
PHYSICAL REVIEW D VOLUME 40, NUMBER 10 15 NOVEMBER 1989
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We examine cylindrically symmetric solutions to the Einstein equations under the assumption of
functional separability of the metric coefficients. Under the further assumption that the energy-
momentum tensor is of the form T,'= T, = —cr(r, t), all such solutions, with their vacuum exteriors,
are found. It is shown that the vacua cannot be matched smoothly onto a Robertson-Walker back-
ground.

I. INTRODUCTION

In recent years it has been proposed that the spontane-
ous breaking of symmetries in grand unified theories dur-
ing phase transitions in the early Universe could lead to
the formation of such structures as domain walls, cosmic
strings, and monopoles. ' In this paper we concern our-
selves only with "strings. " It has been suggested that
strings could act as gravitational lenses, giving multiple
images of distant objects. ' They may also be responsible
for creating the density perturbations in the early
Universe necessary for galaxy formation. ' lt is also
thought that as they move through the Universe they
might tend to focus the matter into large-scale structures
such as filaments and sheets. '

Most of the analytical work concerning the gravita-
tional effects of strings has been based on a general rela-
tivistic, static model of a straight string surrounded by a
vacuum. ' Strings need not be straight and may exist ei-
ther as infinitely long kinked strings or as closed arbi-
trarily shaped loops (but see Unruh et a/ "for the .rela-
tionship between the string's shape and the background
curvature). However, anything other than an infinitely
long straight string or possibly a circular closed loop
would be virtually impossible to treat analytically in gen-
eral relativity. Here we will be concerned with infinitely
long straight strings as this imposes cylindrical symmetry
on the spacetime.

The standard string model is described by an energy-
momentum tensor of the form T,'= T; = —a. =p, (all oth-
er components are zero) where o is the energy density
and p, is the pressure along the axis of the string. This
form of the energy-momentum tensor was derived under
the assumption that any lateral stresses inside the string
would be negligible and that the string is Lorentz invari-
ant along its axis. This allows the energy-momentum
tensor, as derived from a Lagrangian describing the
string, to be averaged over the cross section of the string,
resulting in the form given above. The energy density in
this case is a function only of the radial distance r from
the axis. As Garfinkle' has shown, this string model is
somewhat idealized since, in general, the field equations
as derived from a Lagrangian lead to nonzero lateral
stresses. In particular, in the case of a static, Aat back-

ground metric, the other diagonal components of the
energy-momentum tensor can be as large as —,

' of the ener-

gy density. In spite of this inconsistency the idealized
model is useful in that it can give us information about
the general properties of strings (e.g., the bending of
light).

Linet' has shown that under these conditions the most
general solution of the Einstein equations depends on one
arbitrary function of radius, co(r), which is subject to
some regularity conditions. This arbitrary function
determines the radial profile of the energy density. If
co(r) is linear in r, the energy density is zero and the
spacetime represents vacuum. This allows the string's in-
terior to be embedded in an exterior vacuum simply by
extending co(r) linearly outside some finite radius. All
that is required is that co(r) and its first derivative be con-
tinuous at the surface of the string. The external space-
time in this case is conical vacuum in the sense that the
metric can be transformed to that of Minkowski space in
which the azimuthal coordinate P has an angular deficit
given by b, ttp=gtru where u is the linear energy density of
the string. That is, P ranges from 0 to 2' b,P. This re--

sult also applies if the string is taken to be a line source. '

This model of cosmic strings is, however, somewhat in-
complete in the sense that the strings are embedded in a
vacuum cannot be smoothly patched onto a FRW back-
ground. ' [The analysis in Ref. 14 is fiawed; their metric
(9) is incorrect, but the result is correct as will be shown
in Sec. IV]. Here we will search for possible models of
strings which are nonstationary. We mill assume an
idealized energy-momentum tensor of the same form as
in the static model but with o. depending on time as well
ground. ' (The analysis in Ref. 14 is fiawed; their metric
(9) is incorrect, but the result is correct as will be shown
in Sec. IV). Here we will search for possible models of
strings which are nonstationary. We will assume an
idealized energy-momentum tensor of the same form as
in the static model but with o. depending on time as well
as radius. The Einsteiri equations and their solutions will
be presented in Sec. II. Solutions will be found under the
further assumption that the metric coeKcients are separ-
able functions of their arguments. This is done for
simplicity's sake since it reduces the equations to a set of
ordinary, rather than partial, differential equations.
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While there is no a priori reason to assume that a cosmo-
logical string model should be separable, the assumption
does lead to very definite conclusions. Whether or not
the assumption of separability significantly detracts from
the step from static to nonstatic models can only be
judged when nonstatic nonseparable models are available.
In Sec. III we will confirm that the models are nonsta-
tionary and in Sec. IV we will determine whether or not
they can be embedded in a FRW background.

While the particular form of the energy-momentum
tensor used here does not hold in general (e.g. , lateral
pressures may be important at some time' ), models
based on it may be valid at some time during their evolu-
tion. Since we are concerned with embedding strings in a
FRW background, we are looking at strings relatively
late in their evolution and by this time the lateral stresses
may indeed have dissipated. Thus a string model which
is based on the energy-momentum tensor used here and is
embedded in a FRW background may represent a fairly
consistent model for the late stages of a string's evolu-
tion.

and Eqs. (2)—(5) give

I

U +U=U' +U" .
W

(8)

Henceforth we shall use (7) and (8) in place of (2) and (5)
since (2) and (5) can be recovered using (3), (4), (7), and
(8).

The conservation equations (T&. =0) give the rela-
tions

o. +o. K+ —2U =0 (9)

and

K'o. =0 . (10)

We see immediately from (10) that, in order for the ener-

gy density to be nonzero, K' must be zero, i.e., K =K(t)
Equation ('9) can be integrated to give

e2U —E
cr =C(r)

II. FIELD EQUATIONS

2( v —x)
W

If I

+K' —U —O' = Sm.cr, (2)
W W

Since we are concerned with infinitely long straight
strings, we begin with the general cylindrically symmetric
metric (see, e.g. , Kramer et al. '

)

ds = —e ' '(dt dr )+e 8—' dP +e dz

where U, K, and IV are functions of r and t, P is the az-
imuthal coordinate, and z is the axial coordinate. We
define the axis of cylindrical symmetry to be the value of
r for which g&& vanishes (i.e., there is no azimuthal com-
ponent to the metric on the axis). We use the notation
(t, r, ctp, z)=(x,x',x,x ). If we assume an energy-
momentum tensor of the form To= T3 = cr(r, t), the-
Einstein equations (6$ =SrrTP are

where C(r) is an arbitrary function of r.
We now make the simplifying assumption that the

metric coefficients are separable functions of their argu-
ments, i.e., U=u(t)+p(r) and W=w(t)co(r). Equation
(11) then shows that 0 will also be a separable function of
its arguments. Stein-Schabes' attempted to find solu-
tions to the field equations using separable metric
coefficients and assuming that the energy density is separ-
able. As we have seen, the separability of the energy den-
sity follows from that of the metric coefficients. Stein-
Schabes found three classes of solutions. However, one
class of solutions is invalid [his Eqs. (31) and (39) are in-
correct] and Stein-Schabes did not note that another class
of solutions is equivalent to the usual static solutions [his
class (iii)]. In what follows we will find all possible classes
of solutions.

Equations (7), (3), (4), and (8) can now be written as

~ ~

W' +U2+U'2 —0
W W W

U —U' +E —E"=0,
~ ~

e2(U-K) -2U -2U+ U 2+%
W W

(3)

(4)

~ ~

e 2(u +P—K) w

w

w w——E—+u =a= —p'
W W

u +K =P=p'

(12)

(13)

(14)

tl W'
+2U' +2U" —U' —E" = 8

W W

(5)

I

u —+u =y =p' +p",
w 67

(15)

where a, P, and y are constants. Equation (6) now be-
comes

I KW'K' — + —2UU'=0,8' W W
(6)

co w ++co —2p'u =0 . (16)

where an overdot denotes i3/Bt and a prime denotes 8/Br.
Using Eqs. (2) and (3) we find

~ ~

2(g ~) W W
SEATO =e

W W

Thus we have u = —P ~ 0 and write Eq. (16) as

I
co wK ——=2&Pu
CO w

We will now consider the possible classes of solutions.

(17)
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A. P=O

In this case we have p'=0 and (15) shows that y=0.
Equation (16) then demands that either co'=0 or
iC =w /w. If ~'=0 we see that g~4 is independent of r so
that there is no axis and we do not consider this to be a
string. Thus we consider only K =w/w, i.e., e =ciw (in
what follows, c„represents an arbitrary constant) and we
see that m(r) is arbitrary. In this case Eqs. (13) and (14)
are equivalent and, if uAO, Eq. (15) becomes

u

u W

which can be integrated to give

and

c9rp =c7slnhrp +cgcoshrp

C9 C7coshrp +Cgcoshrp

lim„o(co" /co) =const.
As an example let us choose as the interior solution

co t c9r. The two conditions on the energy density are
then easily satisfied since co"=0. From (22) we see that
this represents a homogeneous interior (since o is in-
dependent of r) and that the spacetime is anisotropic
since the pressure is anisotropic. Matching the interior
and exterior forms of co(r) at ro then gives the two rela-
tions

C2u-
w

(18) from which we find

The case u =0 can therefore be included simply by set-
ting c2=0. Equation (13) now becomes

2 2
C7 Cgrp=1-

C9

W WW =C22 "= 2 (19) so that we must have c7 (cg +c9.2 2 2

which allows different classes of solution depending on
whether or not c2 =0.

1. cg=0

2. F2%0.

If we make the substitution w =f(w) in Eq. (19) we
find

ds = dt +dr —+a) (r)dP +dz (20)

Equation (19) now demands that either w =0 or
c4t

w =c3e ' while (18) gives e"=c5. If w=O we have
w =c6 and the metric can be written as

1

c ~ f dw—
which, upon integration, gives

w =cz(c&ow +1) . (23)

where the constants have been set to unity by scaling r, t,
and z or absorbed by co(r) [since the field equations define
co(r) only up to an arbitrary multiplying factor]. This is
simply the metric used to describe static strings. ' With

c4E
w c3e ', the metric can be written as

Equation (23) suggests that we now transform to w as a
coordinate using

c2(c~ow +1)'

ds =e '[ dt +dr +co (r)d—P ]+dz (21) so that

where, again, the arbitrary constants c3, c4, and c~ have
been eliminated by simple coordinate transformations.
The energy density in this case is given by

(22)

Because of the arbitrary nature of co(r), the string de-
scribed by (21) and (22) can easily be embedded in an
external vacuum. From (22) we see that this solution will
represent vacuum if co"=~, i.e., co=c7sinhr+cgcoshr. It
will be shown below that this vacuum is the usual static
vacuum. If we choose a particular form of co(r) to
represent the interior of the string, we simply require that
at some boundary value of r, say rp, the values of the
internal form of to(r) and its first derivative match those
of the external vacuum form given above. That is, we as-
sume that the surface of the string satisfies the
Lichnerowicz boundary conditions that the (t, r, P,z)
coordinate system is admissible. In order to ensure that
the energy density is positive inside the string and finite
on the axis, we must impose the conditions co" (cu and

du u +1
w w(1+c)ow )' (24)

ds = dw +dr +co (r—)dP +w dz2, (25)

where arbitrary constants have been scaled to unity. This
is simply the static metric (20) in a different coordinate
system as can be seen from the transform ations
w = T Zand tanhz =Z—/T.

If e"=c»w ' the metric is

ds =w"[ dw +dr—+co (r)dP ]+w dz (26)

and the energy density is given by

Sm.o.= —w 4 CO

(27)

The string described by (26) and (27) can also be easily

The solutions in this case depend on whether or not

clap

=0.
(a) c io =0. Equation (24) gives e"=c» w —'. With

e "=c»w+', the metric can be written as
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(C 2 2 )1/2C 14 C12ro=
C14C12

C13

C12

embedded in vacuum. According to (27), the vacuum re-
gion will have ~"=0, i.e., co„,=c,2r+C13. The interior
form of co(r) will have to satisfy the conditions co" &0 and
lim„oem" /co=const so that the energy density is positive
as well as finite on the axis. As an example let us choose
the interior solution to be co;„,=sin(c, 4r). Matching the
interior and exterior at ro requires

sin(c, 4rp ) =c &2rp+ c &2,

C(4cos(C)41'p ) =C(2

which gives

& =I Qg„„dr =[I+(I+c,pw2)'~2]rp (31)

and the proper length between two values of z for a given
w, r, and P is

L= J Qg„dz=, (z —z, ) . (32)1+(1+c,pw )'i

We see that as w ~0 the proper radius is 2ro and the
proper length between two values of z goes to zero. As
w~+~c, p~

' the proper radius goes to zero and the
proper length between z2 and z1 goes to a maximum
value of ~c,p~

'
(z2 —z, ). Thus we see that the string

expands in the z direction and contracts radially as w
goes from 0 to

~ c,p ~

' and does the reverse for—~c,p~
'~ & w &0. The energy density in this case goes

from a minimum at w =0 of

u =+ln
1+(I+c»w2)'"

+C1S (28)

(b) c~p&0. In this case, Eq. (24) can be integrated to
give 1

8m'o = c10c24 co

to a maximum at w =+~c,p ~

'~ of

(33)

1 CO

[1+(1+c w )' ]
(30)

A solution equivalent to the c10)0 case has been given
by Stein-Schabes [case (i) of Ref. 16]. The c,p &0 case is,
as far as we know, new.

The solutions given by (29) and (30) can be embedded
in vacuum. If c10 )0, the embedding is done exactly as it
was for the metric (21). If c&p &0 the external vacuum
has co„„=c&6sin(Q—C~pC2r+c&7). In the interior region
we require that co"/~ be finite on the axis. We also re-
quire that co"/co&c, pc2 for the energy density to be
positive. As an example, let us choose the interior solu-
tion to be co;„,=sin(Q —c,pc, sr) where ~c,s~ & ~c2~.
Matching the interior and exterior at ro then gives

sin( Q c»c &sr p ) =c,6sin—(Q —c,pc2rp+ c,7 )

C ) s COS( Q C )pC ) s 1'p ) =C )6 C 2 COS( Q C ) p Crp2C+) 7 )

The interior of the string is homogeneous for this form of
~lnt-

If c,p &0 in the metric (29), w is limited to the range
0 & w &

~
c &p ~

'. The proper radius of the string for a
given w, P, and z is

in which case there are two possible classes of solution
depending on whether we use the + or —sign.

Using the —sign in (28) the metric can be written as

ds =[I+(1+c,pw )' ]
—dw +dr +co (r)dP

cz(1+c&pw )

w dz

[1+(1+c,pw )' ]

and o is given by

[1+(1+c w )' ]+ 10
dZ

w

and the energy density is given by

(34)

[1+(1+c,pw )' ]
8~o = C10C 2w4 CO

(35)

This solution can be embedded in vacuum in the same
way as the metric (29).

The proper radius of the string and the proper separa-
tion between two points on the axis are given in this case
by

and

w

1+(1+c „w')'" ro

tl
Smo. =C1 c2—

CO

If c,p &0 in (29), w ranges from 0 to Oo (the metric is
unchanged under w ~—w so we ignore negative values
of w). In this case the proper radius as w~0 is again 2rp
and the proper length is again zero. As w ~~, however,
the proper radius goes to wro and the proper length be-
tween z, and z2 is just z2 —z, . We see that the string be-
gins expanding in both the r and z directions but eventu-
ally the radial expansion dominates as the axial expansion
slows down. The energy density decreases from a max-
imum at w =0 given by Eq. (33), to a minimum of zero as
W~ ~.

If we use the + sign in (28) the metric becomes

w4
6$ [1+(1+c w )' )

—d 2

+dr +co (r)dP
cz(1+c&pw )
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1+(I+c»w')'"L= (z2 —z, ),
respectively.

If c,0 & 0 we see that R —+0 and L ~~ as w —+0 and as
w~+Iciol '" we hav R ~lciol 'ro
L ~

l c io l (z2 z i ). In this case the string expands radi-
ally from zero proper radius at w =0 to a maximum
value as w~+lc, ol

' . It also contracts along the axis
and the contraction stops as w —&+lc,ol

' . The energy
density is infinite at w =0 and decreases to a value of

If y&0, we have

(y/+p)»

2. y%0

(37)

spacetime is singular there. This divergence may be due
to the particular form of the energy-momentum tensor.
The inclusion of other components of T„, might elimi-
nate the divergence but then the metric would not be
given by (36). Thus we do not consider this (and other
singular solutions) to be an acceptable string model.

1 2 67
87TO — C 10C 2

C10 CO

as w +lc, i)l

If c,0 & 0, the proper radius and separation along the
axis are again 0 and ~, respectively, at w =0. As w ~ ao

the proper radius is R =wrol&c 10 and the proper sepa-
ration is Qc,o(z2 —z, ). Again the string expands radial-
ly and contracts along the axis. However, the radial ex-
pansion does not stop as in the previous case. The energy
density decreases from ~ at w =0 to zero as w~ ~.

Equation (16) is now

K —— —=2VPu
w Vp

which gives

=2K= u+lnw+c2, .

Using this, Eqs. (13) and (14) can be reduced to

B. PRO

In this case Eq. (14) gives p'=&p and from (15) we
find o)'/o)=y/&p. The possible solutions depend on
whether or not y=0.

Q +2 Q+
y

Qw +0 =P
w

w =p
w

(38)

(39)

With y=0 we have ra'=0 and Eq. (16) shows that
u =0. Equation (15) is then satisfied while (14) gives

IC=p—+c,st+c, 9 .

Equation (13) now becomes

Equation (39) is the same as Eq. (15) so we see that (15) is
redundant in this case. Equations (38) and (39) admit a
vacuum solution with (w/w) =y /p and u =(plnw)/y.
However, they also admit a class of nonvacuum solutions
as we now show.

If we let u =&pX, w /w =y Y/&p, and t =t&p/y we
obtain, from (38) and (39),

w —(Pt+c,s)w+Pw=0 .
X*=1—XY (40)

The general solution (up to an arbitrary multiplying fac-
tor) is

p( t /2 ) +c
& 8 tw(t)=pt+c, +8z c—o e

P(t 2/2)+ c

The metric in this case can be written as

ds = —e "e ~(dt dr )—

2

Y =—(2XY —1 —X ),p 2

r' (41)

F +I'*+1

where an asterisk denotes i)/Bt. In order for the energy
density to remain positive, it is necessary that
w/w y /p. In terms of the variables X, Y, and t this
translates into the condition

+e P"w (t)dP +e ~"dz

and the energy density is

(36)
or, equivalently,

2 2Y+PX & 1+P,
y' . . y' . ,

1+ X
'Y

(42)

e " c2op
(Pt l2)+c, zt w (t)e

The constant c19 has been eliminated by scaling r and t.
We see that the axis is defined by r = ~ and that the en-
ergy density diverges on the axis. The Kretschmann sca-
lar (X =R

&s R ~ r) also diverges on the axis so the

If a particular solution of Eqs. (40) and (41) satisfies (42)
everywhere then it will be a valid solution. The functions
U and 8' may then be obtained from X and Y by doing
the appropriate integrations. Instead of integrating Eqs.
(40) and (41) for X(t ) and Y(t ) we can integrate them for
Y(X) and determine whether there are any solutions in
the (X, Y) plane which satisfy (42).
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The results of integrating these equations are shown in
Fig. 1 for (p/y) =0.5. It can be seen that there do exist
solutions which lie entirely within the region bounded by
Eq. (42) (in this figure, the region above the dotted lirie).
For large values of X, the solutions approach the form

Y=. + — 1+ -7+6
y y y

(5=const)

w hereas the boundary is given by
2 1/2

Y=. +
2

We see that the solutions are parallel to the boundary so
that if they are within the boundary for large values of X,
they will remain inside.

The energy density in this case is given by

2{1 —2P/y) u - 2

8&0 = CO

p
I

and the coefficient of n(tII in the metric is

(43)

I I I I

I

I I I I
(

I I I I

)
I I I I

)
I I I I

I
I I I I

j
I I I I

Y 3

~2{1—P/Y)~ 2e —2u
g yy

—CO

Since the axis of symmetry lies where g&& =0, we see that
if p=y, g&& is independent of r and there is no axis.
Thus we do not consider the case p=y to represent a
realistic string. Ifp) y )0, the axis occurs where co~ ~
and from (37) we see that this corresponds to r~ ~
However, from (43) we see that the energy density

diverges as r —+ ~ and it can also be shown that the
Kretschmann scalar diverges as well. If y (0 (recall that
p) 0) the axis is at co=0, i.e., at r = —~ and again the
energy density and Kretschmann scalar are infinite on the
axis.

The axis also occurs at co=0 if y )p and according to
(37) this corresponds to r = —ac. The energy density
goes to zero on the axis in this case but diverges as
r~ao. Thus a realistic string in this class should have
y )p and the solution must be terminated at some finite
radius (which may be a function of t) and patched onto a
nonsingular exterior. If we wish the exterior region to be
vacuum, this task is complicated by the fact that there is
no unique cylindrically symmetric vacuum so that we do
not know a priori which vacuum solution should be
patched onto the string. It is further complicated by the
fact that this solution can only be given numerically so
that, in order to satisfy the boundary conditions, the en-
tire space of possible numerical solutions would have to
be explored. For these reasons we will not consider this
class of solutions any further.

In this section we have demonstrated the existence of
several solutions. The solutions which are nonsingular
on the axis and can be easily embedded in vacuum are
given by the metrics (21), (26), (29), and (34) [as well as
the static solutions given by (20) or (25)]. In what follows
we will determine if these models are nonstationary. As
noted above we will not consider the solution with p@0
and yAO.

III. NONSTATIONARITY

As we have seen, the static metric (20) can be written
in a form which, at first glance, appears to be nonstation-
ary [metric (25)]. It is therefore necessary that we
demonstrate explicitly whether or not the remaining solu-
tions presented above are indeed nonstationary. This can
be accomplished by showing that the spacetimes do not
admit any timelike Killing vectors. Killing vectors are
vectors g that satisfy the Killing equation

gp. +g .p=O .

For the general form of the metric used in this paper, any
Killing vector with component g, =0 is necessarily space-
like. Thus, if any of the metrics that we are considering
as models of strings [i.e., metrics (21), (26), (29), and (34)]
admit only Kilhng vectors with g, =0, then those metrics
are nonstationary since they admit no timelike Killing
vectors. We note that these models consist of two parts;
the string itself and the surrounding vacuum. Each must
be examined separately.

The metric (21) can be seen to be equivalent to

ds = dt +t dr +t co —(r)dp +dz (44)
0—3

FICx. 1. Solutions of Eqs. (40) and (41) in the (X, F) plane for
{P/y) =0.5. The dashed line indicates the vacuum solution
and the region above the dashed line contains solutions with
positive energy density.

by using the transformation t =e' where the tilde refers
to the coordinate in (21). In Appendix A it is shown that
in the interior of the string, this metric admits no time-
like Killing vectors so that the string s interior is nonsta-
tionary. In the vacuum region where co(r) is given by

=c7sinhr+cscoshr, the metric can be seen to be
equivalent to the static vacuum metric
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ds = d—T +dR +y R dP +dz

from the transformations

T= (c—7coshr+cssinhr )

and

(45) The Killing vectors for this metric are also given in Ap-
pendix C. The results are exactly the same as for the
metrics (26) and (47).

The metric (34) can also be written as

2ds =(cosht —1) — +dr +co (r)dP
C10C 2

CO

Pg)
= O, cosf,

CO

I

sing, O

where co(r) takes the form appropriate to either vacuum
or a homogeneous string. The interior of an inhomogene-
ous string admits only the two Killing vectors P„and g~.
As we can see, these Killing vectors are all spacelike so
the spacetime is nonstationary in both the string and vac-
uum regions.

The Killing vectors for the metric (29) depend on
whether c,0 )0 or c,0 & 0. If c,0 )0, the transformation
m =(c,o) ' sinht allows the metric to be written as

dt
ds = ( 1+cosht )

— +dr +co (v)d P
C10C 2

R =—(c7sinhr+cscoshr),

where y =c7 —C8. Thus we have a nonstationary string
surrounded by a static vacuum.

Since the boundary of the string is defined by
r = ro =const, we see that, in the coordinates used in (45),
the boundary is given by R =T(c7sinhro+cscoshro) j
( c7coshro +cs sinhro ). This model represents a nonsta-
tionary string that has zero radius at time T =0 and
which expands radially into a static vacuum [when con-
sidered in the (R, T) coordinates].

The second metric of interest is (26). The Killing vec-
tors for this metric are calculated in Appendix B (after
letting w ~t). We find that, in the vacuum region as well
as inside a homogeneous string, the spacetime admits the
following four Killing vectors (in contravariant form):

P~ =(0,0,0, 1),
P~ = (0,0, 1,0),

(46)
I

O, sin, g, cos$, 0
CO

cosht+1 2dz
cosht —1

I«10)0 and

—dt2
ds =(1 cost—) +dr +co (r)dP

C10 C2

1+cost 2dz
1 —cost

(49)

IV. ROBERTSON-WAI. KER BACKGROUND

Before considering the matching of the string models
onto a Robertson-Walker (RW) exterior, we make the fol-
lowing observations and considerations.

When matching two cylindrically symmetric space-
times across a cylindrically symmetric surface, we may
take the azimuthal coordinate P to be continuous
through the boundary since it is the only coordinate in
both spacetimes that is identified only on the finite range
[0,2~). However, we cannot generally take the axial
coordinate to be continuous as can be seen from the fol-
lowing. The two metrics

and

ds = dt +dr —+r dP +dz (51)

if c,0(0 by using the same transformations as used to
find metrics (47) and (48). The calculation of the Killing
vectors in this case is virtually the same as that for the
metrics (47) and (48) and the same results hold.

We have shown that the string s interior is nonstation-
ary in the models described by the metrics (44), (26), and
(47)—(50). In the case of (44) the exterior vacuum is static
while in the rest of the cases it is nonstationary. In the
following section we will determine whether or not the
vacuum regions surrounding the strings can be joined
onto a Robertson-Walker background.

cosht —1
dz

cosht+1 (47)
dg = —dT +dR +R dy +T2dg~ (52)

ds =(1+cost)

1 —cost
dz1+cost

dt2
+dr +co (r)dP

C10 C2

The Killing vectors for this metric are found in Appendix
C. Again we find that the vacuum and homogeneous
string spacetimes admit the four Killing vectors given by
(46) whereas an inhomogeneous string admits only Pz
and g'z. Therefore the metric (47) is also nonstationary.

With c,o(0, the transformation w =~c,o~
'~ sint al-

lows us to write (29) as

are equivalent to each other (as shown in Sec. II). The
coordinates are related by the transformations r =R,
t = T cosh', and z = T sinhg. The surfaces r =r(t) and
R =R (T) are both cylindrically symmetric but, if we at-
tempt to match the two metrics (51) and (52) across these
surfaces and we assume continuity of the axial coordinate
(i.e., z =g) we see immediately that we cannot have
g„=g„„and the match cannot be accomplished. The
reason for this is that the surface r =r(t) actually corre-
sponds to the surface R =R ( T cosh') or, conversely, the
surface R =R (T) corresponds to r =r(t z) The re-— .
sults of this are twofold: we cannot necessarily assume
continuity of the axial coordinate, and cylindrically sym-
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metric surfaces are not necessarily defined by r =r (t) but
may also be defined by r = r ( t, z).

Whether or not we can take the axial coordinate to be
continuous can be determined if we consider the follow-
ing. Consider two spacetirnes M and X which are to be
joined across a surface X. Assume that we can generally
characterize X in terms of the coordinates in one of the
spacetimes, say M [e.g., r =r(t, z)] Al.so assume that
each spacetime admits a number of linearly independent
Killing vectors, say M admits I of them and X admits n
(m and n are not necessarily equal). Since we can charac-
terize X in M we can determine the normal to the surface
(in M) and we denote this as nM If .we have a general
characterization of the surface in X we can also deter-
mine the normal in X and denote it as n& .

If we find the product n~ g~ for each of the m Killing
vectors in M, those Killing vectors for which this quanti-
ty is zero are orthogonal to the normal and thus lie in the
surface X (X must be either timelike or spacelike). These
Killing vectors then represent inherent isometrics of X.
However, since any linear combination of Killing vectors
is a Killing vector, this procedure will not give us the
number of independent Killing vectors that lie in the sur-
face (i.e., the values of the products nM PM are dependent
on which I linearly independent Killing vectors we
choose from a potentially infinite number of possibilities
for a basis). We can circumvent this problem by taking
the product of nM with a linear combination of all the
Killing vectors:

nMa ai M.

dR
db 2= —dT +S2(T)

1 —kR

+(1—kR )di) (53)

where k =0,+1. This can be seen to be equivalent to the
usual spherically symmetric form

dr
ds = dT +S—(T) +r (d0 +sin Odg )

1 —kr

from the transformations

R =r sinO

and

metric vacuum and then we consider the nonstationary
vacua.

Cocke' has shown that the metric for the vacuum ex-
terior to a cylinder of FRW dust can be expressed in the
Einstein-Rosen form. While Cocke s analysis is for a
cylinder of Quid embedded in an external vacuum, it
should also hold for a cylinder of vacuum removed from
a FRW background. Unfortunately the particular form
of the Einstein-Rosen metric for which this can be ac-
complished is not known. If it was known, all that would
remain would be to determine if any of the vacuua being
considered here are coordinate transformations of the
Einstein-Rosen metric. However, since it is not, we will
consider matching these vacua onto a RW exterior.

The cylindrical form of the RW metric in comoving
coordinates is

If we set this product equal to zero, we will find that
some of the coef5cients a; must necessarily be zero, while
others will be completely arbitrary and some may be re-
lated to the arbitrary ones. The number of independent,
arbitrary, nonzero coe%cients a; is then the maximum
number of Killing vectors that lie in the surface. These
a s then allow us to determine which Killing vectors lie
in the surface (e.g. , if we find that a, and az are complete-
ly arbitrary, a3 equals 3a1, and all the rest must be zero,
then g, +3(i and g2 are the two linearly independent Kil-
ling vectors which lie in the surface).

In the region Xwe can form the product

r
arctan cosO, k =+1,

& I r'—
r cosO, k =0 (54)

arctanh,
r cosO, k= —1 .+1+r

Let the surface across which the vacuum and RW ex-
terior are to be joined be denoted by X and the coordi-
nates intrinsic to X be g' (i =1,2, 3). As noted above, the
interpretation of the coordinate g may be ambiguous so
we will assume that X is characterized by

nx. X t;k~,. R =Rb( T, rl) (55)

and again, set this equal to zero (the b s are constant
coefficients). We then require that the number of in-
dependent, arbitrary b s match the number of a, 's. That
is, we require the number of Killing vectors inherent in
the surface to be the same whether we are using the coor-
dinates in M or in N. The Killing vectors of X that lie in
the surface must then be expressible as coordinate trans-
formations of linear combinations of the Killing vectors
of M which lie in the surface. In this way we can deter-
mine whether or not a particular coordinate is continu-
ous and if not, how it is related in the spacetimes (if at
all). We illustrate this procedure below by attempting to
match a RW spacetime onto the static, cylindrically sym-

in the RW region. The normal to X is then given by

1
n a

where

BRb BRb

'9
(56)

BR 1 —kR2

BT S2( T)
2

1

S (T)(1—kRb)

1/2

For the sake of simplicity we will consider only the case
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k =0 although the results can easily be generalized to
k =+1.

The RW metric (with k =0) admits the six Killing vec-
tors

P, = O, cosg, —,0

P» = 0, sing, , O

g»=(0, 0, 1,0),
/tv=(0, 0,0, 1),

cos
Pv= 0, —rl sing, —g, R sing and

[g,"]=0 (60)

BRb
O=a,v an

We cannot have a&v=0 since then there would be only
one Killing vector on X (g,»). Thus it is necessary that
BRb/By=0 and a&v is arbitrary. This means that the
second Killing vector that lies on the surface is g&v which
simply corresponds to translation along the axis. The
surface is now given by R =Rb(T) which is what we

would expect intuitively.
The Darmois junction conditions' for a boundary sur-

face are

/vs —0, i) cosf, 'iI, R cosp
sing

[K,"]=0,
where

(61)

Taking the product of n with a linear combination of
these Killing vectors and setting it equal to zero on the
surface we get

VI Rb
Cn ga;g; =0=a&cosg+a»sing —

a&v
i =I an

aRb—av g sinP+Rb sing
an

ax ax~

aj agj ''
ax Bx~

K,. = . . n.'l
qadi pe

Pi~

and [X]=X~x—X~@ is the jump in the quantity X when
evaluated on the surface X in the two different regions
denoted by + and —(here + represents the RW exterior
and —the vacuum interior). On a boundary surface the
following conditions also follow. 20

Rb
+av& g cosp+Rb cosp

871
(57)

and

[T~n ntt]=0 (62)

This is clearly independent of a»& so a»& is arbitrary and
thus gt» is one of the vectors that lies on the surface (this
Killing vector simply corresponds to rotation around the
axis). For a cylindrical surface we require that there be
one (and only one) more Killing vector which lies on the
surface. From the coeKcients of cosP and sing we have

T~ . n =O.ax
ag'

(63)

In the RW region, the energy-momentum tensor is given
by

and

aRb
at+ ave n+Rb =0

an .

aRb
a» —av n+Rb =0 .

an

(58)

(59)

T~ =(e+p)u ~u +p5~,

where e is the energy density, p is the isotropic pressure,
and u ~ is the (timelike) four-velocity of the Quid which is
taken to be comoving. In the vacuum region T~=O.
Contracting (63) with u ', the tangent to X, we have

Let X =g+Rb(Mb/Bg). If X =0, then a&v and av are
both arbitrary and we have two more Killing vectors gv
and /tv that lie on the surface. Since we can allow only
one more Killing vector on the surface we must eliminate
the case X =0 [in this case we have Rb+rI =f ( T) which
can be seen to be the same as the surface r =f (t) in
spherical coordinates, i.e., the surface is actually spheri-
cally symmetric]. If X =const we can still have av and
av~ arbitrary and a, and a» will be proportional to them.
Again, there will be too many Killing vectors lying on the
surface since we have two more arbitrary a s. Thus X is
not constant so we see from (58) and (59) that av and av&
must therefore be zero. It then follows that a, and a»
must also be zero. Equation (57) now becomes

4

xT~u' . np =O
ag' '

and since the four-velocity of the surface is given by
u =u'Bx /Bg' this becomes

[T~u nti]=0 .

Using T~ as given above we find

(e+p)u u u ~n&=0

since u n =0. We do not consider the case p = —e and
u u cannot be 0 since this would imply that X is space-
like so we must have u ~n&=0. Thus aRb/BT=O and we
have R =Rb =const on the surface. Equation (58) gives
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(e+p)(n u ) +(n n )p =0

and since n u =0 and n n =1 we havep =0. Thus the
only way that the RW region can be joined onto a vacu-
um is across a comoving boundary when the matter con-
tent is dust (p =0). Conditions (62) and (63) do not allow
us to put any conditions on the nature of the boundary as
determined in the vacuum region. The intrinsic metric of
the surface can now be written as

z
sina P, r—cosa PP= O, z cosa/,

Qr

g= r sinai, rsi—nag, — cosa/, 0

g = r cosa P, t c—osa P, sina P, 0
Qr

dS = —dT +T4 (g dy +d71 ) (64) P()=(Z, O, O, t) .

since S ( T)= T ~ for dust.
The static, cylindrically symmetric vacuum as given by

(20) with co(r) =ar (a is a constant) admits the ten Killing
vectors

P, =(1,0, 0,0),

These are easily obtained from the Killing vectors of
Minkowski space since the vacuum is simply Minkowski
space with an angular deficit.

Again we assume that the joining of the vacuum onto
the RW region is to be done on a surface given by
r =rb(t, z). The normal to this surface is

O, cosa'&, —sinai
7

Qr
Orb Orb

, 1,0, — (6&)

Pz
= 0, sina P, , 0

Qr where

g„=(0,0,0, 1),
P~= (0,0, 1,0),

2
i3rb

Bt

Orb+1+
BZ

2 1/2

z
P&= 0, —z sinai, cosa/, r sinai

ar
Setting the product of n with a linear combination of
the P's equal to zero we have

rb
sinai

10 Qrb ()rb
n g b Pl bl + 2bcsoaf +3bsl »A b4 b6 z slnak+ rb

Bz Bz

Orb Orb Brb
+b7 z cosa/+ r& cosa/ bs rb co—sap+I cosa/ b9 rb si—nap+ t sinai

c}z Bt Bt

Orb clrb—bio z +t
at c}z

(66)

Equation (66) is independent of b5 so we see that P~ lies in the surface. P~ corresponds to rotation about the axis. We
see that (5 and g» (from the RW spacetime) are the same Killing vector since we have assumed continuity of P. Again,
we need one and only one more Killing vector that lies in the surface.

Equation (66) can be written as

Orb drb Orb
(b, +bIOZ)+cosa/ b2+b7 Z+ rI, bs t+ rb

C}t C}z clt

r

Orb
+sInag b3 b6 z+ rb

clz

Orb—b9 t+ rbat
Orb

(b4+bIot) .
c}z

(67)

and

b2+b7X —b8 Y =0

b3 —b6X —b9 Y =0,

From the cosa/ and sinai terms we have

(68)

(69)

where X=z+rbBrb/Bz and Y =t +rbBrb/Bt. If X =0,
then b7 and b6 are arbitrary and there are two more Kil-
ling vectors on X. However, this is one too many so we
must have XWO. Similarly, we must have YWO. If either
X or Y is a constant, (68) and (69) then demand that the
other is also a constant. In this case (68) and (69)
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represent two equations for the six unknown b s, i.e.,
four of them are arbitrary. However, we can allow only
one more arbitrary b; so this case can be dismissed. If X
and Y are not constants, then (68) and (69) each demand
that they be linearly related, i.e., X =a Y+P, where a
and p are constants. In this case (68) and (69) become

i.e., rb =rb(z) and the Killing vector lying on the surface
is just g, = (1,0,0,0).

To recap, there are three possible classes of surface in
the static vacuum that are cylindrically symmetric.
Along with the Killing vector that lies on the surface
they are

b2+ pb7 + (ab7 bs —) Y=0

b, pb6—+( ab6—b9)—Y=, O .

(i) r=rb[(/3+t) —(a+z) ],
g&=(z+a, O, O, t +P),
(ii) r =rb(t —yz), P&=(y, 0,0, 1),

(71)

(72)

arb arb0= (b&+b&oz)+ (b4+b1ot) .
at az

(70)

Thus we can take b7 and b6 to be arbitrary and these
equations then give b2= Pb7 —bs (xb7 b3 Pb6 and
b9 = —eb6. However, since there are two arbitrary b s,
there will be two more Killing vectors lying in the sur-
face, which is not allowed. Thus, since all possible forms
of X and Y for which (68) and (69) can be satisfied lead to
more than one more Killing vector lying in X, we must
conclude that the coefficients of X and Y in (68) and (69)
are all zero. The two coefficients b2 and b3 I11ust also
then be zero.

Equation (66) is then

(iii) r =rb(z), Px=(1,0, 0,0) . (73)

Each of these surfaces also admits the Killing vector P5
corresponding to rotation about the axis.

In each of these three cases, the Killing vector Pz must
be a coordinate transformation of the RW Killing vector
g,v=(0, 0, 0, 1). Case (iii) is not admissible since gz in this
case is timelike whereas g,v is spacelike. In case (ii) the
constant y must satisfy y ( 1 for Pz to be spacelike.

The covariant forms of the Killing vectors must also be
equivalent to each other. Letting gz and Pz be coordi-
nate transformations of g,v and P&v, respectively, we
find, for case (i),

If all three of b], b4, and b&o are nonzero, since we can
only allow one arbitrary b, , the three of them must be
proportional to each other. We can then write b] =nb&o
and b4 =pb, o. Equation (70) then becomes

alb arb
(a+z) = — (/3+ t)

at az

and

(z +a)+ (t +P)=0

aT
(z +a)+ (t +P) =0 .

aT
at az

which implies rb =rb[(p+t) (a+—z) ]. This reffects the
fact noted earlier that r(t z) is also —a cylindrically
symmetric surface. The constants a and p are present
since the metric is unchanged under simple transla-
tions on the t and z directions. In this case the Killing
vector which lies on the surface is ag, +pg~+ g, o

=(z+a, 0,0, t +/3).
If only two of b „b4, and b&o are to be nonzero, then

we must have either b, =0, b4=0, or b]o=0. The cases
b

&

=0 and b4 =0 can be included in the previous case
simply by setting a or p to zero. If b&0=0 then we must
have b, =yb4 and Eq. (70) becomes

y arb

at

which implies rb =r„(t —yz). This refiects the fact that
the metric is invariant under Lorentz boosts in the z
direction. The Killing vector which lies on this surface is
Xk +4=()' o o 1).

If only one of b, , b4, and b &0 is nonzero, then the other
two must be zero. The case b, =b4 =0 can be included in
the previous work by setting a=P=O. The case
b,o=b] =0 can be included in the preceding case by set-
ting y=0. If b&o=b4=0, Eq. (70) becomes

arb —0 e

at

We see that aT/az=aT/at =0 so T cannot be expressed
in terms of the coordinates t and z and the match cannot
be accomplished.

In case (ii) we find the transformation equations

aT aT aT aT
at az at az

az az 1

87/ B7/ S2( T)

From the first two equations we have BT/Bz =0 and if T
is going to be related to t we must have y=0. The last
two equations show that the RW spacetime must have
S(T)=1. This is simply Minkowski space and does not
represent a cosmological Quid. We see that the static
vacuum metric contains no cylindrical surface that can
be matched onto a RW exterior which represents a possi-
ble cosmological Quid.

We now examine the matching of the nonstationary
solutions onto a RW exterior. The nonstationary vacu-
um metrics (26) and (47)—(50) all admit only the four Kil-
ling vectors given by (46). If the normal to the surface is
again given by (65) except with

D =(g n n~)'~
aP

where g &
is appropriate to whichever metric we are ex-

amining, we can see from inspection that the only way in
which there can be another Killing vector in the bound-
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ds2=t4
'2

Bt Orb

BT BT
+

2-

dT2

ary, in addition to the one corresponding to translation in
p, is to have Orb/Bz =0. The second Killing vector lying
on the surface is then P~ =(0,0,0, 1). Equating this with
the RW Killing vector giv we find Bz /Bg = 1 and
Bg/dz =1 so that z =g and T=T(t). The axial coordi-
nate can thus be taken to be continuous through X.

For the metric (26) the vacuum region has
co(r)=c&2r+c» so that on the surface X the metric be-
comes

(29), and (34) represent nonstationary strings that are
nonsingular on the axis and which can easily be embed-
ded in an external vacuum. In the case of (21) the exteri-
or vacuum is static while in the other two cases it is non-
stationary. The solution given by metric (36) is singular
on the axis. We have also demonstrated the existence of
another class of solutions (Sec. IIB2); however, these
solutions diverge as r —+ ~ and cannot easily be embed-
ded in an exterior vacuum due to the numerical nature of
the solution.

The vacua surrounding the strings in the cases of
metrics (21), (26), (29), and (34) cannot be joined smoothly
onto an exterior RW spacetime.

+t (c,2rb+c&3) dp +—2dgt' (74)
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Comparing this with (64), the continuity of the intrinsic
metric [condition (60)] gives
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APPENDIX A

4

2
at
aT aT (77)

The Killing equations for the metric (44) are

~Co

at
(A 1)

2—1 at aa+
aT

+(1+cosht) (c7sinhrb+cscoshrb) dp
2

cosht —1

cosht+ 1

ds = ( 1+cos}lt) dT2

(78)

The continuity of the intrinsic metric then gives

cosht —1

cosht + 1

(1+cosht)(c7sinhrb+ cscoshrb ) = T Rb,

Using Eqs. (75) and (76) we find that Eq. (77) is incon-
sistent and the match cannot be realized.

The vacuum region for the metric (47) has
co(r)= c7sinhr+cscoshr so that the intrinsic metric of the
surface X is given by

~Co ~ki 2
a, +

at

~Co 42 2+ ——$2=0,
BP Bt

~Co ~k
az at

ag,
tgo=0, —

ar

~k
BP Br col

~(i ~k
az ar

~4
tco go+coco g~

—0,
~4 ~4+

ay

(A2)

(A3}

(A4)

(A5)

(A6)

(A7)

(A8)

(A9)

—1(1+cosht)
2

+at a

aT aT

2

B$3

Z
(A10)

Again, the third equation is inconsistent with the first
two so the two regions cannot be joined smoothly. It is
easily verified that the same results hold for the metrics
(48)—(50). Thus, none of the nonstationary vacua join
smoothly onto the RW exterior.

V. SUMMARY

ag, +t'f (r, P,z),
ar

(Al 1)

From (Al) and (A10) we have go=go(r, P, z) and
$3=$3(t, r, g). Equations (A2) —(A4) can be integrated to
give

We have found all separable, cylindrically symmetric
solutions to the Einstein equations with T,

' = T,'
o(r, t}. The solutio. n—s given by the metrics (21), (26), and

ago
gz=t +t g(r, P,z), (A12)
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f3= t— +h (r, p),ko
3 az

(A13)

where f, g, and h are arbitrary functions of their argu-
ments. Equation (A9) then becomes

p Bg Bh

a +ay
Thus g =g (r, P) and h =h (r). Equation (A7) is then

ago 2go

Bt t

a4 + ——$, =0,
ar at

(81)

(82)

APPENDIX B

The Killing equations for the metric (26) are (after let-
ting w~t)

2af ah
Bz Br

so that h =const and f =f (r, P). With these results, Eq.
(A5) can be written as

AO, 2 af
Or

ag, ag,
ay+ at

ako a@ 2
az at

ag, ——Co=0
Br t

(84)

This means that f =f (P) as well as

a'ko

a, =Co. (A14)

kl + k2 2co
a(b ar co

ag, ag,
Bz Br

Equation (A6) is now

a go'
aya.

so we have

a'g,
ap ar

co ako

co a/

~' @o, af ag co

co ap a(b ar co
+t + —2 g =0

ak2 co—2 go+ coco'gl =0,
ak ak
az a(t

ak ko

t7

(88)

(89)

(810)

Differentiating this with respect to r and using (A14) we
find

Equation (81) shows that go=t f(r, P,z) so Eq. (84) may
be written as

ako co1—
Q)

=0.
2af 1 atk

t'

Inside the string we have co"%co (co"=co defines the vacu-
um in this case) so that ago/a/=0. Equation (A8) can
now be written as

ag, , a4'o
+coco f +t coco co go

—0 .
ap Br

Thus we have

0 CO

Br co
=Co . (A15)

Differentiating this we find

boa'g'o/ar '
=1-

(ag /ar)

if ago/ar&0. However, using (A14) and (A15) we find
that this implies co"=co. Since co"%co inside the string
we conclude that agolar =0 and from (A15) we see that
go=0. Thus there are no timelike Killing vectors inside
the string so it is nonstationary.

This means that g3 is of the form

t af i(r, p, z)
5 az

Using this in (810) we find

t3af 1 ai 1+— + f=0—
8 2 t2 Bz ts

t +— =0,8/ 1 Bi

az t2 ap

i.e., l =l (r, P) and i =const (say a) so we have (3=a/t
With g, =t j (p) and $2=t l(r, p), Eqs. (86) and (88)

become
aI

ap ar co
(811)

so that i =i(r, P) and f =0 and thus (O=O. Therefore,
this spacetime is nonstationary in both the string and
vacuum regions.

Now we have g3 =i (r, P)/t . Equation (85) shows that
pi=pl(t, p, z) and (82) can be integrated to give

t j (p, z). Using these in (87) we find
ai /ar =aj/az =0 so that i =i (p) and j=j(p). Upon in-
tegration (83) gives $2=t l(r, p, z) so that (89) is
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and

al
a

+coco j —0 . (812)

P„=(0,0,0, 1),
g=(0,0, 1,0),

r

Differentiating (811)with respect to P and using (812) we
find

I

Pc = O, sink, cost, 0
CO

a'= 2

8 2
= —(co' —co"co)j . (813) PD

= O, cosg, — sing, O
CO

This allows two classes of solution depending on whether
or not co —co"co is a constant.

If co' —co"co=e (e =const), we have, upon differ-
entiation,

CO CO COCO =0

If co' —co"co is not constant, i.e., inside an inhomogene-
ous string, Eq. (813) demands that j(p)=0. Equation
(811) then gives l =yco . In this case gl =0 and
$2= yco t and the spacetime admits only the two Killing
vectors p~ and goal.

so that, if co"WO, we have APPENDIX C

CO
=CCO,

where c is a constant. The case co"=0 can be included
simply by setting c =0. In this case we are dealing with
either the vacuum (c =0) or a homogeneous string
(c@0). From Eq. (27) we see that we must require c &0
so that the energy density is non-negative. With c & 0 we
see that e must be positive. Since co(r) is only defined by
the field equations uLi to an arbitrary multiplicative fac-
tor, we can let co~&@coso that e can be set to 1.

With e = 1, Eq. (813) becomes

8 j j
so that

j=psinp+5cosp,

where p and 5 are constants. Equation (812) can be in-
tegrated to give

l =Pcoco'cosP —5coco' sinP+m (r)

and using this in (811) we find

BP12 CO—2 m=0.
Br co

Thus we have m =yco . g, and g2 are now given by

g, =t (psinp+5cosp)

ag, ag,
c3r Bt

ag, ag,
ay at
a4'o ah+
Bz Bt

2 sinht
1+cosht

2 sinht
1+cosht

2 3=0,
sinht

sinht
C10C 210 21+ oht

kl + k2 2co
ap ar co

ak
Bz Br

ak i 2 sinht
cloczco go+coco gl 0

1+cosht
ag'~ a(3
a +ay

a/3 sinht go
C10C 2

=0
az (1+cosht)

For the metric (47) the Killing equations are

a4o sinht
at 1 +cosht

(Cl)

(C2)

(C3)

(C4)

(C5)

(C6)

(C7)

(CS)

(C9)

(C 10)

and

g2 = t (pcoco'cosp —5coco'sing+ yco ) .

Equation (Cl) can be integrated to give
go=(1+cosht)f (r, P,z). Differentiating (C4) with respect
to z we have

With these results we see that the vacuum and a homo-
geneous string admit the four Killing vectors

a'k
2 (jz

2 ak
sinht Bz

=(0,0,0t ),

goal =(0,0, co t,O),

=(O, t i sPn, t coco'cosP, O),

gD~=(O, t cosP, —t coco'sing, O),

or, in contravariant form,

Using (C10) in this we find

h )
a f 1 —2cosht
az (1+cosht )

so we have a f laz =f =0. Thus go=0 and the Killing
vectors are all spacelike so both the string and vacuum
regions are nonstationary.

Equations (C2), (C3), and (C4) can now be integrated to
give
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g, =(1+cosht) j(r, p, z),
g'2=(1+cosht) l(r, g, z),

cosht —1 .i(r, ,z) .
cosht +1

Equations (C5) and (C10) then show that i =i(r, p) and
j j=((t', z). Using these in (C7) we see that i =i(p) and
j=j((()). Equation (C9) then gives i =const (say, a) as
well as l =l(r, P). Equations (C6) and (C8) are then ex-
actly the same as (Bll) and (B12). The solutions for
l (r, rtp) and j (p) are then the same as before so we have

cosht —1 .i(r, ,z) .
cosht +1

In contravariant form the Killing vectors are the same as
those given in Appendix B.

The Killing equations for the metric (48) are essentially
the same as those for the metric (47) except with cost re-
placing cosht. The equations can then be solved in exact-
ly the same manner as above and we find.

g, =(1+cost) (P sing+ 5 cosP ),
f2=(1+cost ) (coro'P cosP —coco'5 sinP+yco ),

and

and

g, = (1+cosht) (13sin(t +5 cos(t ),
g2

= (1+ cosht) (/3roro' cosP —5coro'sing+ pro ),
1 —cost

3 =Cx
]+cost

Again, the contravariant forms of the Killing vectors are
the same as those given in Appendix B.
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