = q (P}x

q(P)

sinh5z(P)
x + q(P)y

q

(3.17d)

Equations (3.15)—(3.17}demonstrate that at a fixed value
of P the asymptotic limit of the spacetime metric (2.31)
has the general form of a vacuum Kasner' solution:

g = —adt + bt 'dP + ct 'dX + dt 'dY

Kasner solution ) and [ t =0] is a nonsingular Killing-
Cauchy horizon in the Kasner spacetime. Similarly, we
claim that if any of the two exponents p, (P), p2(P) is
identically equal to 1 across an interval (P&,Pz) [the ex-
ponent pi(P) can never equal 1, see Eqs. (3.15c) and
(3.16c)], then the surface [a=0, P, (P&P2] is a Killing-
Cauchy horizon for the colliding plane-wave spacetime
(2.31). More precisely, we claim the following.

(i) In case (a), the surface [a=O, P&(P&P2] is a
Killing-Cauchy horizon if and only if

(3.18)
v p e (p„p, ). (3.20a)

where a, b are constants having the dimensions of
(length), c, d are dimensionless constants, t, P are di-
mensionless coordinates, and the exponents p&, k =1,2, 3
in all cases satisfy the Kasner relations [cf. Eqs. (3.15c),
(3.16c), and (3.17c)]

In this case, the spacelike Killing vector that becomes
null on the horizon is either B/Bx (when e, = +1) or
B/By [when e, (P) =——1].

(ii) In case (b), the surface [a=O, /3i &P&/3z] is a
Killing-Cauchy horizon if and only if

~2(p)—:1, 5,(P):—const:—5,

(3.19)

The coordinates X, Y are asymptotically constant linear
combinations [cf. Eqs. (3.16d) and (3.17d)] of the space-
like (Killing) coordinates x and y that determine the
asymptotic Kasner axes along which the exponents p&
and pz are defined (the exponent pi is always associated
with the P axis). In fact, it becomes clear from Eqs.
(3.15)—(3.17) that in general these asymptotic Kasner
axes (defined by the coordinates X~p~, Y~p~ ), like the Kas-
ner exponents pk(P), depend on the spatial coordinate P
across the singularity: hence the rationale for our use of
the term "generalized inhomogeneous Kasner" to de-
scribe the asymptotic structures (3.15)—(3.17).

If all of the exponents pk are different from 1 [or
equivalently by Eqs. (3.19) all are diff'erent from 0 ], then
the Kasner spacetime (3.18) possesses a curvature singu-
larity at t =0. (For a brief description of the geometry of
the Kasner solution see Sec. IIIA of Ref. 6.) It follows
that when pk(P) are similarly all different from 0 in any
of the three cases (a) —(c) [Eqs. (3.15)—(3.17)], the collid-
ing plane-wave spacetime (2.31) possesses a curvature
singularity at (a =0,P). Conversely, when any of the pi,
in Eq. (3.18) is equal to 1 (in which case both other ex-
ponents are zero), the metric (3.18) is fiat (a degenerate

I

't/p E (p„/32).
(3.20b)

In this case, the spacelike Killing vector that becomes
null on the horizon is

1

2 cosh5,

—5 /2 Q 6 /2 ()+e +e

(3.21)

In case (c), (a=0,P) is always a curvature singularity
since the exponents pk (P) are all different from zero [Eqs.
(3.17c)].

To prove the above claims (i) and (ii), we proceed ex-
actly as we did in Ref. 6: First, we obtain the expressions
of the Newman-Penrose curvature quantities (2.12) in the
(a,P) coordinates. This can be done in precisely the
same way as that explained in Sec. III 8 of Ref. 6; it gives
(note that as in Ref. 6 the quantity a „ in Eqs. (3.22)
below is finite and nonvanishing as a —&0 [cf. Eqs. (2.16a)
and (2.11b)]; consequently it can be regarded as a con-
stant when analyzing the asymptotic behaviors of %'2, %0,
and %~ near the singularity)

e Q(~,P)/2 1a' Q —Q pp
—

2
—4i (VpW —V Wp )coshW

1 2
(3.22a)

1

Sl, l2

e~' ~'a 3
coshW —,(V —Vp) Q —Q p+ — + V + Vpp

—2V p
U7

+ 2 sinh W ( V —V p) ( W —W p)

—i —,'(W —Wp) Q —Q p+ —+ W + Wpp
—2W p

—( V.'+ Vp' —2V. Vp)sinhWcoshW (3.22b)
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%'4 = —
—,
' a, coshW —,'(V + V&) Q + Q &+—3 + V + Vpp+2V

+ 2sinhW'(V + V&) (W + Wii)

+i —,'(W + Wp) Q + Q p+—3 + 8' + 8'
pp + 28' p

—( V + Vp + 2V V& ) sinhWcoshW (3.22c)

Next, we replace Q and Q &
in Eqs. (3.22) with their

values in terms of V and W given by Eqs. (2.30), and then
substitute for V and W their asymptotic limits Eqs. (3.9)
and (3.10) where the coefficients c "k and d "k& are ob-
tained in terms of e„e2, 5, 52 upon inserting Eqs. (3.9)
into the field equations (2.32) [compare Eqs. (6.3.38) of
Ref. 6]. Inspection of the resulting asymptotic expres-
sions for the curvature quantities yields the following
conclusions [compare Eqs. (6.3.33)—(6.3.35) of Ref. 6].

(i) The surface t a =0, /3, (/1 (/32 I is a (connected)
Killing-Cauchy horizon if and only if one of the two con-
ditions (3.20a) or (3.20b) is satisfied throughout (/3„/3z).
When such a Killing-Cauchy horizon 4 forms, the curva-
ture quantities 0'2, +0, and %4 are finite and well behaved
(but in general nonzero) through 4 as a~O at any
/3 E (/3„/32).

(ii) Suppose the point p
—= (a=O, /3=/3o) does not be-

long to a Killing-Cauchy horizon, i.e., suppose there is no
interval (P, , /3z) containing /3O throughout which one of
the conditions (3.20a) or (3.20b) is satisfied. Then p corre-
sponds to a curvature singularity of the colliding plane-
wave spacetime except when one of the following is true
at p: In case (a), (e/3 )0= +1, 'e(/3 )o= e,"(Po) = 0 . In
case (b), e2(/30) = 1, e2'(Po) =e~"(Po) =5, '(/3O)=5, "(Po)
= 0. Although under any one of the above cir-
cumstances p is not a curvature singularity (%'2, qlo, and
%~ are finite as a —+0 at P=/3o), it still corresponds to a
spacetime singularity since there is no topological neigh-
borhood around p which is completely free of neighbor-
ing curvature singularities (cf. the assumption that p does
not belong to a Killing-Cauchy horizon).

It has become clear in this section that the asymptotic
behavior of a general colliding plane-wave spacetime near
its singularity is completely characterized by the four
functions ei(/3), e2(/l), 5&(/1), and 52(/3). In contrast with
Ref. 6 where the corresponding functions e(/3) and 5(/3)
in the parallel-polarized case could be expressed explicitly
in terms of initial data [Eqs. (6.3.13) and (6.3.12b)], here
such expressions cannot be found in general due to the
absence of a Riemann function for Eqs. (2.32). Conse-
quently it is not in general possible to relate the asymp-
totic Kasner axes and exponents along the singularity
a =0 to the initial data (2.37) posed along the wave fronts
of the incoming plane waves. In Appendix C, when we
discuss some intriguing aspects of the field equations
(2.32) which might some day prove useful in the search
for a Riemann function, we also indicate an interesting
special case in which one of the asymptotic structure

functions can be expressed explicitly in terms of the ini-
tial data posed by the colliding waves [Eq. (C6)].

B.Instability and nongenericity
of the Killing-Cauchy horizons that occur at a =0

Our analysis in the previous section proved that when-
ever the "surface" [a =OI is free of Killing-Cauchy hor-
izons, it represents a curvature singularity of the colliding
plane-wave spacetime (2.31). In fact, that this must be
true in general in any plane-symmetric spacetime is the
content of a singularity theorem due to Tipler. " (A dis-
cussion of this theorem emphasizing its relevance to
Killing-Cauchy horizons as well as to singularities can be
found in Sec. III 8 of Ref. 12.) More precisely, Tipler's
theorem proves that any nonfat, plane-symmetric space-
time in which the null convergence condition'" holds is
either null-geodesically incomplete or possesses a region
where its strict plane symmetry ' breaks down, ' i.e., the
spacetime either contains singularities (where null geo-
desics terminate) or Killing horizons (where at least one
of the plane-symmetry-generating spacelike Killing vec-
tors becomes null).

The horizons 4 that occur in colliding plane-wave
spacetimes are Killing horizons since as discussed in Sec.
III A [Eqs. (3.20) and (3.21)] there exists a spacelike, con-
stant (hence Killing) linear combination of the Killing
vectors B/Bx and B/By which becomes null on S'. As a
consequence, on 4' the Rosen-type coordinates (u, u, x,y)
[and also the coordinates (a, /3, x,y)] break down, devel-
oping coordinate singularities similar to those developed
by (t, /3, X, Y) at the surface I t =OI of the degenerate (fiat)
Kasner solution (3.18). As another consequence of this
breakdown of strict plane symmetry, the past-directed
null generators of 4 (which are tangent to the Killing
direction that becomes null on g) fail to intersect the ini-
tial characteristic surface JV —= I u =OI U I U =OI; i.e., S is
outside the domain of dependence' D (JV) of JV. In
fact, it is easy to see that 4 constitutes precisely the fu-
ture boundary of D+(A'); more precisely, the Killing
horizon 4 is at the same time a future Cauchy horizon for
the initial characteristic surface A'.

It is well known that spacetime can be smoothly ex-
tended across the Killing-Cauchy horizon 4 in infinitely
many diferent ways. The geometry of spacetime beyond
S is not uniquely determinable by the initial data posed
on JV; global predictability breaks down. Since these
causal properties of the horizons S and their implications
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were discussed extensively in Sec. III C of Ref. 6 (see also
Fig. 2 of Ref. 6), we will not repeat those discussions
here. We will only note, as a particularly relevant impli-
cation of the breakdown of predictability, that the oc-
currence of horizons in the collisions of gravitational
plane waves might appear to diminish the predictive
power of Tipler's singularity theorem: If a horizon forms
existence of singularities cannot be proved; in fact when
horizons are present the existence of singularities is false:
there are examples of exact solutions for nonvacuum
colliding plane waves which have everywhere-
nonsingular extensions beyond their Killing-Cauchy hor-
izons.

We also recall our discussion in Ref. 6 of the strong
cosmic censorship conjecture, ' and of how, when suit-
ably restricted to plane-symmetric spacetimes, it predicts
the instability of the Killing-Cauchy horizons S. These
instabilities are also discussed extensively in the litera-
ture: On the one hand, there are examples of exact collid-
ing plane-wave solutions whose horizons are destroyed
and replaced by singularities when matter fields are intro-
duced into the spacetime; on the other hand, there are
general theorems proving the linearized instability of ar-
bitrary Killing-Cauchy horizons in plane-symmetric
spacetimes, and of compact Killing horizons in a general
spacetime. In fact, for the special case of the Killing-
Cauchy horizons which occur in collisions of parallel-
polarized plane waves, our discussions in Sec. III C of
Ref. 6 prove that the instabilities render the set of
horizon-producing initial data "nongeneric" with respect
to a very precise notion of nongenericity. More
specifically, our analysis in Ref. 6 proves that the subset
of all initial data which produce at least one connected
Killing-Cauchy horizon larger than Planck size is
nongeneric within the set of all colliding parallel-
polarized plane-wave initial data. Correspondingly, by
making use of the results of Appendixes A and 8 and of
Sec. III A, we will prove below the generalization of this
result (with the same notion of genericity as in Ref. 6) to
the case of colliding arbitrarily polarized plane waves. In
addition, by using a more sophisticated notion of generi-
city described in detail in Appendix D, we will prove that
the subset of all horizon-producing initial data (and not
just the subset of those data which produce horizons
larger than Planck size) is nongeneric within the set of all
initial data for colliding plane waves. We will also dis-
cuss why we believe that our topological notion of generi-
city (described in Appendix D) is more appropriate in
general relativity than other possible "probabilistic" no-
tions based on measure theory. Note that these results (i)
fully restore the predictive power of Tipler's singularity
theorem: ge nevi c gravitational plane-wave collisions al-
ways produce "pure" spacetime singularities without

I

+ f [ I V(1 s)l + IW(l s)l ]ds
1 /2

(the precise choice of the norm is immaterial). Similarly,
the space Fof all asymptotic structure functions,

F—:t f I f:—[e)(p), 5,(p), e2(p), 5~(p)] }, (3.24)

can be made a Banach space after completion with
respect to the norm

I]f II
=— f [ l~ (P&l'+ I5 &P) I' + l~ &P)l'

+ 15,&p&l' ]dp

(again the precise choice of the norm is unimportant).
The vector space structures in both D and F are defined
pointwise; thus, under the above norms both D and F are
isomorphic to standard L, spaces. We also construct
the space A—:j q I q = [f, o (P)] } of all possible
asymptotic behaviors. Here f E F, and o (p) is a function
with values in the (discrete) fiag set [a, +b, b, c };the—
fiag cr(p) determines which of the four possible asymptot-
ic behaviors described by the structure functions f and
Eqs. (3.9a) —(3.9c) is actually assumed by ( V, W) near
a =0 and at p. Obviously, the function o (p) is not con-
tinuous in general; however it can be assumed to be Le-
besgue measurable" on ( —1, 1 ). Also, in order to have
each point of 3 correspond to a distinct asymptotic be-
havior, we impose the restrictions that o (p) = c if and
only if e((P) = e2(P) = 0 and that o (P) = a only if

I e)(p) I

= 1~2(p) I, or 5,(p) = 0, for all q E 3, q= [f, o (p)]. We make A a complete metric space by in-
troducing the distance function

Killing-Cauchy horizons, and (ii) similarly yield a proof
of "plane-symmetric" strong cosmic censorship: ' gen-
eric plane-symmetric gravitational initial data always
evolve into inextendi hie globally hyperbolic maximal de-
velopments. [To be more precise, our analysis proves (ii)
only within the class of plane-symmetric metrics which
can be brought into the form (2.3); this class includes (but
is larger than) all metrics which are fiat in some open set
somewhere in spacetime. ' ]

To prove our results on the nongenericity of plane-
symmetric Killing-Cauchy horizons, we proceed as fol-
lows. We first make the space D of all initial data in the
form (2.37),

D =—I p I p = [V(r, 1), W(r, 1), V(l, s), W(1,s)] }

(3.23)

a Banach space completed under the norm (say)

lip II
—= f [ lv«1&l'+ lw« I)l']«

1

d ( q q' )
—= llf —f'

ll
+ f, ( 1 —5.(p). (p) )

x [ 5.«). 5.,«), [ le, (p) I
+ I5,(p)l ] + 5.(», 5.,(». [ Ie', (p)l + 15,&p) I ]

+ 5.(p) +b 5. (p), [ I~2(p) I
+

I ~((p) I ] + 5.(p), 5. (p) +b [ I
~ z(p) I

+
I
~ (&P& I ]

+ 5 (p) a 5 '()3)+b [ l~ 2(P&l + I5 2&P& I ] + 5.()3) +b 5.(p). [ Ie2(p) I
+ I52&P&l ] }dP
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6:D —+ 3 (3.25)

To every p HD, the map 8 assigns the unique q E 3 that
determines the asymptotic behavior near a =0 of the glo-
bal solution which evolves from p. Moreover, it follows
from the global well posedness' ' of the initial-value
problem for ( V, W) that 6 is a continuous map. [By "glo-
bal well posedness, " we mean the property that solutions
of the initial-value problem carry the initial data on a hy-
persurface X& onto the data induced on a future hyper-
surface X2 in a continuous way, i.e., the property that
solutions on compact subsets of D+(X )idepend continu-
ously on their initial values on X,. Once global existence
and uniqueness of solutions are proved (Appendix A),
global well posedness follows from standard arguments;
see Ref. 18, Ref. 21, and Sec. 4.2 of Ref. 19.] We claim
that the map 6' has an inverse

which is also continuous. To see this, note that given

q P A, q = [f, o.(P)], we can determine a unique solution
( V, W) in the following way: Using the structure func-
tions e, (P), 5, (/3), e2(/3), 52(/3) provided by f, we deter-

I

where q = [f, o.(/3)], q'—:[f', o'(/3)], 5 +i,
—= 5 +i,

+ 6 &, 6 ~ denotes the Kronecker delta symbol, and
the integral over P is the Lebesgue integral with respect
to the standard Lebesgue measure on (

—1, 1). This ela-
borate structure of the distance function d is introduced
in order to make sure that q approaches q'
[d(q, q') ~ 0] if and only if the asymptotic behavior de-
scribed by q approaches that described by q' [cf. Eqs.
(3.9)].

By the global existence and uniqueness of solutions of
the field equations (2.32) (Sec. IIIA and Appendixes A
and B), there exists a well-defined map

mine the asymptotic limit (3.9) for V and W. [The ambi-
guity as to which Eq. (3.9) to use will be resolved by the
Hag o(P).] Inserting these expressions (3.9) and (3.10) of
V and W into the field equations (2.32), we can compute
all the coe%cients c"k and d "k& of Eq. (3.10) in terms of
f; this yields an asymptotic solution for (V, W). On a
spacelike surface in the vicinity of o.=0, this asymptotic
solution induces well-posed initial data, and by global ex-
istence and uniqueness (Appendix A) these data can be
evolved back onto the initial surface where they induce
the desired initial data p = 6' '(q) E D. Clearly, by this
construction 6(p)=q and 6 '[6(p)]=p, thus, 6' ' is a
genuine inverse for @.Again by arguments based on glo-
bal well posedness of the initial-value problem for ( V, W),': A ~ D is a continuous map. Thus, 6': D ~ 3 is a
homeomorphism.

In the parallel-polarized (W:—0) case of Ref. 6, the
homeomorphism 6' is known in explicit form Th.ere, D is
the Banach space of all data of the form [ V(r, 1), V( i,s)],
A is the Banach space of all pairs [e(P),5(P)] [which in
the general case correspond to e~(P) and 5i(P)], and 6' is
the linear map D —+ A given by the integral equations
(6.3.13) and (6.3.12b). (Note that in this case A =—F; i.e.,
no Aags o. are necessary to distinguish between different
cases of asymptotic behavior [in other words, in this case
o (/3)—:a and ei(P) = 5i(/7) —= 0, cf. Eqs. (6.3.4)—(6.3.7)].)
The inverse of 6", 8, is defined by solving these integral
equations for V(r, 1) and V(1,s) given q =[@(/3),5(/3)].
Both 8 and 8 ' are linear continuous (bounded) maps.
Therefore 8:D ~ 3 is a continuous Banach space iso-
morphism. Note that the construction of an asymptotic
solution V from given q is explicitly carried out in Ref. 6
via Eqs. (6.3.7) and (6.3.38).

Now we return to the general (arbitrarily polarized)
case, and for each 5 & 0 we define a subset Hz of 3 as

I [f, o(/3)] E 3
~

there exists at least one connected subinterval of length ~ 5

in ( —1, 1) across which ei(/1):—+ 1

U I [f, o.(P)] E A
~

there exists at least one connected subinterval of length ~ 5

in ( —1, 1) across which e2(P) =—1 and 5,(P) = const ] (3.26)

By Eqs. (3.20), if p&D is such that the evolution of p
creates at least one connected Killing-Cauchy horizon of
/3-length ~ 5, then p must belong to 6 '(Hs). (See Fig. 2
of Ref. 6.) Clearly, Hs is a nongeneric subset in the sense
of Ref. 6: H& is closed and its complement is dense in A.
Since 8 is a homeomorphism, this implies that 6' (Hs)
is nongeneric in D for - each 6)0. Taking
5 = 5p ——Iz/+/il2 where Ip is the Planck length, this
proves that the set of a11 initial data in D which create at
least one connected Killing-Cauchy horizon of larger
than Planck size is a nongeneric subset [since it is con-
tained in the nongeneric subset 6 '(Hs )]. By the same

P
arguments as in Sec. III C of Ref. 6, this is equivalent to
proving the full nonlinear instability of the Killing-
Cauchy horizons at a =0 against generic, plane-

I

symmetric perturbations of the initial data.
Now, assuming that the reader has read through Ap-

pendix D, we consider the nongenericity of the set of all
horizon-producing initial data. We introduce the subset

UH, = UA' '(H, )
6&O 6&0

of D. The set of all horizon-producing initial data,
WH & D, is contained in W: WH C W [cf. Eqs. (3.20)
and (3.26)]. Since 8:D ~ 2 is a homeomorphism, we
have the following: (i) each 4 (Hs) is a closed set with
empty interior, (ii) A' '(Hs ) D @ '(Hs ) [since

& Hs by Eq. (3.26)] whenever 52 ( 5„and (iii)
2 1

U» oh '(Hs ) = W. As the Banach space D, being a
complete metric space, is a Baire space, (i)—(iii) imply
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that the subset O'C D is thin in the sense of Appendix D.
Therefore, by the definition of nongeneric subsets given
in Appendix D, the subset 8'&& 8'C: D of all horizon-
producing initial data is nongeneric within the space of
all plane-symmetric initial data D.

Finally, we make a few remarks on the use of the intui-
tive notion of genericity in theoretical physics. When
physicists use the adjective "generic" they may be refer-
ring to any one of two fundamentally different intuitive
notions, although the distinction is often not stated ex-
plicitly. One of these notions has an essentially proba-
bilistic nature: Suppose a system (or a person/observer)
chooses a set of parameters (initial conditions, integration
constants, model parameters, . . .) out of a continuum of
possibilities, and suppose there is evidence that in general
the choice is made at random. Then the physicists' no-
tions of "nongeneric choice" or "nongeneric outcome"
would nicely correspond to the mathematical notion of
"measure zero"; i.e., a nongeneric choice (

—= a choice
with zero probability~ would be one that belongs to a sub-
set of measure zero within the set of all choices. The
second notion, on the other hand, has a constructiUe na-
ture: Suppose there is a system or a theoretical model
that is to be constructed out of a continuum of possibili-
ties; an initial-value problem is a nice example of such a
model. Here "genericity" is the issue of whether the mod-
el continues to "behave" in the same way when it is per-
turbed slightly away from its original form, i.e., the issue
of whether the model is constructible in practice (com-
pare the concept of "structural stability" in the theory of
dynamical systems '). Consequently, genericity in this
case is best formulated mathematically as a topological
condition since the fundamental notions involved in its
intuitive description are notions of "neighborhood, " e.g.
notions such as "slightly perturbed, " "nearby, " and
"stable. " [In fact, the probabilistic and topological con-
cepts of genericity are not compatible with each other
mathematically; for example (as has been pointed out to
us by Geroch ), the unit interval admits topological
homeomorphisms under which closed nowhere-dense
subsets with zero Lebesgue measure are carried onto
closed nowhere-dense subsets with positive measure. ] It is
our view that the notion of genericity that is appropriate
in general relativity, and in any other similar dynamical-
evolution context, is the second topological notion as op-
posed to the more common probabilistic one. We hope
that the specific topological concept of genericity dis-
cussed in Appendix D will find other useful applications
in relativity besides the application that we have de-
scribed in this section.

IV. SINGULARITIES IN THE COLLISIONS
OF ALMOST-PLANE GRAVITATIONAL WAVES

A. A singularity result for colliding almost-plane waves
whose initial data are exactly plane symmetric

across a sufticiently large region of the initial surface

The content and derivation of the results of this section
are so much in parallel with those of Sec. II in Ref. 9 that
here we will give only the precise statements of the main

conclusions, and brief comments about their derivation.
To put the material of this section in proper context, we
recommend that readers consult the detailed discussions
in Secs. I and II of Ref. 9.

In this paper, as in Ref. 9, we will define an almost-
plane wave as a gravitational wave spacetime' on which
there exist (i) a local coordinate system (u, u, x,y), and (ii)
a length scale LT that characterizes the variation in the
x, y directions of the components of geometric quanti-
ties, such that (iii) throughout the intersection of a suit-
able partial Cauchy surface X with the wave's central
region (which has the form C =

I ~x~ & LT, ~y~ & LT,
u, U I ), the metric components and other quantities are
very nearly equal to the corresponding quantities for an
exact plane-wave spacetime; and (iv) the curvature com-
ponents fall off to zero arbitrarily (but in a manner con-
sistent with the constraint equations on X ) as
x +y ~ ~ at constant u and U. When we consider two
almost-plane gravitational waves colliding on an other-
wise Aat background, we will always assume that the cen-
tral regions of the two waves collide with each other.
Then [at least in some neighborhood of the characteristic
initial surface JV=JV, U JV2 formed by the initial wave
fronts JV„JV2 of the colliding waves (Fig. 1)], it is possi-
ble ' to set up a local coordinate system in which the
conditions (ii) —(iv) above are satisfied for both colliding
waves simultaneously; but possibly with diA'erent trans-
verse length scales (LT), and (LT)z. In this coordinate
system, the initial data supplied by the almost-plane wave
1 and posed on the initial null surface JV2 are very nearly
equal, throughout C, A JV2, to the initial data posed by a
corresponding exact plane wave 1; and the initial data
supplied by the almost-plane wave 2 and posed on the ini-
tial null surface JV, are very nearly equal, throughout
CzRJV„ to the initial data supplied by a corresponding
exact plane wave 2. The fundamental problem of collid-
ing almost-plane gravitational waves is then to determine
whether (or under what conditions on the initial data) the
evolution of these data produces spacetime singularities.

The following lemma is proved in exactly the same way
as Lemma 1 of Ref. 9; its derivation uses only the result
(Secs. III A and III B) that the asymptotic limit of a gen
eric colliding plane-wave metric is an inhomogeneous
(nondegenerate) Kasner solution. Restricted to the
parallel-polarized case, this fact was also the only in-
gredient in the proof of Lemma 1 of Ref. 9.

Lemma I: The intersection J (q) A JV between the ini-

tial surface JV —= JV, UJVz (Fig. 1), and the causal past
J (q) of any (generic ) point q in the interaction region
of a generic, arbitrarily polarized colliding plane-wave
spacetime is a compact set, whose transverse (:—x,y) di-
mensions approach finite limits (i.e., remain bounded
from above) as the point q approaches the singularity at
o,'=0.

In fact, when the point q has a f3 value sufficiently far
away from the edge points f3=+ I and P= —1 (e.g. , for
—

—,
' & f3 & —,

' ), P remains approximately constant along the
past-directed null geodesics from q which extend farthest
in the x, y directions; hence, the asymptotic limit (3.18)
of the metric (with P-dependent coefficients a, b, c, and
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L (/3)
—2

c (/3)

1

1 —pi(P)
(4.1a)

and

a (/3)L (/3)=2
i /2

1

1 —p, (/3)
' (4.1b)

where the constants a(/3), c(/3), d(/3), and the exponents
p, (/3), pz(/3) are found upon comparing Eq. (3.18) with ei-
ther Eq. (3.15a), Eq. (3.16a), or Eq. (3.17a), depending on
whether the asymptotic behavior of the metric is de-
scribed by case (a), case (b), or case (c), respectively.
[Compare Eqs. (9.2.5) of Ref. 9.]

As in Ref. 9, Lemma 1 can be rephrased in the follow-
ing equivalent form.

Lemma l (second version): In a generic colliding (arbi-
trarily polarized) plane-wave spacetime, the singularity

I a=OI represents a future c boundary, ' whose (generic)
"points" [which are "terminal indecomposable past sets"
(Sec. 6.8 of Ref. 14)] intersect the initial surface JVin sub-
sets with compact closure. In other words, unless the col-
liding plane-wave solution possesses Killing-Cauchy hor-
izons at I a =0 I destroying its global hyperbolicity
[which can only occur for "nongeneric" initial data (Sec.
III B)], the (generic) points of the singularity I a =OI
(when they are considered as points on the future causal
boundary of spacetime) can be regarded as part of the
domain of dependence D+(JV) of the initial surface JV.

The following result was discussed and proved in Sec.
II of Ref. 9 (see Lemma 2 and Fig. 4 of Ref. 9).

Lemma 2: Let (A, ,g ) be a spacetime and X be a partial
Cauchy surface in (Jk1, ,g) on which gravitational initial
data [whose development gives the metric on D+(X)] are
posed. Let SC: X be a closed subset, and Vl& X be an
open subset containing S (Fig. 4 of Ref. 9). Suppose that
the initial data on X are replaced with a new set of initial
data which coincide with the original data throughout Vl.
Then, unless a spacetime singularity forms and penetrates
into D+(S) from outside D+(S), the new solution coin-
cides with the old solution throughout D+(S). Here
D+(S) denotes the domain of dependence of S with
respect to the original metric and coincides with the
domain of dependence of S with respect to the new
metric.

Now, introducing the quantity L defined by

inf max [ L (/3), Lz(/3) ],—1/2 & p ( + 1/2
(4.2)

and combining Lemma 2 with the second version of Lem-
ma 1, it becomes clear that we have obtained a proof for

d) remains a good approximation along these geodesics.
Furthermore, the coordinates x, y are constant linear
combinations of X~&], Y[&], and in general at least one of
the coefficients in each combination is of order 1 whereas
the other may be small compared to 1 [cf. Eqs. (3.16d)
and (3.17d)]. Therefore, for such a point q approaching
a=O at, say, —

—,
' &/3& —,', we can estimate the limits of

the maximum transverse (coordinate) dimensions of
J (q) A JV'by the quantities [compare Eqs. (9.2.4) of Ref.
9]

1/2

li —fi (4.3)

Since by the above arguments p(l3) is of order 1, when
combined with Eqs. (4.1), (4.2), and (3.15)—(3.17) Eqs.
(4.3) finally yield the following order-of-magnitude esti-

the following singularity theorem.
Theorem 1: Let the initial data for two colliding

almost-plane gravitational waves be identical to the ini-
tial data for two colliding arbitrarily polarized exact
plane waves throughout a region C in the initial surface
of the form C =

I ~x~ & LT, ~y~
( LT I. Let the corre-

sponding initial data for this plane-symmetric portion be
generic so that the maximal development of the complete
plane-symmetric data produces "pure" spacetime singu-
larities at a=O without Killing-Cauchy horizons (Sec.
III B). Let these plane-symmetric initial data be
represented by the point p—:[ V(r, 1), W(r, 1 ), V( l, s),
W( l, s)] in the space D. Compute the image
[f, o(/3)] =—@(p)H 3 of p under the map 6' defined by
Eq. (3.25) (see Sec. III 8 for notation). Using [f, o.(/3)],
construct the quantities L„(/3) and L„(/3) defined by Eqs.
(4.1), and the quantity L defined by Eq. (4.2). Then, if
LT && L, the evolution of the almost-plane-symmetric
data produces spacetime singularities; i.e., the colliding
almost-plane waves create spacetime singularities.

Clearly, singularities which are guaranteed to exist by
the above theorem will have a local structure that is pre-
cisely the same as the structure of the plane-symmetric
singularities; i.e., locally these singularities will be of gen-
eralized inhomogeneous Kasner type.

Consider now the physically interesting regime where
the colliding almost-plane waves both have amplitudes
small compared to unity: hi &(1, h2 « l. (This means
that both V(r, 1), V(l, s) and W(r, 1), W(l, s) are small
compared to 1; more precisely, the typical amplitude h
for a general plane wave is defined by h—:h+ + h &
where h+ and h ~ are the typical magnitudes of V and
W, respectively [cf. Eqs. (2.10)].) By Eqs. (6.3.12) and
(6.3.13) of Ref. 6 and by the continuity of the map 8 [Eq.
(3.25)], the quantities e;(/3) and 5;(P) (i:—1, 2) are small
compared to 1 in this case. Therefore, if we can choose
the initial point (uo, vo) [Eqs. (2.27a)] in such a way that
the quantity p(/3) is also smaller than or of order unity,
then by Eqs. (4.1), (4.2), and (3.15)—(3.17) we could con-
clude that L -Ql, lz. In fact, as demonstrated in the Ap-
pendix of Ref. 9, such a choice is possible: if we fix uo and
vp sllcli that K i « uo (&f i and K2 « vo (&f2 (where
f„f2 are the first focal lengths and P „%2are the typi-
cal wavelengths of the colliding waves), then the point
(uo, vo) belongs to a domain in the interaction region
where (i) gravity is weak (since uo «f, and vo « f2), so
that U and the constant additive terms in Eq. (2.33) are
small compared to unity, and (ii) the integration path in
Eq. (2.33) is sufficiently far away (since uo))Ki and
v p ))Fi, 2) from the coordinate singularities on the initial
null surfaces Iu =0I and I v =0I (Sec. II 8), so that the
contribution to p(P) from the integrand in Eq. (2.33)
(which diverges towards the coordinate singularities on
these initial null surfaces) is of order unity [Eqs. (3.11)].
Moreover, with this choice for (uo, vo), Eqs. (2.27a) give
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mate for L, valid for colliding almost-plane waves with
small amplitudes:

(4.4)

Therefore, by Theorem 1, if the colliding almost-plane
waves have small initial amplitudes and are exactly plane
symmetric across a region of size LT )) Qf,f2 over the
initial surface, then their collision produces singularities.
These singularities have the same (inhomogeneous-
Kasner) local structure as the singularities produced by
the exact-plane-wave collision.

B. Singularities produced by colliding almost-plane waves

with arbitrary initial data: An existence theorem

In this section we will prove that the conclusions of
Theorem 1 (Sec. IV A) about the existence of singularities
in almost-plane-wave collisions remain valid when the
colliding waves are only approximately (but not exactly)
plane symmetric throughout their central regions. More
precisely, we will prove that if p is a choice of gravitation-
al initial data on JV that satisfies the conditions of
Theorem 1 with LT )& I„ then there exists a neighbor-
hood 'N of p, open within the space of all gravitational
initial data on JV, such that the Cauchy development of
any data in 'N produces spacetime singularities. (For a
still more precise statement see below. ) Note that a proof
of this statement would immediately follow if we could
prove that the solutions on D+(JV) depended uniformly
continuously on the initial data on A. This is in general
false, however, because general theorems which assert the
continuous dependence of solutions on initial data (such
as the Cauchy stability theorem, see, e.g. , Sec. 7.6 of Ref.
14) are valid with respect to the compact open topology-
[i.e., the open topology based on convergence on compact
subsets of D (JV)], and not with respect to the open to-
pology [i.e., the open topology based on (uniform) con-
vergence on D+(JV)] on the spaces of all initial data on N
and all four-metrics on D+(Ã). [We will denote by 2)
and 9 these spaces of all (vacuum) initial data on JV and
all Lorentz metrics on D+(JV), respectively, both topolo-
gized with the compact-open topology. The space 2)
should not be confused with the Banach space D of all
plane symmetric -vacuum data on A' (Sec. III 8).] To see
more intuitively why uniform-continuous dependence on
initial data fails, recall (i) that singularities can be
thought of as points "at infinity, " and (ii) that when the
initial data p are slightly perturbed their development
cannot remain uniformly close to the original solution all
the way to infinity (i.e., all the way up to the singulari-
ties). The main content of the singularity theorem of this
section lies in showing how to get around this failure of
uniform-continuous dependence in the specific case of
colliding almost-plane gravitational waves.

We first list three Lemmas whose corollaries will
directly lead to the proof of our singularity theorem.

Lemma 3: In a nondegenerate Kasner spacetime [Eq.
(3.18)], the future null cone J +(q) of any point q starts to
reconverge near the singularity I t =0I, i.e., on each
future-directed null geodesic from q the convergence 0
(Sec. 4.2 of Ref. 14) of the null generators of J +(q) be-

comes negative near t =0.
The proof of Lemma 3 is given in Appendix E.
Corollary 1:Let p H 2) denote a choice of vacuum ini-

tial data on JV that describes colliding almost-plane gravi-
tational waves, and let p satisfy the conditions of
Theorem 1 with LT ))L. Then, for every point q in the
Cauchy development of p that lies su%ciently close to the
singularity whose existence is guaranteed by Theorem 1,
the future null cone J (q) of q starts to reconverge near
I a =0); i.e., on each future null geodesic from q the con-
vergence 8 of null generators of J +(q) becomes negative
near a=0.

This corollary follows immediately from Lemma 3,
Theorem 1, and the result (Secs. III A and III 8) that the
asymptotic singularity structure of a generic colliding
plane-wave spacetime is of inhomogeneous nondegen-
erate Kasner type.

Lemma 4: Let p H 2) be vacuum initial data which
satisfy the conditions of Theorem 1 with LT » L. Then
p has an open neighborhood '1V in 2) such that for any
d E 'N the maximal Cauchy development of d contains
points q whose future null cones J+(q) start to recon-
verge.

Proof: In the maximal development of p we can find a
compact region%' containing at least some of the points
q whose null cones reconverge according to Corollary 1.
Furthermore, for at least one such point q, we can obvi-
ously also arrange (without destroying the compactness
of A) that A contains a spherical section through the
null cone J+(q) of q at which the convergence 8 of each
null generator of J +(q) is negative. Clearly (since the to-
pology on 0 is the compact-open topology), the maximal
development of p has an open neighborhood VL in the
space of all metrics 9', such that these properties of the
compact region%' and the point q C % continue to hold
under any metric on A that comes from V/. The Einstein
map, which assigns to every initial data in 2) its maximal
Cauchy development in 0, is continuous by the Cauchy
stability theorem. ' Therefore, the inverse image of Vl un-
der the Einstein map is an open subset %V of 2), and it is
easy to see that this 'IV satisfies the properties required by
the lemma.

Lemma 5 [Hawking-Penrose singularity theorem' ' ]:
Spacetime is causal-geodesically incomplete if (i)
R„K"K' ~ 0 for every nonspacelike vector K, (ii) the
causal genericity condition (condition 4.4.5 of Ref. 14) is
satisfied, (iii) the chronology condition holds (there are no
closed timelike curves), and (iv) there exists a point q
such that on every future directed null geodesic from q
the convergence 9 of the generators of J+(q) becomes
negative.

Lemma S is stated and proved as Theorem 8.2.2 in Ref.
14.

The following singularity theorem is now obtained as a
direct corollary of Lemma 5.

Theorem 2: Let p H 2) be vacuum initial data which
satisfy the conditions of Theorem 1 with LT » L. Let
"lV C: 2) be that open neighborhood of p in 2) whose ex-
istence and properties are demonstrated in Lemma 4.
Then, for any d E. 'N one of the following is true.

(a) The maximal Cauchy development of d is a maxi-
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mal (inextendible' ) spacetime. In this case, this unique
inextendible spacetime satisfies conditions (i) (since the
maximal development is vacuum), (ii) [cf. Eqs. (3.22)], (iii)
(since the maximal development is globally hyperbolic),
and (iv) (since Lemma 4 holds for the neighborhood 'K)
of Lemma 5, and therefore it is causal-geodesically in-
complete (singular).

(b) The maximal (W —) Cauchy development' " of d
is bounded by shock waves through which spacetime is
extendible but not in a smooth (W ) way [here W"
denotes the space of metrics which belong to the Sobolev
spaces W"(V) for all spacetime regions V C: Af with
smooth boundary and compact closure; for details see
Secs. 7.4 and 7.6 of Ref. 14]. It is generally believed' '"
(although not yet proved) that in this case there will be an
extension of the maximal development through the shock
waves, which is uniquely determined by the initial data d
and for which conditions (i) and (iii) of Lemma 5 are
satisfied. If this is the case, then by the Cauchy stability
theorem and the choice of 'V conditions (ii) and (iv) will
also hold. Thus, if the extension is maximal (i.e. , if no
Cauchy horizons are encountered), then it will be an inex-
tendible causal-geodesially incomplete (singular) space-
time by Lemma 5.

(c) The maximal (Cauchy) development of d obtained
as in (a) [or the maximal development-extension obtained
by maximally applying (b)] is bounded by Cauchy hor-
izons; thereby it is extendible. [Note that these Cauchy
horizons (if they occur) have nothing to do with the
Killing Cauchy h-orizons (Secs. III A and III B) which are
excluded a priori by the assumption (Theorem 1) that the
central plane-symmetric portion of the initial data p are
generic. ] In this case, those extensions beyond the Cau-
chy horizon(s) for which conditions (i) and (iii) of Lemma
5 are everywhere satisfied [note that conditions (ii) and
(iv) are always satisfied for any extension] will give maxi-
mal spacetimes which are causa1-geodesically incomplete
(singular) by Lemma 5. For those extensions beyond the
Cauchy horizon(s) which violate conditions (i) or (iii) of
Lemma 5, the incompleteness of the extended (maximal)
spacetime cannot be proved.

On the other hand, if the strong cosmic censorship hy-
pothesis ' holds, then the outcome (c) above is
"nongeneric, " and, hence, we get the following corollary.

Corollary: If the strong cosmic censorship conjec-
ture ' holds (at least in vacuum) and lg C 2) is chosen
as in Theorem 2, then the unique maximal (inextendible)
spacetime obtained from the maximal Cauchy develop-
ment of any "generic" initial data d H lV is causal-
geodesically incomplete (singular).

Combined with Eq. (4.4), Theorem 2 can be rephrased
(roughly) as saying that if two colliding almost-plane
waves with small initial amplitudes are suKciently close
to being exactly plane symmetric across a region of size
Lz ))+f,f2 on the initial surface, then their collision
produces spacetime singularities. Note that the theorem
does not give any quantitative information about the
"size" of the open neighborhood 'K (cf. Lemma 4); i.e., it
does not indicate with what degree of accuracy the initial
data of the colliding waves must approximate exact plane
symmetry in order to produce singularities. Likewise, al-

though the theorem proves the existence of the singulari-
ties rigorously, it does not give any information about ei-
ther their global structure (e.g. , whether they are hidden
behind an event horizon ) or their local asymptotic be-
havior (e.g. , whether they are of Belinsky-Khalatnikov-
Lifshitz' generic-mixmaster type).

ACKNOWLEDGMENTS

I would like to thank Valeria Ferrari and Basilis
Xanthopoulos for informative discussions. This work
was partially supported by the National Science Founda-
tion under Grant No. AST 85-14911.

APPENDIX A: PROOF OF GLOBAL EXISTENCE
AND UNIQUENESS FOR SOLUTIONS OF THK FIELD

EQUATIONS FOR COLLIDING PLANE WAVES

In this appendix we wi11 study the field equations

V + —V —
Vpi3

= 2(VpWp —V W ) tanhW,1

(2.32b)

for colliding arbitrarily polarized plane waves. We will
prove that for any smooth initial data

V(r, l), W(r, l), V(l, s), W(l, s) J, (2.37)

the solution ( V, W) of the initial-value problem (2.32) and
(2.37) exists globally and is unique throughout the
domain of dependence D+(JV) = ta —P ~ 1, a+ P

1] (l [a ) OJ of the characteristic initial surface

JV= [r=l, —1(s + 1]U[s=l,—1 (r+1],
r—:a —p, (A1)

on which the smooth initial data (2.37) are posed. Notice
that here we regard the problem (2.32) and (2.37) as a hy-
perbolic initial-value problem defined on an ordinary Eu-
clidean space R, rather than as a problem defined on the
interaction region of a four-dimensional Lorentzian col-
liding plane-wave spacetime (2.31). In this formulation,
the Euclidean R on which (2.32) and (2.37) are to be
solved is determined simply by the Euclidean coordinates
(a,p) [or (r, s) ]; the geometry of this Euclidean space and
of the characteristic initial-value problem (2.32), (2.37),
and (Al) are described in Fig. 2 (cf. also Fig. 1).

Before we actually prove the global existence and
uniqueness of solutions for the initial-value problem
(2.32), (2.37), and (Al), we will first describe how this
problem can be transformed into an equivalent problem
in ordinary four-dimensional Minkowski spacetime. It
will turn out that the results of this appendix and also of
Appendix B below are much easier to obtain for this
Minkowski-space problem than the original initial-value
problem described above. To explain how this equivalent

(2.328)

W + —W —
W&&

= (V —V& )sinhWcoshW1
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{n=0) the metric (A2} is in fact /fat: By introducing the new
coordinates

{s

T = —a cosh(,

Y=q,
in terms of which

( T2 X2)1/2

g = arctanh(X/T),

we find that

X = —asinhg,
(A5)

(A6)

FIG. 2. The geometry of the initial-value problem described
by Eqs. (2.32), (2.37), and (A1). The problem is posed in the or-
dinary Euclidean space R determined by the coordinates (a,p}.
The characteristic initial surface JV' is given by
JV = {r= 1, —1 ( s ( li U {s = 1, —1 ( r ( 1J, where
r —= a —P and s—:a + P. The domain of dependence D+(JV} is
givenbyD (JV}= {a—p 1, a+p( 118{a)OI.

problem arises, we first introduce a "fiducial" four-
dimensional spacetime with the metric

gM= —da +dP +a dg +di)
= —dT +dX +dY +dZ (A7)

a & a a
Bu e BT BX

c)g "dT t}X '
a

BY

(AS)

In fact, a short computation using Eqs. (A5) and (A6)
gives

gM =——da +dP +a dg' +dpi

and we consider the invariant wave equations

V—:V '".„=—2 gM( V V, V W) tanh W

—2 V'" W.„tanh8

H W = W'".„=g~(V V, V V) sinh W cosh W

V'"V.„sinh W cosh 8',

(A2)

(A38)

(A3b)

Therefore, the spacetime (A2) is precisely the wedge

I ~Ti) iXi, T( 0] in Minkowski space, and (a,p, g, rl)
are the usual wedge coordinates, tuned to the plane-
symmetric structure on the wedge that arises due to the
presence of the Killing vectors ti/t}I' = 8/t}i7 (which gen-
erates translations) and Xt}/t}T + Tr)/dX = t}/t}(
[which generates (spacelike) Lorentz boosts] (see Sec. I of
Ref. 8 for a more detailed discussion of the geometry of
this wedge region). The invariant wave equations (A3)
can now be rewritten in the form

defined on this fiducial background (A2). When written
explicitly in terms of the (a,p, g, il ) coordinates, Eqs. (A3)
take the form

V = —2VV VWtanh8',

W = (VV) sinhWcoshW,

(A9a)

(A9b)

1 1—V ——V + Vpp+ Vg+ V„„

1= —2 V p8 p+ V~8'~+ V„W„

—V 8 tanh 8', (A4a)

1 1—8 ——8' + 8'pp+ 8 ~~+ 8'„„

V + V + V
1
z 7 g

—V sinh W cosh W, (A4b)

and when compared with Eqs. (2.32) they immediately
show that the solutions V(a, /3), W(a, p) of the field
equations (2.32) correspond precisely to the (g, il)-in-
dependent solutions ( V, W) of the invariant wave equa-
tions (A3). The advantage of introducing the fiducial
spacetime (A2} now becomes clear after one realizes that

where (VV) —= VV.VV, and U and denote the usual
wave operator and the usual Lorentzian inner product on
Minkowski spacetime, respectively. The term "invariant
wave equations" for Eqs. (A9) or (A3) expresses the fact
that if ( V, W) is any solution to Eqs. (A9) then
( Vo P, Wo P) is also a solution, where P is any isometry
(i.e., any Poincare transformation) on the (fiat) spacetime
(A7); that is, isometrics of the spacetime leave the solu-
tions invariant. This in particular implies that solutions
of Eqs. (A9) are mapped onto solutions under translations
along g and i) [ = boosts along X and translations along
I'; see Eqs. (AS)].

Notice that we have now obtained a complete reformu-
lation of the initial-value problem Eqs. (2.32), (2.37}, and
(Al): (i) Instead of the solutions V (a, l3), W(a, P) of Eqs.
(2.32), we deal with the plane-symmetric [ = (g, ii)-in-
dependent] solutions of the invariant wave equations (A9)
on the Minkowski wedge I iT~ ) iXi, T ( 0I. We write
these nonlinear wave equations (A9) in the form

V, kk
—V, TT

= —2( V, k W, l,
—

V, T W, T }tanhW

(A10a)
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IV / k
—IV TT

= ( V /, V /,
—V 7 V 7- )»nh IV cosh ~,

(A lob)

where x:—x', x, x =X, Y, Z, and we adopt the
summation convention that repeated spacelike orthonor-
mal indices k, I, m, . . . are summed over regardless of
whether or not they are contracted. (ii) Instead of posing
the initial data for ( V, W) in the form (2.37) and (Al), we
pose plane-symmetric [—:(g, tl)-independent] initial data
for Eqs. (A9) [or equivalently for Eqs. (A10)] on the
characteristic initial surface

C —= {(T' X')""—Z= 1,—T &0,0&(T'—X') & I )

U {(T'—X')'"+Z= 1 T &0 0&(T' X') & l—I

(A 1 1)

The surface C is a null hypersurface in the fiducial Min-
kowski spacetime (A7); in fact C is generated by null geo-
desics that are orthogonal to the spacelike two-surface
Z —= {a= (T —X )' = 1, p = Z = OI inside the
Minkowski wedge, i.e., by those null generators of
J+(Z) that have their past end points on Z. [The
readers can see without much difhculty that in the three-
dimensional Minkowski space where the Y dimension is
absent, C (where it is a two-dimensional hypersurface
== ' 'C ) would be made up of two symmetrically
configured half-null-cones intersecting each other at Z;
the apex of each half-null-cone would lie on the crease
{X= T = OI of the horizon {lT = lXl, T & OI. The
surface C in the four-dimensional case (a three-
dimensional null hypersurface) is obtained by just sweep-
ing this two-dimensional ' 'C through spacetime parallel
to the Y direction. ] The two-dimensional (with Z and Y
directions suppressed) geometry of this initial-value prob-
lem is depicted in Fig. 3. From the invariant character of
the nonlinear wave equations (A9), it immediately follows
that once we prove the global existence and uniqueness of
solutions for Eqs. (A9) with arbitrary initial data posed
on an arbitrary initial surface in Minkowski spacetime,
this would automatically prove the global existence and
uniqueness of solutions for the initial-value problem
(2.32), (2.37), and (A 1). In particular, when plane-
symmetric [ —= (g, vj)-independent] initial data for ( V, 8')
are posed on C, the unique global solution ( V, W) of the
above initial-value problem (A9) —(Al 1) would be every-
where independent of (g, il) (i.e., it would be everywhere
plane symmetric); these functions V(a, p) and W(a, p)
would therefore constitute the unique global solution of
Eqs. (2.32) corresponding to initial data (2.37) that have
the same functional form as the data posed on C [ex-
pressed in (a,P) or (r, s) coordinates].

The introduction of the fiducial four-dimensional Min-
kowski space (A7) has transformed the problem (2.32),
(2.37), and (Al) into a problem in ordinary flat spacetime.
[Note that this fiducial ffat space (A7) is entirely "ficti-
tious"; i.e., there is no geometric relationship between the
spacetime (A7) and the colliding plane-wave spacetime
(2.31).] More specifically, by embedding the two-
dimensional hyperbolic initial-value problem (2.32),
(2.37), and (Al) in a higher-dimensional fiat space (from

Horizon

{0(=0}= lXl, T&0}

FIG. 3. The two-dimensional geometry Of the Minkowski-
space initial-value problem (A9) —(A11) with the Z and P direc-
tions suppressed. The characteristic initial surface C' consists of
the two null hypersurfaces { (T —X2)'~ —Z = 1, T& 0,
0&(T' —X') & 1 j and {(T'—X')'"+Z=1, T&0, 0

& (T —X') & 1 { which intersect at the spacelike two-surface
Z; in fact C is generated by nu11 geodesics that are orthogonal
to this spacelike two-surface Z = {a= (T' —X )'~2= 1,
P = Z = 0I inside the Minkowski wedge, i.e., by those
null generators of J (Z) that have their past end points on Z.
The domain of dependence of the initial surface C is D+(C)

{ f Tf ) fXf, T &0$ fl J+(C ), and the horizon { f Tf
= fXf, T & OI

—= {a= 0I of the Minkowski wedge is the fu-
ture Cauchy horizon H+(C ) of C. The region J (q) A C be-
comes unboundedly large in the g direction as any arbitrary
point q of the wedge approaches the horizon. As a result, when
the initial data posed on C have a plane-symmetric [((,ill-in-
dependent] structure, the data "seen" by any field point q be-
come infinitely extended in the g direction as q approaches the
horizon l a=0{.This efFect in the formalism (A9) —(All) is the
geometric counterpart of the focusing effect caused by the
singular 1/o. terms in Eqs. (2.32}.

where it is recovered under the restriction of plane sym-
metry), we have eliminated. the singular terms involving
1/a from Eqs. (2.32) [compare Eqs. (2.32) with Eqs.
(A9)]. The focusing effect described by these singular
terms of Eqs. (2.32) has been transformed, in the new for-
mulation (A9) —(Al 1), into the geometric effect of the ex-
act plane symmetry imposed on the initial data. More
precisely, the domain of dependence of the new initial
surface C [Eq. (Al 1)] is (cf. Fig. 3)

D+(C) = { ITI & IXI, T &OI & J+(C) . (A12)

In particular, the horizon I l Tl = lXl, T & OI = {a= OI of the Minkowski wedge is the future Cauchy hor-
izon H+(C ) of C [more precisely, H+(8) = { l Tl= lXl, T & Oi 8 J+(C )]; in fact the region J (q) 8 C be-
comes unboundedly large in the g direction as any arbi-
trary point q of the wedge approaches the horizon (Fig.
3). As a result, when the initial data posed on C have a
plane-symmetric [(g, il)-independent] structure, the data
"seen'* by any field point q become infinitely extended in
the g direction as q approaches the horizon {a=OI.This
effect in the formalism (A9)—(Al 1) is the geometric coun-
terpart of the focusing effect caused by the singular 1/a
terms in Eqs. (2.32). In particular, it now becomes very
clear why the solutions (V, 8') of Eqs. (2.32) in general
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develop singularities at a=O (Sec. III A): The global ex-
istence of solutions for the initial-value problem
(A9) —(A11) (which we will prove below) guarantees that
( V, W) are smooth throughout the domain of dependence
D + ( C ) of the initial surface C, but not necessarily on C 's

Cauchy horizon I ~lTl
= lXl, T ~ OI:—Ia = OI where

the field points are inAuenced by an infinitely large sector
of the initial data (Fig. 3).

In the remaining paragraphs of this appendix we will
explain how the global existence and uniqueness of solu-
tions for the system (A9) —(A11) are proved. We remark
that the above-discussed specific technique of "resolving"
the singularities (i.e., the I/a terms) of the system (2.32),
(2.37), and (A 1) by embedding it into a higher-
dirnensional problem [Eqs. (A9) —(A11)] might prove use-
ful more generally, i.e., in studying other PDE's with
similar singular coefficients. (Note also that this tech-
nique is quite similar to the well-known method of "reso-
lution of singularities" frequently used in the qualitative
theory of ordinary diC'erential equations; see, for exam-
ple, Refs. 41 and 44.)

We now turn to the proof of global existence for Eqs.
(A9). The proof of local existence (LE) and uniqueness
for any nonlinear hyperbolic system of the kind Eqs. (A9)
is standard and can be found, among other places, in Sec.
VI.6 of Ref. 21, and in Refs. 20, 22, 23, and 26. This local
result can be stated as follows.

LE: Let X be any regular partial Cauchy surface (or a
characteristic initial surface consisting of two intersecting
null surfaces) in Minkowski space, and let

I Vo Vp Wo Wp J ( I Vo Wp I ) be regular initial data
for Eqs. (A9) on X. Then, there exist a neighborhood Vl
of X, and unique functions ( V, W) defined on V/ which
satisfy Eqs. (A9) on Vl and which induce the given initial
data on X. If the data and X are C", then ( V, W) are C
on 8'.

In general, global existence for a nonlinear system of
hyperbolic PDE's of the kind Eqs. (A9) is false; see Refs.
22 —32 and Secs. I and IIIA of this paper. Global ex-
istence (GE) means, in more precise terms, the following.

GE: Let X be any regular partial Cauchy surface in
Minkowski space, and let I Vo Vo Wp Woj be regular
initial data for Eqs. (A9) on X. Then, there exist unique
functions ( V, W) defined throughout the domain of depen
dence D (X) of X, which satisfy Eqs. (A9) on D+(X) and
which induce the given initial data on X. If the data and
X are C, then ( V, W) are C" on D+(X).

From the recent work of Klainerman, ' 8' ' Shatah,
Sideris, Klainerman and Ponce, and Christodoulou,
we know that nonlinear wave equations of the type Eqs.
(A9) have global solutions for small initial data. More
precisely we have the following.

GE for small initial data: Let X be any regular partial
Cauchy surface and d be regular initial data for Eqs. (A9)
on X. If d is small, i.e. , if the Sobolev norm

ll dll of
[ Vo, Vo, Wo, Wol in some suitable Sobolev space '
W"' (X) is sufficiently small, then the conclusions of GE
above are true for X and d.

Now, in order to prove GE for Eqs. (A9) for arbitrary
X and arbitrary initial data, it is sufficient to prove the
following reduced global existence (RGE) result.

RGF.: Let arbitrary regular initial data d for Eqs. (A9)
be posed on X:—I T = OJ, and let d be compact support-
ed in an open ball So (:X in X. [More precisely,
So = I(X; 0) l(X; Y~ )(X; Y; ) (R ], for some
fixed (Y;, 0) in X = IT = 0], and R )0.] Then, solu-
tions ( V, W) exist which are defined and satisfy Eqs. (A9)
throughout the interior D+(So) of the null cone H+(So),
and which coincide with the data d on X. These functions
( V, W) are unique, and they are C" in D+(So) if the ini-
tial data d are C

For Eqs. (A9), RGE implies the more general GE be-
cause the characteristics are independent of the specific
solution (V, W): the characteristics of Eqs. (A9) are al-
ways fixed to be the null hypersurfaces of Minkowski
spacetime. Thus, given an arbitrary partial Cauchy sur-
face X and arbitrary data d on it, for any point
q HD+(X) we can apply the construction described in
Fig. 4(a), and introduce a IT = OI surface [with some
suitable Lorentz coordinates (T, X, Y, Z)] in the vicinity
of the compact region J (q) AX. This reduces the global
existence problem for X to the problem of RGE, provided
the data on X can be transferred onto I T = OI by means
of LE. If this fails, then we iteratively apply the construc-
tion described in Fig. 4(a) to the points of I T = 0] [Fig.

cut data off smoothly
here: d =—0

FIG. 4. (a) If reduced global existence (RGE) holds for Eqs.
(A9), then this suffices to prove general global existence (GE)
(see the precise formulations given in the text): Given an arbi-
trary partial Cauchy surface X and arbitrary data d on it, for
any point q ED+(X) we can introduce a l T = 0) surface [with
some suitable Lorentz coordinates (T, X, Y, Z)] in the vicinity
of the compact region J (q)AX. This reduces the global ex-

istence problem for X to the problem of RGE, provided the data
on X can be transferred onto l T = 0] by means of local ex-
istence (LE). (b) If this fails, then we iteratively apply the con-
struction described in (a) to the points of l T = Ol, and we con-
tinue this iteration until the new smaller l T = Ol surfaces fall

into that small neighborhood of X on which local existence is
guaranteed by LE. Tracing our steps backwards by means of
RGE after this last step is achieved, we see that the data on X
can indeed be transferred to the first l T = 0} surface depicted
in (a).
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——'cosh W( V'~ V )
——' W'" W

2 gP 2 ,p (A13)

4(b)], and we continue this iteration until the new smaller
[T = 0I surfaces fall into that small neighborhood of X
on which local existence is guaranteed by LE. Tracing
our steps backwards by means of RGE after this last step
is achieved, we see that the data on X can indeed be
transferred to the erst I T = OI surface depicted in Fig
4(a).

Remark 1:Once RGE and hence GE are proved as we
will do below, then it follows that GE also holds when X
is a characteristic initial surface consisting of two inter-
secting null hypersurfaces. This is because for a charac-
teristic X and d we can apply the construction described
in Fig. 5, and transfer the data d on X onto a spacelike
hypersurface X' which lies in that neighborhood of X
where local existence is guaranteed by LE. Since global
existence and uniqueness hold for X' and d', they conse-
quently hold for X and d (see Fig. 5).

Remark 2: Here we will prove only the existence part
of RGE; once existence is proved, global uniqueness fol-
lows from standard arguments as in Refs. 22 and 26.

Pvoof of RGE for Eqs. (A9): This proof uses three fun-
damental ingredients.

(i) Conserved positive-definite energy form for Eqs.
(A9): One of tile most lilti'igllillg aild special plopelties of
Eqs. (A9) is that they can be derived from a simple La-
grangian. Introducing the Lagrange density

which satisfies

TPv O
7

When combined with Eq. (A13), Eq. (A15) gives

T„, = cosh W V„V + 8'„8'

(A16)

FIG. 5. If global existence for Eqs. {A9) is proved for space-
like initial surfaces, then it also holds when X is a characteristic
initial surface consisting of two null hypersurfaces that intersect
transversally: Given a characteristic surface X and data d posed
on it, there is a neighborhood {dotted region) of X where local
existence is guaranteed {by LE; see text). We can find a space-
like initial surface X that lies entirely in this neighborhood, and
thereby transfer the data d posed on X onto new data d' posed
on X'. If global existence and uniqueness hold for X' and d',
then they also hold for X and d.

a a~
av

(A14)

where x" = x, x', x, x—:T, X, F, Z and greek in-
dices p, v, p, . . . take the values 0, 1, 2, 3, it is easily
seen that the Euler-Lagrange equations

(cosh WV'~V + W~W ).
Therefore, the positive-definite energy form

TTr =
—,
' [cosh W ( V „V„+V z )

+WkWk+Wr ]

(A17)

(A18)

a ar
gx~ am„

az
88 has the conservation property

W, (A 15)am~

when applied to X of Eq. (A13), yield precisely the non-
linear invariant wave equations (A9a) and (A9b). Conse-
quently, we can define a conserved stress-energy tensor

T„= r)„L — V
BX

av~

TTT, T ~Tk, k (A19)

Consequently, when compact-supported initial data for
( V, W) are posed on the initial surface I T = const—:r],
the positive-definite conserved energy form Eq. (A18)
satisfies

a f TTT d X = 0= f —,
' [cosh W( V T + V„V„)+ W T + W„W„]d'X =—0

BW IT=~I BW IT=~I
(A20)

for all ~ ~ T.
(ii) Energy inequality for Eqs. (A9): If the initial-value problem for Eqs. (A9) is posed as in the statement of RGE (see

above), then, combined with the positive definiteness of TrT, Eq. (A20) yields (consult Fig. 6 for a description of the
relevant geometry)

f —,'[cosh W(VT + Vk Vk)+ WT + Wk Wk]d X

f —,
' [cosh W( V T + VI, Vi, ) + W T + Wk W k ]d X

0
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d =—0 here

p =o} d posed here

so

(T & 0, T = arbitrary)

d=0 here

V + —V +2V 8' tanh8' = 0,1
(3.la)

APPENDIX 8:PROOF THAT THE SPATIAL-
DERIVATIVE TERMS IN THE FIEI.D EQUATIONS

FOR COLLIDING PLANE WAVES
ARE ASYMPTOTICALLY NEGLIGIBLE NEAR a = 0

In this appendix, we will prove that the (global) solu-
tions V(a, P), W(a, P) of the field equations (2.32) have
the same asymptotic behavior near e = 0 as the solutions
of the ordinary difterential equations

FIG. 6. The geometry of the energy inequality (A21). Initial
data d are posed on [ T =OI and are compact supported in the

open ball So. The domain of dependence D+(So) of So is the in-

terior of the null cone H+(So), and S denotes the compact set

[T = r] AD+(SD).

for all T) 0. [Here S, denotes the compact set I T
= r J A D+(So ) (Fig. 6).]

(iii) Independence of the characteristics of Eqs. (A9)
from the solutions: As we have noted before, for any solu-
tion (V, W) the characteristic surfaces of Eqs. (A9) are
fixed to be the null hypersurfaces of Minkowski space-
time; i.e., they are independent of the solution.

Now, the proof of RGE follows from the following ar-
guments.

The conservation property Eq. (A20) of the energy
form Eq. (A18) implies that the W' Sobolev norm of the
initial data is conserved; hence the solution does not
deteriorate in the I. sense. However, this fact by itself is
not sufticient to prove RGE: the estimates for the "life-
span" of solutions of nonlinear hyperbolic PDE's io gen-
eral depend on the norm of the data d in higher-order
Sobolev spaces than 8"'; e.g. , they depend on the norm

ii dii in W ' (Sz) where k ~ 5. (See Refs. 22, 23, 26, and
27.) Nevertheless, the (standard) argument outlined in the
following paragraph [which uses all three ingredients
(i) —(iii) above] suffices to prove RGE.

%'hen the initial data posed on So are analytic, it fol-
lows from the Cauchy-Kovalewski theorem' that there
exists a local analytic solution, determined by an explicit,
convergent power series. As is shown in Ref. 20, the fact
(iii) above and the energy inequality (A21) imply that in
fact this unique analytic solution exists globally
throughout D+(So). Now, for smooth but nonanalytic
initial data d, one approximates d by a series of analytic
data d„; d„~ d as n —+ ac. When combined with (iii),
the energy inequality (A21) then shows that the corre-
sponding global analytic solutions ( V„, W„) in D+(Sz)
conuerge (in W' ) to a smooth global solution (V, W);
these limits of V„and W„ throughout D+(S )coonstitute
the unique global solution of Eqs. (A9) with initial data d.
The most crucial step of this proof lies in showing the
convergence of the series of analytic solutions ( V„, W„)
throughout D (Sz); the energy inequality (A21) is essen-
tial for doing so. For the details, consult Ref. 20,'Ref. 30,
and Sec. VI.S of Ref. 21.

8' + —O' —V sinh8'cosh@' = 0
1

(3.1b)

which are obtained from Eqs. (2.32) by ignoring all terms
with P derivatives. As in Appendix A, we will find that
working exclusively with the standard problem (2.32),
(2.37), and (Al) is not terribly useful, and we will work in-
stead with the equivalent plane-symmetric [ —= (g, q)-in-
dependent] Minkowski-space initial-value problem given
by Eqs. (A9) —(Al 1).

We begin by introducing the following di6'erential
operators A "[V,W] and A&"[V, W] (i = 1,2), which
are well-behaved throughout the Minkowski spacetime AL
of Eq. (A7) and which act on smooth functions (V, W)
defined on A, :

A,"'[V, W] —= —[V» + V»
+ 2( V i W ~ + Vz W'z) tanhW],

(8 lb)

A."'[v, w] = (Ta, + xa )' w —(xa, + Ta )' w

+ I[(xa, + Ta ) v]'
—[ (TaT + xa~) v]~ I

Xsinh8 cosh@', (82a)

Ap' '[ V, W] = —[ W rr + W zz
—(V z + Vz )sinhWcoshW],

(82b)

where 0 „denotes the diff'erential operator 0/Bx". Com-
paring Eqs. (Bl) and (82) with Eqs. (A4) and using Eqs.
(A8), it is easy to see that throughout the open wedge re-
gion A = j ~

Ti ) ~x~, T ( OJ in Minkowski space (where
a ) 0), the differential operators A ~'[ V, W] and
A&"[ V, W] satisfy

A [v, w] = (Ta +xa ) v —(xa +Ta ) v

+ 2 [ (TaT + Xa~) V (TaT + Xa~) W

—(xa, + Ta ) v

X(Xa, + Ta ) W]tanhW,

(8 la)
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A'"[VW] = a V + —V —
V~~

1 1 V (L) V (~)f(L)(g2+ 2)

W (L) W (~)f(L)(g2+ 2)
(88a)

+& V O' — V~8'~1 where f' '(u) is a family of smooth functions in C (R)
satisfying (for each L ) 0)

X tanh 8'
f' '(u) = 1

f(L)( )
—()

for u & L

for u ~ 4L (88b)

1 2 2
Vg —V

a

Xsinh8 cosh''

Ap' '[ V, W] = —[ W pp + W „„
—( V p + V „)sinhW cosh W ] .

It therefore becomes clear from Eqs. (A4) and (83) that
throughout the wedge A the invariant wave equations
(A9) for V and Wean be written in the form

, A."[V,W] + A,"[V,W] = 0.
a

(84)

On the other hand, if we introduce the differential opera-
tors

X '"[V W] —= V + —V +2 V W tanhW,1

(BSa)

Xp("[ V, W] = —2 V p W p tanh W —V pp,

(85b)

X (2)[v, W] = W + —W —V sinhWcoshW,

(86a)

Xp( '[V, W] —= V p sinhWcoshW —W pp, (86b)

which are well-behaved throughout the open wedge A but
which are singular (in fact undefined) outside it, then we
can rewrite the field equations (2.32) in the form

~.")[v, w] + xp")[v, w] = 0, (87)

with the additional restriction that the solutions V and 8'
must be plane symmetric, i.e., independent of (g, il ).

Now consider given plane-symmetric initial data

[ Vo' ', Wo' '} posed on the initial surface C of Eq.
(Al 1) (see also Fig. 3). (The rationale for our notation will

become clear in a moment. ) For any L ) 0, we construct
a new set of initial data on C by the relations

Ap" '[ V, W] = —[ V pp+ V „„
+2(Vp Wp+ V„W„)tanhW],

(83)
A''[V, W] =a W + —W — Wg

1 1

G.

f' '(u) ~ 0
du

lim 8' '= 8" (89)

& "[V'"' W'"'] = lim A "'[V' W(' ]L~ oo (y2

(810a)

[V, W" ] — lim A "[V' ' W' ') (810b)p p

In other words, the initial data I Vo' ', Wo' '} are ob-
tained by smoothly cutting off the plane-symmetric initial
data [ Vo'"', Wo'"'} at a distance 2L in the g and 21

directions. [The existence of smooth functions f with the
properties (88b) is a well-known result in elementary
analysis; see, e.g. , Lemma 1.10 of Ref. 17.] By Appendix
A, for each L & 0 there exists a global solution
(V' ', W'L') of Eqs. (A9) [or equivalently of Eqs. (84)]
which is defined throughout the wedge A and which
evolves from the initial data (88) on C. We claim that for
any finite L ) 0, these solutions (V' ', W' ') are in fact
smooth and well behaved on and across the Cauchy hor-
)zon H+(C) = [ITI = IXI, T ~ 0} = [a = 0} of C. To
see this, consider the construction depicted in Fig. 7: This
figure describes how we build a new initial surface II by
(i) choosing an R ) 0 with R ) 2 L, (ii) adjoining a
smooth spacelike hypersurface X to the initial surface C
at the cylindrical cross section C A tg + ii = R
through C, and finally (iii) discarding the portion of C
that remains in the past of X (Fig. 7). [Note that the
geometry described in Fig. 7 is fully symmetric in the g
and g directions; consequently, the three-dimensional
picture of II with the 13 (:—Z) direction suppressed can
be obtained by rotating Fig. 7 around the T axis. ] On the
new initial surface II, we pose new initial data d for
( V, W) by leaving the data as they are on C (i.e.,
Id on C } = [ Vo' ', Wo( '})and by putting d = 0 on X.
Inspection of Fig. 7 makes it clear that throughout the
subset of the wedge A that corresponds to the dotted re-
gion in Fig. 7, the global solution of the initial-value
problem (II, d ) for Eqs. (A9) [or for Eqs. (84)] is precise-
ly equal to the solution ( V' ', W' '). Moreov'er, it is also
obvious from Fig. 7 that the domain of dependence of II
includes the horizon H+(C ) as well as the region that lies
beyond the horizon. Therefore, since by Appendix A the
solution of the initial-value problem (II, d ) exists
smoothly throughout D+(II), we conclude that the solu-
tion ( V' ), W' ') of the problem (C, d' ') is also smooth
at and across the horizon H+( C ).

The following identities are now easily derived from
Eqs. (83), (85), (86), and (88):

lim V'" = V'-'
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By Eq. (84), the nonlinear wave equations (A9) satisfied
by V' ' and 8" ' can be written in the form

On the other hand, in the wedge region A where a & 0,
we can rewrite Eq. (813) (trivially) as

(i)[ V(L) W(L)i] — ~2 A (i)[ V(t ) W(L)]a CX p (811) (814)
Since Ap"[V, W] are smooth differential operators well
behaved throughout Minkowski spacetime, and since by
the above paragraph V' ' and W' ' are also well behaved
on and across the horizon H+(C ) = [a = 0], Eq. (811)
proves that

Taking the limit of Eq. (814) as I. —+ Oo and using Eqs.
(89) and (810), we obtain

1

I.—+ oo

A i'i[Vs ', Wi '] ~ 0 asymptotically as a ~ 0 . (i)[ V (~) W (~)] () (815)
(812)

Moreover, it is clear from Eqs. (Bla), (82a), and (83) that
the operators A "[V, W] are not multiples of a; i.e., they
cannot be written in the form u P "[V, W] where
P "[V,W] are smooth operators throughout the Min-
kowski spacetime At. Therefore, it follows from Eqs.
(811)and (812) that the asymptotic behaviors of the solu-
tions ( V' ', W' ') as a —& 0 are the same as those of the
solutions ( V„' ', W„' ') of

When compared with Eqs. (85a) and (86a), Eq. (815)
proves our claim that the solutions ( V'"', W' ') of the
field equations (2.32) have the same asymptotic behavior
near a = 0 as the solutions of the ordinary difFerential
equations (3.1).

APPENDIX C: SOME REMARKS ON THK FIELD
EQUATIONS FOR COLLIDING

NONPARALLEL-POLARIZED PLANK WAVES

A (i)[V (L) W (L)] 0

=X

L) W(L

(813) In this appendix, we will describe some interesting
equivalent formulations of the field equations (2.32) for
arbitrarily polarized colliding plane waves; we hope that
some of these alternative forms might eventually prove
useful in the search for a general solution of Eqs. (2.32).

For the first reformulation, we introduce a 1-form
6(a,P) by the relation

e =—cosh 8'dV . (Cl)

d -=. d(

wfl strt

Denoting the a, P components of 6 by 6 and Bp, re-
spectively (that is, putting 6 = 6 du + Bp d/3), we can
then express the field equations (2.32) purely in terms of
6 and the function W(a, 13):

(C2a)

FIG. 7. Geometry of the initial-value problem for Eqs. (A9)
where the initial data given by Eqs. (B8) are posed on the
characteristic surface C (see Fig. 3). The initial data

[ Vo' ', Wo'L'] [Eqs. (Bg}] are obtained by smoothly cutting off
the plane-symmetric initial data [ Vo'"', Wo'"'] at a distance
2L in the g and i) directions. To prove that the solution
( V' ', W' ') that evolves from these data is smooth across the
horizon H+(C), a new initial surface H is constructed by (i)
choosing an R ) 0 with R ) 2 L, (ii) adjoining a smooth space-
like hypersurface X to the initial surface C at the cylindrical
cross section C fl [g'+ i)' = R ] through C, and finally (iii) dis-

carding the portion of C' that remains in the past of X. On the
new initial surface H, new initial data d for ( V, W) are posed by
leaving the data as they are on C (i.e., [d on C [

[ Vo' ', Wo' '] l and by putting d = 0 on X. Throughout the
subset of the Minkowski wedge that corresponds to the dotted
region, the global solution of the initial-value problem (II, d)
for Eqs. (A9) [or for Eqs. (B4)] is precisely equal to the solution
{V' ', W' '). Moreover, the domain of dependence of II in-
cludes the horizon H+(C ). Since by Appendix A the solution
of the initial-value problem {H, d ) exists smoothly throughout
D+(H), we conclude that the solution ( V' ', W' ') of the prob-
lem {C, d' ') is also smooth at and across the horizon H+{C ).

W + —W —
Wpp =(6 —Bp )

cos

(C2b)

de = 2tanhWdWR, e . (C2c)

Now consider the special case determined by the an-
satz

de—:0, (C3)

which is equivalent to d8'h, dV —= 0, and which is in
turn equivalent to the existence of a functional relation-
ship between V and W. The class of solutions that obey
the condition (C3) includes all parallel-polarized (W = 0)
solutions, as well as solutions ( V, W) that one obtains
from parallel-polarized metrics (2.31) by effecting a con-
stant linear transformation on the coordinates x and y,
thereby introducing an artificial cross-polarization com-
ponent W. However, the special class (C3) is clearly
larger than the class of these essentially parallel-polarized

where Eqs. (C2a) and (C2b) are to be solved subject to the
auxiliary condition
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solutions. In any case, if by utilizing the condition (C3)
we introduce a new function V(a, p) that satisfies d(a *dW) = —,dSh *dS,sinh 8'

+cosh W

dV = 8 = cosh 8'dV, (C4) with no auxiliary conditions.

then the field equations (C2) can be rewritten in terms of
the two functions Vand 8'in the form

V..+ —'V-- V- = 0. (C5a)

W + —W —
Wpii = (V —Vp )

cos

(C5b)

The solution of the linear equation (C5a) can be found ex-
plicitly in terms of initial data; see Sec. IIB of Ref. 6,
especially Eqs. (6.2.44a) and (6.2.60). In fact, it becomes
clear from Eq. (C5a) that in this special case [Eq. (C3)] we
can express the asymptotic structure function ei(p) (Sec.
III A) explicitly in terms of the initial data for V(a, p):
Combining Eqs. (3.3) and (3.4a) with Eq. (C4), and com-
paring Eq. (C5a) with Eqs. (6.2.44a), (6.3.7), and (6.3.13)
of Ref. 6, we obtain

s+1
s

1/2

+ — I [(1+r)' V(r, 1)]„
1 —P

r+1
r+p

' 1/2

(C6)

Returning now to the general case (C2), we note that
the field equation (C2a) for e can be rewritten as

(ae. ). = (~e, ), . (C7)

Equation (C7) implies that there exists a function S(a,p)
that satisfies

S = pep, Sp =me
and in turn, Eqs. (C8) can be expressed in the equivalent
form

e =——*dS,1

a (C9)

where the Hodge-star' operator e is defined with respect
to the two-dimensional fiat metric (

—da + dp ). In
terms of the two functions S(a,p) and W(a, p), the field
equations (2.32) [or equivalently Eqs. (C2)] can now be
rewritten in the alternative form

d —+dS1 2tanhS"
d (Cloa)

where Eqs. (C5a) and (C5b) must be solved subject to the
auxiliary condition

(C5c)

APPENDIX D: A MORE SOPHISTICATED
FORMULATION OF THE NOTION

OF NONGENERICITY IN AN ARBITRARY
BAIRE SPACE

Recall the simple definition that we introduced in Sec.
III C of Ref. 6 to describe the nongenericity of a subset in
an arbitrary Banach space. According to this definition, a
subset is nongeneric if it is closed and has a dense com-
plement, i.e., if it is a closed subset with empty interior.
Although this notion of genericity is both intuitively
plausible and broad enough to describe the nongenericity
of larger-than-Planck-size Killing-Cauchy horizons in
colliding plane-wave spacetimes (Sec. III B), it is too
naive even to identify the set Q of rational numbers as a
nongeneric subset within the real line R Similarly, it fails
to describe the nongenericity of the subset U

& o H& of all
horizon-producing initial data within the Banach space of
all initial data for colliding plane waves (Sec. III B).
Clearly, a more sophisticated generalization of the above
notion of nongenericity is needed to avoid these draw-
backs; in this appendix we will describe such a generali-
zation. Just as the above notion of genericity applies not
only to a Banach space but more generally to arbitrary
topological spaces, so also here we will formulate our
generalization for a broad class of topological spaces
called Baire spaces (see the definitions below). Any com-
plete metric space (hence in particular any Banach space)
is a Baire space; thus our notions would be applicable to
most function spaces that arise naturally in mathematical
physics. In the following, we will omit the full proofs of
many of the standard results that we use; more detailed
discussions on these results can be found in any textbook
on general topology, e.g. , in Ref. 45.

We first review some of the basic definitions: A topo-
logical space X is called "of the first category" if X is the
union of countably many closed subsets with empty inte-
riors; otherwise, X is called of the second category. These
definitions apply to a subset S C X by regarding 5 as a
topological space under the topology indUced from X.
(Thus: Q C: R is of the first category; I irrational
numbersI L R is of the second category. ) The space X is
said to be a Baire space if every nonempty open subset
of X is of the second category. It is not very difficult to
prove that X is a Baire space if and only if for every
countable collection of nonempty closed subsets
I A„C XI with empty interiors, U „",A„C X is a sub-
set with empty interior. (Thus, Q is not a Baire space; R is
a Baire space. ) A fundamental result is that euery com-
plete metric space is a Baire space.

Our definition of "thin'* subsets: Let 8 be a Baire space
(or more specifically a complete metric space). A subset
S C: B is called thin if and only if there exists a family of
subsets IHs C: B) with the following properties (here
5 ) 0 ranges over all positive real numbers): (i) For each
5 ) 0, Hs is a closed subset with empty interior in B; (ii)



SINGULARITIES AND HORIZONS IN THE COLLISIONS OF. . . 357

if 5z ( 5&, then H& D Hs, (iii) U»o H& = S.
2 1

In particular, if S C B is a closed subset with empty in-
terior then it is thin: just take H& = S for all 5 ) 0.
Hence the notion of "thin" subsets generalizes the naive
notion of nongenericity that we introduced in Ref. 6. In
fact, this is an intuitively plausible generalization: It fol-
lows from the properties (i)—(iii) that the thin subset S is
essentially the "limit" as 5 ~ 0 of the "nongeneric" sub-
sets H&', therefore, intuitively a thin subset is just the
"limit" of a continuous family of subsets which are all
nongeneric in the sense of Ref. 6. Some of the other
properties that thin subsets have according to the-above
definition are described in the following paragraph.

The first important property is the following alterna-
tive characterization: A subset S C B in a Baire space is
thin if and only if there exists a countable family

I A„C:8 } of closed subsets of 8, each with empty interi-
or, such that S = U„, A„. (To prove the if part, given
the countable family t 3„}of closed subsets with empty
interiors satisfying U„, A„= S, put H&

—= U„'
where [1/5] denotes the smallest integer ) 1/5. The
family I Hs } satisfies property (i) since 8 is a Baire space;
the other properties (ii) and (iii) are satisfied by construc-
tion. To prove the only if part, given the fainily IHs}
satisfying properties (i) —(iii), put A„—= H, &„.) As a
consequence, the subset Q of rationals is thin in R,
whereas the subset of irrational numbers is not thin. Also,
if S C B is thin and P C S is closed in S, then P is a thin
subset in B. Notice that our notion of a thin subset is
essentially different from the notion of a subset of the first
category: A thin subset is not necessarily of the first
category (any closed subset with empty interior in a com-
plete metric space is thin but not of the first category),
and conversely a subset of the first category is not neces-
sarily thin [the subset S C: R given by S= I(x,y)
HR

~

0(x (1, x is irrational, 0 ~ y ~ 1, y is ration-
al} is of the first category but not thin in R ]. Neverthe-
less, it follows from the above alternative characteriza-
tion of thin subsets that just as the subsets of the first
category of a Baire space have empty interiors, so also its
thin subsets have empty interiors; in other words the
complement of any thin subset is dense in B.

Although it presents a more general alternative to our
older, more naive concept of a nongeneric subset, the no-
tion of a thin subset is nevertheless inappropriate as a
concept of nongenericity. The reason is that subsets of a
thin set are not necessarily thin unless they are closed (see
above), whereas intuitively one expects that any subset of
a nongeneric set should itself be nongeneric. To satisfy
this requirement and at the same time to preserve the
remaining plausible characteristics of "thinness, " we
therefore adopt the following most straightforward
derivative of the notion of a thin subset as our general-
ized concept of nongenericity.

Our notion of nongeneric subsets: A subset P & 8 of a
Baire space B is called nongeneric if and only if P is con-
tained in a thin subset of B.

It becomes obvious that any subset of a nongeneric
subset is itself nongeneric. It also follows that although a
nongeneric subset is not necessarily of the first category,

any subset of the first category in a Baire space is nongen-
eric.

APPENDIX E:PROOF OF THE LEMMA THAT FUTURE
NULL CONES IN A NONDEGENERATE KASNER

SPACETIME START TO RECONVERGE

In this appendix we will prove the following result
which is used in the proof of Theorem 2 in Sec. IV B.

Lemma 3: In a nondegenerate Kasner spacetime [Eq.
(3.18)], the future null cone J +(q) of any point q starts to
reconverge near the singularity I t =0}; i.e., on each
future-directed null geodesic from q the convergence 0
(Sec. 4.2 of Ref. 14) of the null generators of J +(q) be-
comes negative near t =0.

Consider a general nondegenerate Kasner spacetime
with the metric (3.18):

g = —adt + bt 'dp + ct 'dx + dt 'dy

(El)

where a, b are positive constants having the dimensions
of (length), c, d are dimensionless positive constants,
t, p are dimensionless coordinates, and the exponents
pk, k =1,2, 3 satisfy the Kasner relations

I], + P2 + P3 J 1 + P2 + P3 (E2)

It follows from Eqs. (E2) that if the metric (El) is nonde-
generate [i.e., if all exponents pk are diFerent from 0 (or
equivalently if all exponents are difFerent from 1)], then
precisely two exponents are strictly positive and precisely
one is strictly negative. Thus we will assume, without loss
of generality, that

1 ) P&
~ P2 ) 0, —1 & P3 ( 0

g(y, , B/Bx)—:C

g(y, , B/BP) —= Cp .

g(y', , B/By)—:C
(E4)

Then, a short computation shows that as functions of the
time coordinate t, t ~ to, (i) the coordinates x (t), y (t),
and p(t) of any point q(t) along the null geodesic y are
given by

[In fact Eqs. (E2) imply that p3 ) —(v'5 —1)/2 in this
case, but we will not use this sharper inequality below. ]
Consider now an arbitrary point q in the Kasner space-
time (El) with coordinates to, xo, yo, po, to ) 0. We
will explore the behavior of the future null cone J +(q) of
this point q; in particular, we are interested in evaluating
the asymptotic behavior (as t~0) of the convergence 8
for the null geodesics which generate J+(q). Let the
integrals of motion g (y„B/Bx), g (y„B/By), and
g(y„B/Bp) (associated with the Killing vector fields
B/Bx, B/By, and B/BP ) along a future-directed null geo-
desic y from q be denoted by
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C
x(t) = xo + f,'

CS

X
V'a

C2 C2' + +
2p 2p l0$ CS

C 2 )/'2 dS

2pp

(E8)

8(t) = V ~ V(t)—

V V = (&—g V")1
v' —g ~p

to any null extension V of this field y„we find that Eq.
(E7) implies, asymptotically as t ~0,

c 2pi i/ac i i+p|

y(t) =yo + f,'
d S

(E5a)

C2
P

2p3

C2
+

CS

C 1/2 dS

ds

(E5b)

C2 C2' + +
2p3 2p 1bs CS

C„
dS

ds"'
(E5c)

and (ii) the tangent vector y„(t) to the null geodesic y is
given by

C

ct

Cy 8 +
2p2 Qy

8 P

«)X 2p3

C C CP + x + y

bt ct2p3 2p] 2p2 ()tdt
(E6)

(Note that 8/Bt is a past-directed timelike vector. )

In the following, we will assume for simplicity that
p, ) p2 [cf. Eqs. (E3)]. After trivial modifications, all ar-
guments below are also valid for the case p &

= p2.
Consider a null geodesic generator of J+(q) along

which C„WO. It follows from Eq. (E6) that, asymptoti-
cally as t~0,

C(t)—
3xct

a

atc» Bt

along such a generator. Now reca11 that given any null
hypersurface 4 like J+(q), the tangent vectors y, (t) of
the null geodesic generators of S define a null, geodesic
vector field on S. If this vector field on 4 is extended to
any vector field V which is null (but not necessarily geo-
desic outside S) on a neighborhood of 4, then the diver-
gence of V restricted to 4, ( V V)

l ~, is equal to the con-
vergence 8 of 4 's null generators; i.e., the quantity
( V V ) l @ is independent of the null extension V and
equals 8. (For a proof of this well-known fact see Sec. 4.2
of Ref. 14.) Thus, consider the null, geodesic vector field

y, on J (q) defined by those generators of J+(q) which
lie in the vicinity of our generator with C, W 0; all these
neighboring generators similarly have C W 0. Applying
the general formula (valid in a coordinate basis)

(E10)

Now, by using Eq. (E5a), we can actually compute the
asymptotic behavior of the quantity C„„(t)along this
generator on which C = 0 and C %0. Differentiating
both sides of Eq. (E5a) with respect to x and putting
C„=0, we obtain

(t)
1 =

C S
2

+
p3 d p2

ds (El 1)

The asymptotic (t~O) limit of Eq. (Ell) is easily com-
puted; it gives

(E12)

After evaluating the integral in Eq. (E12) and combining
the result with Eq. (E10), we reach the following final
conclusions: (i) When p2 —2pi + 1 ( 0,

(t) —(2pi —p, —1) &
', +&ad t'+p2-»l

2(pi —1) 1lcl3' i+p&
(E13b)

(E9)
along our generator, provided C „ is finite as t~0. On
the other hand, it is obvious that in the vicinity of any
generator with C W 0 we can find a null extension V of
y, which satisfies C, „=—0. [To see this, observe that the
vector field i3/Bx intersects J +(q) transversally in the vi-
cinity of such a generator. Also, although one might wor-

ry about the terms of the form C /t ' and C& & /t
in V V(t) which are not included in Eq. (E9), it similarly
follows that whenever C W 0 and Cti W 0 one can find an
extension with Cy y Cp p 0 and thus make these
terms identically zero. On the other hand, a straightfor-
ward application of the arguments we present below
shows that along the generators on which C = 0 or
C& = 0 the quantities C (t) and Cti &(t) remain finite as
t ~0.] Therefore, it follows from Eq. (E9) that along any
generator ofJ +(q) upwith C, W 0 the convergence 8 diverges
to —~ as t ~0.

Now consider a generator of J +(q) along which
C„=0 but C W 0. It is easy to see that on such a genera-
tor we have, instead of Eq. (E9),

C„
8(t) = V. V(t)—

c t

1+Qd t
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(ii) When p2
—2p, + 1 ) 0,

C (t) —(p2 —2pi + 1) ad, » '&~+'

and

(E14a)

Consequently, our overall conclusion is that along any
generator of J+(q) with C, = 0 and C~ WO the conuer
gence 0 diverges to —~ as t ~0.

For a generator of J (q) along which C = C = 0
but C& X 0, we have

9(t }—Ic, I

&ad
p2 2p)+ 1

pp 2p] +1 2pi

0(t)—
ad ' 1n(t, It)

(iii) When p2
—2p &

+ 1 = 0,

C, „(t)—v'ad ln (to lt )

1 —
p2

1+p2

(E14b)

(E15a)

1 —
p2

OO
2p [

(E15b)

0(t) = V V(t) — ', +

(1 —p3 ), . (E16)
ICpl

I+p~

The quantities C and C of Eq. (E16) can be comput-
ed along this generator in exactly the same way as before,
i.e., by differentiating Eqs. (E5a) and (E5b) with respect to
x and y, respectively, and then putting C = C = 0.
Evaluating the asymptotic forms of the resulting integrals
and proceeding in precisely the same manner as we did in
Eqs. (El 1)—(E15), we obtain the conclusion that along
any generator ofJ (q) with C„= C = 0 and C& W 0 the
convergence 0 diverges to —~ as t ~0.

Combined with the two previous conclusions, this last
result completes the proof of Lemma 3.
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