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It is proven that there do not exist any diagonal Bianchi type-IX universes which expand for an
infinite time, provided only that the matter satisfies the dominant energy condition and has non-

negative average principal pressures.

I. INTRODUCTION

For Robertson-Walker cosmological models, there ex-
ists an interesting connection between the topology of
space and the future evolution of the Universe. Under
only the assumption that the energy density of matter is
non-negative, it is easy to prove that any "open" (i.e.,
k =0, —1) expanding Robertson-Walker model must con-
tinue to expand forever. On the other hand, under the
assumption that the average pressure of matter is non-
negative (and under further assumptions on the matter
that ensure that no singularities occur during the expand-
ing phase), every three-sphere (k =+1) expanding
Robertson-Walker universe must recollapse within a
finite amount of time. ' It has been conjectured by Bar-
row, Galloway, and Tipler' that this recollapse behavior
of the k = +1 Robertson-Walker models holds quite gen-
erally for all universes with spatial topology S and
S' XS . In this paper, we shall give a proof that such be-
havior does indeed hold for the case of diagonal Bianchi
type-IX universes with appropriate matter content.

To begin, we must define more precisely what we mean
here by "expansion" and "contraction" of the Universe.
Recall that a slice of spacetime is a closed, achronal,
edgeless set; a spacelike slice thus can be taken to
represent an "instant of time. " The Universe may be said
to be expanding (contracting) at the instant of time
represented by the smooth, spacelike slice X if the trace
of the extrinsic curvature of X is everywhere positive
(negative). However, in general, this property may be
more reflective of how the slice is chosen than of the dy-
namics of the spacetime. Indeed, it is not difficult to find
contracting slices in open Robertson-Walker models
which "expand forever. " (These contracting slices ter-
minate in the initial singularity. ) The situation is im-
proved somewhat if the spacetime is globally hyperbolic,
since then one can impose the additional demand that the
slice be a Cauchy surface. However, the fact that Min-
kowski spacetime possesses expanding and contracting
Cauchy surfaces makes manifest that a statement such as
"the Universe is expanding at 'time' X" must be inter-
preted with some care.

In the case of spatially homogeneous cosmologies, as
will be considered in this paper, there is a natural choice
of slicing of spacetime: namely, that defined by the sur-

faces of homogeneity. Thus, when we use the term "ex-
panding" or "contracting" we refer to the trace of the ex-
trinsic curvature of these slices. The issue we shall inves-
tigate here is whether an initially expanding diagonal Bi-
anchi type-IX universe with appropriate matter sources
must, within a finite time, reach a maximum of expansion
and then begin to contract, i.e., "recollapse. " Note that
if recollapse begins, then it follows from the Raychauduri
equation (applied to the congruence of geodesics normal
to the homogeneous hypersurfaces) that the contraction
rate will diverge to infinity a finite time later (see, e.g. ,
lemma 9.2. 1 of Ref. 4). For noncompact spatial slices,
this divergence could merely represent a singularity in
the slicing rather than in the spacetime structure. How-
ever, for the case of compact slices, it is known from the
singularity theorems that a spacetime singularity must
occur in the sense that not all timelike geodesics can be
future complete (see theorem 9.5.2 of Ref. 4). Thus, for a
Bianchi type-IX universe, recollapse implies the existence
of a "final" singularity. If it is further assumed that the
spacetime is globally hyperbolic and that the surfaces of
homogeneity are Cauchy surfaces, then this final singu-
larity must be "all encompassing"; i.e., all timelike curves
have finite length (see theorem 9.5.1 of Ref. 4).

However, difficulties arise when attempting to prove
that recollapse occurs because of the possibility that a
singularity could develop during the expanding phase,
thereby effectively halting the evolution prior to recol-
lapse. In the vacuum case, it is possible to show (as we
shall at the beginning of Sec. II below) that no singularity
can occur during the expanding phase of a Bianchi type-
IX solution. However, such singularities could arise if
matter is present and if no "equation of state" or other
suitable conditions are imposed on the matter. In order
to avoid imposing such additional conditions, we shall re-
formulate our basic question as follows: Do there exist
any diagonal, Bianchi type-IX solutions with appropriate
matter sources which expand for an infinite amount of
proper time? If no singularities can occur during the ex-
panding phase, then this question is equivalent to the
original question of whether all such universes must
recollapse within a finite time.

By definition, the general Bianchi type-IX spacetime
has topology RXS, with a simply transitive action of
the isometry group SU(2) on the S' spatial slices. The
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metric of a general Bianchi type-IX model can be put in
the form

3

ds = d—r +e2~ g (ex~) aiaj
V

da dp — 1 2 t)V
edr dr 8 t)P

Here V(P+, P )—:1 ——', ' 'Re is given by

(1.7)

p+ = ,'p3, —— (1.2)

(see, e.g. , Sec. 7.2 of Ref. 4). Here o', o, and cr are
isometry invariant one-forms on the three-sphere satisfy-
ing S,o'=0 (where r' is the unit normal to the homo-
geneous hypersurfaces), a is a scalar, and p is a traceless
3 X 3 matrix. (Both a and p are functions of the proper
time r only. ) The diagonal Bianchi type-IX spacetimes
are those for which the o'' can be chosen so that p is a di-
agonal matrix for all time. This requirement is equivalent
to demanding that on each homogeneous slice the eigen-
vectors of the extrinsic curvature tensor K'b coincide
with the eigenvectors of the three-dimensional Ricci ten-
sor ' 'R'b. For vacuum solutions, this condition is im-
plied by the field equations (see Ref. 5), so the diagonal
case encompasses all vacuum Bianchi type-IX space-
times.

For a diagonal spacetime, let p„pz, and p3 denote the
diagonal elements of the matrix P. Only two of these
quantities are independent since P, +P2+P3=0 on ac-
count of the tracelessness of p. We choose the indepen-
dent variables to be

V(/3+, P ) = 1 ——', e +cosh(2&3P )+—,'e

+—', e +[cosh(4&3P ) —I] . (1.8)

Note that V&0. A plot of the level surfaces of Vis given
in Fig. 1. In the vacuum case T,b

=0 there is redundancy
in the above system: By use of the Bianchi identity
V'G, b =0, Eq. (1.4) and any two of Eqs. (1.5) —(1.7) imply
the remaining equation.

The trace of the extrinsic curvature of an arbitrary
homogeneous slice is

3
dc'
d7-

Hence, the Universe is expanding if and only if da/d~ is
positive. Thus, we seek to determine whether there exist
any solutions of the system (1.4)—(1.7) of ordinary
diff'erential equations (with appropriate restrictions im-
posed upon p, P&, Pz, and P3) such that da/dr & 0 over a
half-infinite interval of ~ time.

It will be convenient to introduce a new time variable t,
monotonically related to ~ by

p = —(p, —p2) .1

2 3
(1.3)

In the diagonal case, it is not difFicult to show that the
Einstein tensor 6 b must be diagonalizable and its eigen-
vectors must coincide with the vectors (dr)', (o')', (a )',
and (a )'. Thus, a diagonal Bianchi type-IX universe can
admit only matter distributions with a similarly diagonal
stress-energy tensor T'b. Let —p, I'„ I'2, and P3 denote
the eigenvalues of T'b corresponding, respectively, to the
eigenvectors (dr)', (a')', (o. )', and (o )'. Then
Einstein's equation G,b =8~T,b for a diagonal, Bianchi
type-IX universe, takes the form

=5

B=o

da
d7

2 2
dp~
d7

d +—'e (1—V)= p,d~ 4 3

(1.4)

22
d/3+

d'T

2
d Q de
d7

4m

3
(p+P, +P2+P3), (1.5)

d p++3da dp+ 1 z t)V
dr2 dr dr 8 BP

4m
(2P3 P, P2 ), — —

FIG. 1. A plot of the level surfaces of the "potential"
V(P+, /3 ) appearing in the field equations. (This plot is adapt-
ed from Ref. 3, with appropriate changes in conventions. ) The
potential has a symmetry under 120' rotations in the P+-P
plane, corresponding to cyclic permutations of P, ,P„/3, . The
minimum value of V=O is achieved at origin. The contours
with V & 1 are closed, whereas the contours with V ~ 1 are
asymptotic to the dotted lines /3 =0 and v'3P++P =0 shown
in the figure. Thus, for'any C ) 1, the contour V=C defines
three "channels" along which P2++/3 can diverge to infinity,
keeping V~ C.
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dt =e
d'T

(1.10) P++2aP++ — =0,
8 8

(2.3)

In terms of this variable, Einstein s equations
(1.4}—(1.7) become P +2aP +— =0 .

8 8
(2.4)

a —P~ —P + —,'(1 —V)= e p,

a+2(P++P )= — e (p+P, +P2+ 3), (1.12)

(As already noted above, only three of these equations are
independent. ) We seek solutions of (2.1)—(2.4) for which
a ~0 for all t C [to, 00). As pointed out at the end of the
previous section, Eq. (2.2) implies that

~ ~ ~

P+ +2aP++— 4m e~ (2P3 P&
—P2—), (1.13) cY&0

and, hence,

(2.5)

P +2aP +— 2a(P P ) (1.14) ~ g ~

CX AO, (2.6)

where the overdots denote derivatives with respect to t.
From Eq. (1.12), we obtain the very important con-

clusion that for matter satisfying p+P, +P2+P3 )0 (as
we shall assume below}, we have

(Y (0. (1.15)

Thus, cz decreases with time, and, hence,

a(t) (ao(t to)—+u
o~

(1.16)

where the subscript 0 denotes the initial value at time
t = to. Consequently by integrating Eq. (1.10) we obtain

ao(t —to)+ao
e

CXO

(1.17)

II. PROOF FOR THK VACUUM CASK

As previously mentioned, for vacuum Bianchi type-IX
solutions, there is no loss of generality in restricting to
the diagonal case. Einstein s equations (1.11)—(1.14) in
the vacuum case become

ix —P+ —P + ~~(1 —V) =0,
a+2(P ++P )=0,

(2.1)

(2.2)

From Eq. (1.17), it follows that as r~ 00, we have t ~ oo.
Conversely, if n ~0 holds for all t, then n ~ no, so by in-
tegrating Eq. (1.10) again, now using this inequality, we
find that r) e '(t to), and hence a—s t~ao we have

Thus, if p+P~+P2+P3 ~0, the existence of a
solution which expands for a half-infinite interval [ro, m)
of r time (i.e., proper time as measured by observers who
move orthogonally to the homogeneous hypersurfaces) is
equivalent to the existence of a solution which expands
for a half-infinite interval in t time, i.e., for which ci 0
for all r E [to, ~).

In this paper we shall prove that if the dominant ener-
gy condition holds and if the average pressure
—,'(P, +P2+P3) is non-negative, then there does not exist
a solution of Eqs. (1.11)—(1.14) which expands forever in
this sense. The proof of this result simplifies considerably
in the vacuum case and we shall give the vacuum proof in
the next section. The generalization to the nonvacuum
case will be given in Sec. III.

where ao=a(to). Hence, if a )0, from Eq. (2.1), we have

P++P +-,' V( —,'+bio . (2.7)

13' +P' +-,'[V(P 13 } 1—]—o . —— (2.8)

[The initial value of a then is determined by taking the
positive square root in Eq. (2.1), and Eqs. (2.2) —(2.4)
determine the subsequent evolution of a, P+, and P .]
Note that since V is continuous, 4 is a closed subset of

Since V 0, this shows that for an expanding universe,
P+ and P, as well as V, are uniformly bounded in time.
Hence, P+ and P (as well as a), cannot diverge in any
finite interval of t time. Equations (2.2) —(2.4) then show
that the second (and higher) derivatives of a, P+, and P
also are bounded in any finite interval of t time. Conse-
quently, for a solution defined on a finite, open interval of
t time, the quantities a, P+,13 and their first time deriva-
tives can be continuously extended to the future end
point of that interval. Hence, the solution can be extend-
ed beyond that interval. This establishes that in the vacu-
um case, no singularities can occur during an expanding
phase, as was claimed in the previous section.

The proof that there do not exist solutions of
(2.1)—(2.4) which expand forever divides naturally into
two steps. In the first step, we prove that for any solution
which expands forever, the dynamical trajectory must
"escape to infinity" in the P+-13 plane along one of the
"channels" of the potential V (see Fig. 1). This step uses
only Eq. (2.2), the bound (2.7), and the nonexistence of
static solutions to the full set of equations. On the other
hand, the second step of the argument uses detailed prop-
erties of the equations to show that such "escape along a
channel" is impossible.

The first step is accomplished by means of the follow-
ing lemma.

I.emma Let a(t), P+. (t),P (t) be a solution of Eqs.
(2.1}—(2.4) such that a) 0 for all t &[to, 00). Let K be
any compact subset of the P+ -P plane. Then at
sufficiently late times the dynamical trajectory cannot
enter E; i.e., there exists t, E IR such that
(p+(r},p (r))KKfor all t)r, .

Proof. Since a enters Eqs. (2.1)—(2.4) only in
differentiated form, we may view the initial data space S
for Eqs. (2.1)—(2.4) as consisting of the quantities
(P+,P,P+,P ) subject to the condition
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Define the function f:S~Rby

f(p)= f (P++P )dt . (2.9)

f (p)) fz(p)) c )0 Vp&K (2.1 1)

as we claimed.
Now, consider any solution of Eqs. (2.1)—(2.4) for

which a) 0 for all t E [to, ~). By integrating Eq. (2.2)
from to to t, we find

2f (P ++P )dt =ao a(t) & ao —. (2.12)
'o

Thus, taking the limit as t ~~, we find that the integral
on the left side of Eq. (2.12) converges:

I (P++P )dt & oo . (2.13)
Eo

Since the integrand is non-negative, this equation further
implies that

Here the integral is taken over the dynamical trajectory
determined by the initial condition p E4 at time t = to.
[If recollapse occurs and the solution determined by p ex-
ists for only a finite time, the integral is taken only over
that finite time; f(p) may, of course, be infinite. ] We
claim, first, that given any compact subset KCS, there
exists a c )0 such that f (p) )c for all p &K. To prove
this statement, choose T )0 to be su%ciently small that
all solutions with initial data in K exist for at least time
2T. (That such a T exists follows from standard existence
theorems for ordinary difFerential equations; see, e.g.,
theorem 8 of Chap. 5 of Ref. 6.) Define fr (p) by

fo+ T
fr(P)= I, (P++P )dt . (2.10)

Then fz. is a continuous, non-negative function on K on
account of the continuous dependence of solutions to or-
dinary diQ'erential equations on the initial data. Hence,
fz achieves its minimum value, c)0, on K. However,
c =0 is impossible since that would imply P+ =P =0 for
all t E [to, to+ T] which, in turn [by Eqs. (2.3) and (2.4)],
implies p+ =p =0 for all t E [to, to+ T]; however,

P+ =P =P+ =/3 =0 is incompatible with Eq. (2.1).
Since, clearly f (p) )fz (p), we thus obtain

The above lemma directly implies that for a Universe
which expands forever we must have P++P ~oo as
t ~ oo. However, by Eq. (2.7), V remains uniformly
bounded for all time. Thus, the only possible behavior of
the solution in the p+-p plane as t ~ oo is for it to "es-
cape" to infinity along one of the three "channels" of V
indicated in Fig. 1. On account of the threefold symme-
try of V, we may assume, without loss of generality, that
the dynamical evolution proceeds along the "right chan-
nel, " so that p+ —+ ao (and p —+0) as t~ oo. Thus, we
may assume that given any CE1R, there exists a t, EIR
such that p+(t) )C for all t ) t, . For reasons to be made
clear below [see Eq. (2.18)], we choose C = 1.

We shall now prove that there do not exist any solu-
tions of Eqs. (2.1)—(2.4) which satisfy a )0 and p+ ) 1 for
all t) t, and for which p+~~ as taboo. We shall
structure the proof so that it can be taken over to the
nonvacuum case (see Sec. III); a somewhat simplified
proof, applicable only to the vacuum case, also could be
given.

By multiplying Eq. (2.2) by 5 and adding it to Eq. (2.1),
we obtain

5a+a +9(P++P )+—,'(1 —V)=0 .

Adding this equation to Eq. (2.3), we get

P++5a= —9(P++P ) —2aP+ —a

+2(1—V)
1 BV
8 BP+

(2.16)

(2.17)

From Eq. (1.8), we have

1 BV —2P++2(1 —V) = ——'e +cosh(2+3P )
8 aP, 3

—
—,
' e + [cosh(4&3P ) —1]

—8p+ I
—2p++—e12

(——e
3

(2.18)

for all P+ ) 1.
We may write the remaining terms on the right side of

Eq. (2.17) in the following two ways:

—9(P ++P ) —2aP+ —a

lim J (P++/3 )dt =0;
t —woo t

i.e., we have

(2.14)
= —(P++a) —8P+ —9P

,'P+(P++5a) ——(—2P+—a) ——", P + —9P

(2.19)
lim f(p(t) )=0 .t~ oo

(2.15)

Now, let K be a compact subset of the p+-p plane.
Let K be the intersection with 4 of the Cartesian product
of K with the closed disk of radius ( —,

' +ao) ' in the
P+-P plane. Then K is a compact subset of S. By Eq.
(2.7), if the dynamical trajectory enters K, it must enter
X. As proven above, there exists a c )0 such that
f (p) )c for all p HK. However, by Eq. (2.15) there exists
t, EIR such that f(p(t)) &c for all t ) ti. This fact im-
plies that p(t)EK and hence (/3+(t), p (t))QK for all
t ~ t „as we desired to show.

p++Sa & —
—,'e (2.20)

In addition, from Eqs. (2.17), (2.18), and the second
equality of (2.19), we obtain, for all t ) t„

p++5a & ,'p+(p++5a) . —— (2.21)

The nonexistence of solutions now follows directly
from Eqs. (2.20) and (2.21). Define X(t) by

From Eqs. (2.17), (2.18), and the first equality of (2.19) we
obtain, for all t ) t„
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X =P++5a .

Then Eqs. (2.20) and (2.21) become simply
—2p+X( ——'e

3

(2.22)

(2.23)

ble, vacuum Bianchi type-IX must recollapse, i.e., da/d~
becomes negative within a finite proper time. The singu-
larity theorems then imply existence of a singularity,
which must be 'all encompassing" (i.e., all timelike
curves have finite length) if the surfaces of homogeneity
are Cauchy surfaces.

X& ——6XP+ . (2.24)

where X )0 and n )0 were used. Thus, we find that

2( ) (
—2P () —2P ( ))3'

Taking the limit as tz ~ ~, we obtain, for all t ~ t, ,

1 —p+ (,t)X(r)& e
3

(2.26)

(2.27)

On the other hand, if we divide Eq. (2.24) by X and in-
tegrate from t, to t, we obtain

lnX(t) —1nX(r, )& ', f p+dt——
1

= ——', [13+(t) p+(t, )] . — (2.28)

The first step of the argument is to show that X )0 for all
r ) ti. To do so, we note that Eq. (2.23) implies that
X &0 for all t ) t, . Hence, if we had X(t2) &0 for any
t2%[t„oo), it would follow that X(t) &0 for all t & t2
Since a )0, this would imply, in turn, that P+ & 0 for all
t ) t2. However, this is incompatible with the fact that
P+ ~ ~ as t +DO. Th—us, we conclude that X )0 for all

Next, we multiply Eq. (2.23) by X and integrate from
any t H [t„~) to any t2 ) t, thereby obtaining

—,'[X'(t, )
—X'(t)] & ,

' f——e 'X dt

III. THE NONVACUUM CASE

In th][s section we shall extend the proof of the nonex-
istence of vacuum Bianchi type-IX universes which ex-
pand for an infinite time, to the nonvacuum, diagonal
case, under the assumption that the rnatter satisfies the
dominant energy condition and has non-negative average
principal pressure. Thus, we assume that

~P, ~&), P, +P, +P, )0, (3.1)

where p is the energy density and P„P2,P3 are the prin-
cipal pressures. (As discussed in Sec. I, the stress-energy
tensor T,b must be diagonalizable in a diagonal Bianchi
type-IX solution. ) Recall that the proof for the vacuum
case was composed of two main steps: First, we proved a
lemma which showed that for an expanding universe, we
must have P++P ~oo (with V bounded) as taboo.
Then we showed that such an "escape along a channel" is
impossible. We shall extend the proof to the nonvacuum
case by first showing that, for an expanding universe, the
matter source terms vanish asymptotically as t —+ ~.
This behavior will imply that the late time evolution must
be sufficiently close to that of a vacuum solution that the
conclusions of the lemma continue to hold. The second
step of the argument may then be directly taken over to
rule out the existence of solutions which satisfy Eq. (3.1)
and expand for an infinite time.

First, we recall from the end of Sec. I that, when Eq.
(3.1) holds, Eq. (1.12) implies

Hence, for all t ~ t„we have
—6p+(t)/5Xt &ce (2.29)

(3.2)

where c is a constant. However, Eq. (2.29) is incompati-
ble with Eq. (2.27), since P+~~ as t~~. Thus, we
have obtained a contradiction, thereby proving the
nonexistence of solutions. Note that this argument de-
pends very sensitively on the precise form of Eqs.
(2.1)—(2.4); appropriate small changes in the numerical
coeKcients appearing in these equations would invalidate
this argument.

We may summarize the results of this section, together
with some results from the previous section, with the fol-
lowing theorem.

Theorem l. There do not exist any vacuum Bianchi
type-IX solutions which expand (a) 0) for an infinite
amount of proper time ~ as measured by observers mov-
ing orthogonally to the homogeneous hypersurfaces.
Furthermore, since every expanding vacuum Bianchi
type-IX solution on a finite proper time interval is exten-
dible into the future, every initially expanding, inextendi-

and hence

CX CXp (3.3)

Hence, if a )0, Eq. (1.11) then yields

3
(3.4)

Thus, as in the vacuum case, P+, P, and V are uniform-
ly bounded in time. In addition, we find now that e p
also is uniformly bounded. The dominant energy condi-
tion then implies that e P, is uniformly bounded.

Now differentiate Eq. (1.11) with respect to t, and use
Eqs. (1.12)—(1.14) to eliminate the second time deriva-
tives of a, /3+, and I3 . (The resulting equation expresses
conservation of stress energy, V'T, b =0, which follows
from the Bianchi identity V'G, b =0.) We obtain
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2a 2a(e p) = a—e (p+P, +P2+P3)

p—+e (P(+P2 —2P3)

&3—p e2 (P, P2)—. (3.5)

lim e p=O .
f~oo

(3.7)

The dominant energy condition then implies that we also
have

lime P, =O
f —+ oo

(3.8)

and thus the terms on the right sides of Eqs. (1.11)—(1.14)
vanish asymptotically, as claimed.

Equations (3.7) and (3.8) together with the continuous
dependence of solutions to ordinary differential equations
on "source terms" allow us to extend the lemma of Sec.
II to the case of rnatter. We outline now the steps needed
to accomplish this extension.

Since all quantities on the right side of this equation are
uniformly bounded, we find that the first time derivative
of e p is also uniformly bounded in time. Note, howev-
er, that our assumptions about the matters do not enable
us to place bounds on the first and higher time derivatives
of the P; or the second and higher time derivatives of p.
Thus, further conditions on the matter would be neces-
sary to ensure that no singularities occur during an ex-
panding phase. Note that if one wishes to have smooth
(C ) solutions, the "matter regularity condition" of Ref.
1 would not be adequate for this purpose since it does not
rule out singularities in the time derivatives of the matter
variables and curvature; an example of a sufficient condi-
tion is an equation of state, P; =P;(p), for which P; is a
smooth function of p (including at p=0).

%"e now prove that the matter source terms in Eqs.
(1.11)—(1.14) vanish at asymptotically late times. By in-
tegrating Eq. (1.12) from time t to infinity, we obtain

a —a =2f (p++p )dt

+ f e (p+P, +P2+P3 )dt, (3.6)
3 t

where a„=lim, „a 0. (This limit exists since a is a
monotone decreasing function, bounded from below by
zero. ) In particular, since p and (P, +P2+P3) are non-
negative, this equation implies that J, e p dt converges.
In general, for a non-negative, differentiable function F,
the convergence of I, F(t)dt does not imply that F~0
as t~~, since F could "spike up" sporadically, with
ever narrower "spikes, " at arbitrarily large t. However,
if, in addition, the derivative of F is uniformly bounded in
t, i.e., F' ~ C, as in the case here, then F must go to zero
because there is a lower bound on the width of any such
"spikes. " [More precisely, given e) 0, at any TER for
which F(T))e, the interval of size 5=2e/C centered
about t = T will contribute at least e5/2 to the integral.
Hence, there can be at most a finite number of such inter-
vals. Consequently, we have F (t) (e for sufficiently large
t.] Thus, we obtain

Consider a solution of Eqs. (1.11)—(1.14) which ex-
pands for an infinite time, and for which the matter terms
satisfy the dominant energy condition, with non-negative
average pressure. Rewrite the equations as a first-order
system, with a, P+, P+, P, and P viewed as the "in-
dependent unknowns" and e p, e P; viewed as
prescribed source terms. Let K be a compact subset of
the p+-p plane as in the lemma of Sec. II. We shall
show that the conclusion of this lemma continues to hold
by comparing the given solution with matter to the solu-
tion of the vacuum equations (p=O, P; =0) which, at a
specified time, has the same initial data for a, p+, /3+,
and p, and has p adjusted so as to satisfy Eq. (1.11)
with p =0. As in the lemma, choose T & 0 to be
sufFiciently small that any vacuum solution starting with
(p+, p ) EK and with a ao cannot develop a singularity
within time 2T. Let c )0 be a lower bound for fr(p),
defined by Eq. (2.10), for vacuum solutions with initial
data satisfying these conditions. Theorems on the con-
tinuous dependence of solutions to ordinary differential
equations on initial data and "source terms" (see, e.g. ,
theorem 3 of Chap. V of Ref. 6) then imply that for any
time t at which the given solution to the equations (with
matter sources) satisfies (p+(t), p (t))EK, the difference
between the given solution and the corresponding vacu-
um solution in the time interval [t, t + T] can be bounded
in terms of the maximum value of e p and e P, in that
time interval. Consequently, by virtue of Eqs. (3.7) and
(3.8), we can choose a sufficiently large that for all t )a
satisfying (p+ ( t),p ( t) }EK, we have

f (p2++p2 )dt fr(p(t)) —&c/2 (3.9)

and, hence,

f (p++p )dt )c/2 . (3.10)

[Here the integral is taken over the solution with matter;
fr(p (t)) is the corresponding integral computed for vac-
uum solutions with the corresponding initial data at time
t.] By the same argument as used in the vacuum case, the
existence of the lower bound (3.10) implies the desired
conclusion of the lemma that there exists a t, such that
(p+(t), p (t) ) EK for all t ) t, .

As in the vacuum case, the validity of the lemma, to-
gether with the bound on V obtained from Eq. (3.4), im-
plies that the only possible behavior of the solution in the
/3+-P plane at late times is "escape along a channel, "
which we again assume, without loss of generality, is the
one with /3+ +~ as t —+~. —Thus, we have completed
the extension to solutions with matter of the first step of
the vacuum proof.

Taking the same combinations of equations as used to
derive Eq. (2.17) in the vacuum case, we now obtain

P++5a= —9(P++P ) —2aP+ —a
1 BV +2(1—V) 4vre (p+P3 )—2A

8 aP

e (Pi+P~+P3) . (3.11)

By Eq. (3.1}, the matter terms in Eq. (3.11) are nonposi-
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p+Pi +P2+P3 Cp 0 (3.12)

and that there is a continuous function h with h (p) —+0 as
p —+0, such that

~P, &h(p) . (3.13)

For the remainder of the proof, all that was used was the
positivity of the matter terms on the right-hand side of
Eq. (3.11) (as well as the similar conditions obtained by
the cyclically permitting P&, P2, P3 to account for the
possibility of "escape" along a different channel). In fact,
however, the conditions thereby obtained can be general-
ized somewhat: By taking diFerent linear combinations
of Eqs. (1.11)—(1.13), it is possible to give a similar proof
of the nonexistence of solutions provided that the matter
satisfies

tive. Hence, Eqs. (2.20) and (2.21}continue to hold. The
proof of the nonexistence of solutions then follows as in
the vacuum case. Thus, we have proven the following
theorem.

Theorem 2. There do not exist any diagonal Bianchi
type-IX solutions with matter satisfying the dominant en-
ergy condition with non-negative average principal pres-
sure [see Eq. (3.1)] which expand for an infinite amount of
proper time ~ as measured by observers moving orthogo-
nally to the homogeneous hypersurfaces.

We conclude by commenting on possible generaliza-
tions of our results with regard to weakening the condi-
tions imposed upon the matter and with regard to other
homogeneous cosmological models. With regard to the
conditions imposed upon the matter, for the extension of
the lemma to the nonvacuurn case, the conditions that
p+P, +P2+P3 ~ 0 and p ~0 [both of which follow from
Eq. (3.1)] played a crucial role [see Eqs. (3.2) and (3.4)].
In addition, the positivity of P, +P2+P3 was used in the
argument below Eq. (3.6} and the bounding of P, via the
dominant energy condition was used to bound the right
side of Eq. (3.5) and to derive Eq. (3.8). Hence, for the
proof of the lemma, some weakening of condition (3.1)
could be achieved; e.g., it would suKce to assume that
there is a constant C )0 such that

—2( v'2 —1) &8 & 2(1+&2) (3.15)

p &3 ~8+1,
where

(3.16)

p =max( —'(8 —1)+—'V 8~+1/3,

—,'(8 —1)+—'+38 —28+1) . (3.17)

ACKNOWLEDGMENTS

(Our proof corresponds to 8 =1, 2 =—', .) Thus, the con-
ditions we have imposed upon the matter could be weak-
ened to requiring that Eqs. (3.12)—(3.14) hold. Note,
however, that some non-negativity requirement must be
imposed on the pressures, since without any such condi-
tions one can easily obtain static solutions to Eqs.
(1.11)—(1.14) which satisfy the dominant energy condi-
tion.

With regard to generalizations to other homogeneous
closed universe models, Burnett has proven that
II antowski-Sachs models (which encompass those with
spatial topology S'XS ) cannot expand for an infinite
time provided only that the matter satisfies p+ P, ~ 0 and
g;P; ~0. Since the Bianchi type-IX models encompass
all the spatially homogeneous models with S topology,
the closed-universe-recollapse conjecture holds for all
vacuum homogeneous cosmologies. Thus, for homogene-
ous cosmologies, the only case which remains is that of
nondiagonal Bianchi type-IX solutions with matter.
While we foresee no diKcujkty in extending the con-
clusions of the lemma of Sec. II to this case, the
remainder of the proof made use of the detailed structure
of the equations, so it is not clear that a simple generali-
zation of our argument can be given for the nondiagonal
case.

Note added in proof It appears t.hat we now have suc-
ceeded in obtaining a generalization of our argument to
the nondiagonal case, thereby completing the proof of the
closed-universe-recollapse conjecture for homogeneous
cosmologies.

A (P, +P2+P3)+Bp+P; ~0,

where 3 and 8 are any real numbers satisfying
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