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We describe a spherically symmetric code for inhomogeneous cosmological problems. Our main
goal is to study the onset of inflation under inhomogeneous conditions. We would like to explore
the inAuence of inhomogeneity on inflation. In particular we address the question of whether large
inhomogeneity during the very early Universe can prevent the Universe from entering an

inflationary era. In this paper we describe the equations, the numerical techniques, tests, and some
preliminary results. A detailed discussion of the results will follow in a subsequent paper.

I. INTRODUCTION

One of the main objectives for the introduction of the
inflationary paradigm' was to explain the large-scale
homogeneity of the Universe. Still most of the current
work on inflation is done within the context of a homo-
geneous Robertson-Walker universe, or with small per-
turbations around it. ' It is not clear whether an inho-
mogeneous universe (which needs an inflationary period
to homogenize it) can actually enter into an inflationary
phase. Our objective is to study the onset of inflation un-
der inhomogeneous initial conditions. We would like to
do this for a general three-dimensional (3D) case, but as a
first step we consider 1D spherically symmetric cosmolo-
gy. We focus on spherically symmetric cosmology since
such perturbations resemble (topologically) realistic per-
turbations more than any other 1D model.

We have constructed a general-relativistic spherically
symmetric code for solving inhomogeneous cosmological
problems with a massive scalar field and a radiation field.
The radiation is described by a massless scalar field cou-
pled to the massive scalar Geld via a potential term. This
radiation field enables us to explore the effects of thermal
fluctuation on the evolution of the scalar field during the
preinflationary period. An alternative way is to use a
perfect fluid with I =—,

' and n =0. In the latter case the
scalar field and the radiation field are coupled only gravi-
tationally.

The code can simulate closed, flat, and open casmolo-
gies. However, in this discussion we focus on closed
comologies. The motivation comes from quantum-
mechanical considerations that suggest that the Universe
is closed. Furthermore, the formation of the outer
boundary conditions is clear in this case. We will de-
scribe the general case but when we have to be specific,
like in the case of outer boundary conditions, we will
refer to closed geometries.

The code differs in many aspects from spherically sym-
metric collapse codes. The overall topology is closed
and the space-time is not asymptotically flat. This
changes drastically the outer boundary conditions. The
cosmological expansion leads to a different natural slicing
condition (Try=const rather than TrE =0, and in fact
even this is not always possible). Finally, the basic source

terms are different. Collapse codes generally deal with
perfect fluids and we consider scalar fields. The introduc-
tion of this new source changes some of the common
features of the solutions. In particular one has to gen-
eralize the usual York procedure ' for the initial-value
problem.

In Sec. II we describe the field equations that follow to
some extent the outline of Piran. The initial-value prob-
lem is discussed in Sec. III. In Sec. IV we present the
numerical methods that we have used. Finally, in Sec. V
we exhibit several tests and some preliminary results.

We use the units c =8mG = 1.

ds = (N Rp )d—t +2R—pdydt

+R (dg +sin ydQ ), (2.1)

where 0 ~y ~ m, and R, X, and p are functions of y and t.
When the cosmology is open we replace sing by sinhy or
bye

York has suggested to use TrK =const slices for
cosmological problems. Goddard has shown, ' given one
such slice, that such a foliation (of a closed cosmology)
will exist if the strong energy condition is satisfied. This
gauge has worked well in numerical cosmological studies
investigated so far. However, the energy-momentum ten-
sor of the scalar field does not satisfy the strong energy
condition during the inflationary epoch and it is not cer-
tain that such a foliation exists. We demonstrate this
point numerically later. Hence, for closed cosmologies
(dominated by a scalar field) we must choose another slic-
ing condition. We are investigating now several slicing
conditions that will have the same features as the
TrK =const slices for closed manifolds. However, in this

II. THE FIELD EQUATIONS

A. Geometry

We write the metric in a way convenient for cosmolog-
ical problems. We use the generalized (we use the term
generalized to denote the difference from the common
spherical isotropic coordinate system which does not in-
clude the Friedmann factor sin g, it reduces to the usual
isotropic coordinates when siny=r) spherical isotropic
metric which for closed manifolds has the form
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paper we focus on the numerical scheme which was set
for the general case; i.e., it is independent of the slicing
conditions. We will discuss the issue of different slicing
conditions in a separate publication. To obtain prelimi-
nary results for closed cosmologies we have used the
gauge Try=const whenever it was possible. Otherwise
we have used the gauge N =1 which, in spite of all its
known ' '" problems, was satisfactory. For Rat and open
cosmologies we have used TrK =const slices.

The form of the spatial metric determines the shift vec-
tor equation. Using the metric form [Eq. (2.1)] we find
two different evolution equations for the metric function
R (y, t ): one from the equation for y

N~z =
3 (R sin yN z) z

1

sin yR

=N[ ,'K —+,'(T—rK) + —,'(TrS+p)]

+PTrK r F—(t) .

The Hamiltonian constraint is given by

W =2p+ —,'K ——'(TrK )

where A is the Ricci scalar:

R cosy R
R +2 '. — ' +

sing R

(2.10)

(2. 1 1)

(2.12)

BR = —NRK —
—,'NR TrK+PR z+RP &, , (2.2) The momentum constraint has only one nontrivial

equation:

BR
at

NK R —
—,'NR TrK+pR z+pR coty .

and the other from the equation for y „ a (R sin yK)=R sin y(J&+ —', TrK z),
(2.3)

where

(2. 13)

A tilde above a tensor denotes its traceless part. In par-
ticular K,- is the traceless part of the extrinsic curvature
tensor:

(2.4)

sing . =
—,'NK .

Sing
)

(2.5)

Using Eq. (2.5) we rewrite the evolution equation for R
in the form

Because of the spherical symmetry K =Kx = —
—,'K &

,'K&~. In —or—der that Eqs. (2.2) and (2.3) will be con-
sistent the shift vector p must satisfy

Jx ——NT~ (2. 14)

is the momentum Aux.
These equations are supplemented by boundary condi-

tions at the origin and at the outer radial boundary. The
boundary condition at the origin are determined by regu-
larity conditions:

R =Ro(t)+O(y ), K+O(y2),

TrK=TrKO(t)+O(y ),
N=NO(t)+O(y ), P=O(y) .

(2.15)

For closed cosmologies the outer boundary conditions (at
y = a.) are also determined from regularity considerations:

= —
—,'NR TrK+ — (PR sin y) z . (2.6)

Bt 3 R sing
The evolution equation for K is

R =R (t)=O((~—y)'), K=O((~—y)'),
TrK =TrK (t)+O((~ y) ), —

N=N (t)+O((~ y)'), p=O—(~ y) . —
(2.16)

= ——'N~ +N(%~+K TrK —S~ )+PK
&X X X &X

Jqr = —— 'XXR

R

2R R cosy

R R sing

where %~+is the traceless part of the Ricci tensor

(2.7)

(2.8)

For open cosmologies these boundary conditions are
determined by asymptotic considerations which we will
discuss elsewhere.

In closed cosmologies we can also impose a reAection
symmetry around m/2. In this case it is adequate to solve
the evolution of only half of the Universe with the follow-
ing outer boundary conditions at ~/2:

R =R i2(t)+O((~/2 —y) ),
K=K )2(t)+O((m/2 —y) ),
TrK=TrK )2(t)+O((~/2 y) ), —

N=N
q (t)2+O((vr/2 —y) ),

P=O(~/2 y) . —

and Szr is the traceless part of Sr& (S; is the spatial part of
the energy-momentum tensor T„,i.e., S,":—T; ). .

The evolution equation for TrE is

(2.9)+PTrK ~,

N~, +N[ 3K'+ ,'(TrK—)'+ ,'(Trs-+P )]-—
at 7

(2.17)

where p =N T and TrS Sj—Tj For the gauge
TrK =const we chose an arbitrary function of the time
F(t) and impose the condition dTrK/r}t=F(t). This
yields a linear elliptic equation for the lapse function N:

B.The scalar-field equations

We consider two types of scalar fields: a massive scalar
field N, which acts as the source that drives inflation, and
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a massless one %', which plays the role of a radiation field
(the "average pressure" of a massless scalar field is

p =p/3). The code can handle general potentials for the
scalar field. We have focused our attention on two types
of "chaotic inflation" potentials, V =M 4 /2 and
V=kN /4, and on a "new-inflation"-type potential,

V=A, (4 —o. ) /4. The scalar radiation field %' does not
have a potential of its own but it can be coupled to the
massive scalar field via a potential term of the form
g@ 'p (g being the coupling constant).

The scalar field N evolves according to the Klein-
Gordon equation

P 3 2

1 c)

3sin2g Bg 2 2 +y+ 2+t + NR sing 2@ t+ 2Q2 Q2 X

(2.18)

We define the conjugate momentum

RH=— (pe, —e, ) (2.19)

and

4 =4 (t)+O((~ y) ),—
H =H.(t)+O((~—g)') .

(2.24)

and replace Eq. (2.18) by two first-order partial
differential equations:

4, =p@ r
—

3
H (2.20a)

The field '0 evolves according to similar equations but its
potential does not include a mass term.

The energy-momentum tensor of the scalar field has
the form

T„=C& 4,—
—,'g„„[g ~4 4 &+2V(N)] . (2.21)

The scalar-field sources (denoted by N in the subscript) in
the gravitational equations are

rr'
pq, = — ' + +2V(4)R2 R6

S+X+ 3 R2

Q2
TrSq, = ' +— 3 V(4),2R'

(2.22)

N~H
J~q, =

R
Similar terms appear for %' with the obvious replace-
ments. Note that p+ and J&+ are independent of the
lapse function X when they are expressed in terms of H.
This is an essential step whenever the sources are fields.
It enables one to solve the initial-value problem (see Sec.
III) in a gauge-independent way.

As for the geometry, regularity considerations deter-
mine the boundary conditions at both g=O and g=~ for
closed geometries (at y=0 for open geometries):

0& =40( t ) +0 (y2 ),
(2.23)

H=HD(t)+O(y ),

and

II, = ( NR4 rsi—n y+PII sin y)+NR1 2 3dV
Sin2g ~g

(2.20b)
III. THE INITIAL-VALUE PROBLEM

AND THE GENERALIZED YORK PROCEDURE

The initial data on a three-dimensional spatial hyper-
surface must satisfy the constraint equations. To obtain
such data we use the general York procedure. In the
common York procedure one chooses a conformal metric
y, and initial guesses for TrK and K and for the matter
sources p and J, , and solves the Hamiltonian constraint
for a conformal factor g to obtain g;~

=P y,j. In this pro-
cedure it is essential to rescale K and p:

aI1d

K =y'OK (3.1)

Because of the scaling the final matter sources are not the
ones that we have selected initially. The Hamiltonian
constraint becomes a nonlinear elliptic equation for the
conformal factor itj:

—8h /+A(y)g '= —', (TrK) P + ', K —P +2pg—
(3.2)

In the generalized spherical iosotropic coordinates, y;.
is specified by a scale factor R" and A(y ) is given by Eq.
(2.12) for R . We choose an initial distribution 4&, for
the scalar field and we obtain p~ using Eq. (2.22). Since
we need the scalar field N rather than p we have to speci-
fy a scaling law for N rather than for p. Direct scaling of
field variables has been done before, but in the present
case new terms arise in the equation for f. This scaling
law depends on the potential [see Eq. (2.22)]. For a single
massive scalar field we choose

(3.3)

When we impose reflection symmetry relative to g=~/2,
the outer boundary conditions at ~/2 are

N=C& )2(t)+O((ir/2 —y) ),
(2.25)

H=II ~2(t)+O((~/2 —y) ) .

Clearly, similar conditions hold for %.
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3& '~&,r+& '~, r) (3.4)

and the Hamiltonian constraint becomes

—8brg+N(y)P '= —
—,'(TrK) P + ,'K P—

This rescaling results in a new gradient term in Eq. (2.22), which is defined on y, . The grid points are not necessari-
ly equally spaced. In particular we increase the density
of grid points in places where we expect large gradients.
In these cases we restrict the variation of dg so that it
will not vary by more then a few percent between neigh-
boring grid points.

We add "false" grid points:

+2V(g 4&, %)g

+
y, (0)= —y, ( I ),
y, (n+1)=2y, (n )

—y, (n —1) .
(4.2)

+4qg ] . (3.5)

For simplicity we choose L =0 and H=O so that the
momentum constraint is satisfied automatically. With
the initial y; and 4 we solve Eq. (3.5) for g and we ob-
tain the "true" scale factor R =g R * which appears in

g,". We rescale the scalar field according to Eq. (3.3):
4. Like with any other York procedure algo-

rithm, we end up with a matter distribution which is
different from our initial guess.

An alternative, simpler approach to the initial-value
problem is to add a radiation field (i.e. , a massless scalar
field) so that p is initially constant. The Hamiltonian
constraint becomes a simple algebraic equation for R,
which is constant on the initial slice. The easiest way to
add the radiation field is to choose II~NO and 4=0.
With this choice the current 4 &II+ vanishes and the
momentum constraint is satisfied trivially with K =0 [see
Eq. (2.13)]. In the cases that we present later the added
radiation field decays rapidly and its addition does not
change the nature of the results.

IV. NUMERICAL METHODS

A. The grid structure

The definition of "false" values on these grid points en-
ables us to satisfy the boundary conditions automatically,
and allows us to treat all the "real" grid points on the
same footing as internal grid points.

For the variables whose gradients vanish on the boun-
daries [see Eqs. (2.15)—(2.17) and (2.23)—(2.25)] we set the
"false" boundary condition: fo

=f i and f„+,=f„. The
equations for the variables that vanish on the boundaries
are devised so that they satisfy this condition.

The variables are also staggered in time. Most of the
variables are calculated at 0, At1, At, +At2, . . . , except
for K, TrK, p, and II which are calculated at ,'b, t, , —

At, + —,'At2, . . . .
The time step is determined by the Courant condition

which is represented here by the requirement that the in-
terval (dt, dy) is spacelike:

Rdg
X+ JP fR

The Courant condition is sufficient for stability but not
for accuracy. When terms such as XTrKR or dV/d4
dominate the right-hand side (RHS) of the evolution
equations we must impose the additional requirement
that R and N do not change too much in one time step,
i.e., R dt /R & e and N dt /W & q. These conditions yield

We solve the equations by finite differencing on a stag-
gered numerical grid maintaining second-order accuracy
both in space and in time. We define two staggered spa-
tial grid systems y, (j) and y, (j) where j= 1, . . . , n, with

X.(1)=o X.(i ) =X.(J —1)+dr,

Re Ne
dt &min

R

B. The numerics of the initial-value problem

(4.3b)

and

X,(j)= —,
' [X,(j+ I )+X,(j)] .

We solve Eq. (3.5), which is a nonlinear elliptic equa-
tion, using a relaxation method. We finite difference Eq.
(3.5) as

For closed manifolds g, (n+1)=m [in the symmetric
case y, (n+1)=m/2]. All the variables are defined on
the grid points y, except for the "velocitylike" variable p

2 P.+, +B g , +C P +E =. Resid(g),

where

(4.4)

8 1 sin g, +1 R +R.*+1
A

2 ~3 — 2Xaj +1 +aj sin PcJRJ. +cj +1 +cj

8 1 sin y, - R*+R-'
18

2 . .*3 . — . 2+aj +1 +aj Sin PcJRJ +cj +cj —1

C~ = —
( A~+.B~ ),

r 2 r

1 ~p 0j+1 4j —i
& 7 ~ ~ 4j+1 Pj —i

e2 J +J J ~LJ
+cj +1 +cj —1 +cj +1 +cj —1

2

(4.5)
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We guess an initial i/I (usually i/i =1, for j= 1, . . . , n) and we iterate over Eq. (4.4) changing i/jj to f +.bi/ so that

8 Resid(i/ j )
Resid( i/ j +b, i/j)

—=Resid(i/jj ) + Ai/ij =0
j
aE,

'

=Resid(g )+ C + Ag. —:Resid(i/r )+ebg~ =0, (4.6)

i.e.,

4jnew= Pj

Resid(1/ j )
6) . (4.7)

conserving method, but in this case

PF, , /3&0,

PF +1, P)0,
co is an over-relaxation parameter (1 & co & 2). After
finding g. (to the required accuracy) we replace R by
i/. R, CI by N „,„=i/. ~f& (and K by i/j 'ICj). .

C. The geometry evolution equation

p b, t
F2=P sin y, R —+ p, b, r

+R
2 dy

(4.9)

The geometry evolution equations are Eqs. (2.6), (2.7),
and (2.9). We solve the convective term (pR sin y) r,
of Eq. (2.6) using weighted first- and second-order-
conserving Aux terms. The erst-order flux is

R,', /3, )0,
F, =Psi ng, X' (4.&)

j —]~ vj+
while the second-order flux is

-0.5

—1.5

f, f, !——
J +cj +cj= 1

f +! f, ——P +i+P,
j+1

Xej+ I Xej

I I I
/

I I I I

/

I I I I

/

I I I I
/

I

4
k

(4.14)

k k
k

k
4
k
k
k4-
k
A

k
k

4.
k
4
4
4
e
A
4
4—
44—
4
4
4
4
4

44

F=min .
R. —R 1

, 1R.
1

(4.10)

and the weighted flux at (g,j ) is

F = WF! + (1 —W )F2 .

The new value of R - due to the flux term is

(4.11)

Fz interpolates R to a distance Pb, i backwards from the
zone boundary at y, . This is the value of R which
would be carried by /3 to the zone boundary in one time
step. If the gradients are large we use the first-order flux
term I'& while if the gradients are small we use the
second-order Aux terms F2. The weighing factor 8'be-
tween the two terms is

—2.5

-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
n

I
I

I I I !
I

I I I I
)

I I I

4
4
A
4
k
4
k
4
4
k
k
4

4
4
4
k

k
4

k
4
k
k
4
k
k
k
k

k
4

k
k

4
4

k
k

4

cosa, I +, —I'

J J 2 . 3 . 3
Rj sin g~j + ) sin ggj

(4.12)
4

k
k

After calculating the contribution of the flux term we add
the contribution of the second term in Eq. (2.6):

-0.15 -01 -005 0 005 01 015 02 025
n

1 — N TrKAt

1+ N TrK.At
J

R (4.13)

The flux terms Pf z in Eqs. (2.7) and (2.9) (where f
stands for K or for TrK) are also evaluated using a flux-

FIG. 1. Homogeneous solution with a massive scalar field.
The initial conditions are R =6, TrK = —2.35, 4=6, and H =0.
Note that the II =const phase represents an inflationary period.
The oscillations in H and N describe regular evolution after
inflation. (a) TrK vs H; the temporal evolution is in an increas-
ing TrK direction. (b) N vs H; the temporal evolution is in a de-
creasing N direction.



3268 DALIA S. CiOLDWIRTH AND TSVI PIRAN

and

1
I p, + &&)+ il (x J+ t x &

)+p~&]
+aj+ ]. +aj

+P~FJ[(y,&

—y,) ) Pb, t—]I . (4.15)

F2 is the interpolation of pf &, which is calculated at g,
and g,j+ &, to the point g, . +pht. The weighted flux is

pf r = WF, + (1—8')F2 . (4.16)

The other terms in Eqs. (2.7) and (2.9) are solved using

0.0002—

0.0001—

0
0.1

0 0.5 1 1.5
0

0 1 1.5

2xi0

1.5x10

10

5x10

0 5'w p~s~g~Q~5~~~0~I~I~5~F

0
0 0.5 1.5 0

I I I I I I I I I I I I

0.5 1 1.5

0.1

15:
0

-0.1

-0.2 '

I I I I I I

0 0.5 1.5

-0.5 =:

0 1 1.5

I I I I I I I I I I I~g~5eyam~m~8~~~ m ~I
'1"

0.1

58SiiR~&RM~ 3~3~3~ ~=~l~a~i
0 0.5 1 1.5 0 0.5 1.5

FICr. 2. Perturbations around a homogeneous solution, for A =0.01 with N=1. The solid lines describe the initial conditions and
the other lines represent the evolution in time. The following time slices are described by the dotted lines, the short-dashed lines, the
long-dashed lines, dashed-dotted lines, long-dashed-dotted lines, etc. This time sequence is best manifested in the graph of TrE vs y
where the time increases with TrK. (a) R, TrK, p, and II~ vs'. (b) 4, 4& ~, II, and Vvsy on diFerent time slices.
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standard finite-difference methods preserving second-
order accuracy.

When we use TrK =const slices we solve Eq. (2.10) for
the lapse. This is a linear elliptic equation with boundary
conditions given on both sides. Like Eq. (3.5), we solve it
using an over-relaxation method.

We integrate Eq. (2.5) for P &
(j= n —1, n —2, . . . , 2)

starting from y= sr/2, where /3=P„=O:

sing,
& sing,

Pj i p (Xaj Xaj —i )+j +j ~ +Pj
sing, sing, .

(4.17)

0.025

0.02

~0.015

~ O.01

'80.005

5 10
time

At y=O Eq. (2.5) ensures that P(0) =0.
We finite difference the momentum constraint and

solve it for E +,

FIG. 3. The relative error in the Hamiltonian constraint for
evolution of a narrow Gaussian N distribution (6 =0.8) (see
Fig. 6 for the details of the evolution).

Ej+,= 3 3 IK/R/sin g,/+sin y,j+,[(C&/+, —Nj)llj+, /2+ —3R/+, /2(TrEj+, —TrKj)]I .8 + i sin g
(4.18)

We begin by calculating K at y, z using the boundary con-
dition E(g=O) =0. E is specified on middle points grid,
i.e, y, so we interpolate E(y, z) to find K, which is
specified at y„[K(y„)=4 (y,2)/4].

D. Scalar fields

The scalar-field evolution is determined by Eqs. (2.20a)
and (2.20b) for N and II. The evolution equation for II
[Eq. (2.20b)] contains a convective term of the form
(sin yPII) z which we solve using the same fiux-
conserving method used for the metric function R (see
Sec. IV C). The term PC' z which appears in the evolu-
tion equation for @ [Eq. (2.20a)] is evaluated like the
term /3I/. z (see Sec. IVC). The numerical methods for
the solution of Eq. (2.20b) do not depend on the form of
the potential and the code can work with potentials cor-
responding to chaotic infiation (such as m @ /2 or
A,4 /4) and with potentials corresponding to "new
infiation" [such as A, (N —o ) /4].

E. The overall scheme

We solve, first, the initial-value problem. Once we
have proper initial data we proceed with the following

evolution loop. The order in which we evolve the vari-
ables is determined by their time staggering and the way
they appear in the equations.

Start.

(1) Evaluate the time step.
(2) Calculate the shift vector I3 [Eq. (2.5)].
(3) Evolve TrK [Eq. (2.9)] or determine it from F (r).
(4) Solve extrinsic curvature K from the momentum

constraint [Eq. (2.13)].
(5) Evolve the momentum of the massive scalar field

Ilq, [Eq. (2.20b)].
(6) Evolve the momentum of the massless scalar field

II+ [Eq. (2.20b) for II~].
(7) Evolve the metric function R [Eq. (2.6)].
(8) Evolve the massive scalar field 4& [Eq. (2.20a)].
(9) Evolve the massless scalar field (the radiation field)

'I/ [Eq. (2.20a) for 4].
(10) If we work in the gauge TrK =const, determine

—2.28

0.005

~~0.004

~ 0.003

0.002

'~ 0.001

0

I I I

f

I I I I

/

I I I I

f

I I I

5 10 15
time

—2.3

—2.34

—2.36

—2,38

—2.4

/
/'

/
/

/
/

/
/

/
/

/
/

/

/
/

I

1
time

1.2 1.4 1.6 1.8

FIG. 4. Maximal relative errors in N {dashed line) and in R
(dotted line) between runs with 200 and 300 grid points, for ini-
tial data with R =6, TrK= —2.43, and 6 =0.8.

FIG. 5. TrK vs t, for homogeneous evolution with just scalar
field (short-dashed line) and with both scalar field and radiation
(long-dashed line).
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the lapse X [Eq. (2.10].
Return to start.

V. TESTS AND PRELIMINARY RESULTS

All the results presented in this section are with closed
topo ogy.1 . When we discuss "chaotic inAation" the scalar
fi ld is massive with M=&0. 1. When we discuss "new

2 22 '1inflation" the potential V equals 1,(@ —o ) /4, wttii

A, =0.01 and o.=4. The coupling term between the radia-
tion field and the scalar field is set to zero in the following
calculations.

We have used, first, homogeneous initial conditions.
With this initial data the evolution remains, as it should,
homogeneous. Homogeneity is maintained to the numer-
ical accuracy of the calculations, i.e., to within ten
significant digits or better. The results of a homogeneous
run are best presented by the trajectory of the solution in
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the ( II,TrK) plane and in the ( II,4 ) plane, where
II = II /R . Belinski, Grishchuk, Khalatnikov, and
Zel'dovich and Piran and %'illiams' have pointed out
that during inflation the second-derivative term in the 4
equation is negligible and therefore II is approximately a
constant. This is clearly seen in Fig. 1.

In order to check whether perturbations grow due to
numerical instability we have added to the homogeneous
initial data small initial perturbations, of the form

64= A cos4y,

for several values of A (0.001& A &0. 1). These pertur-

Co

0

—1.5

0

4
4

4
4

I I I I I I I I!
0.1 0.2 0.3

H

-0.5
CO
F3

II

—1.5

0
I I I I I

0.1
II

4
4

0.2 0.3

I I I I I I I I I I I I I I I I I I
0

~ -0.5
0
00

IIx —1.5

~ -0.5
CU0

IIx —1.5

~~-0.5
0

—1.5

0

4
I I

0.1
II

0.2 0.3

—2.5 ~+
0

4
I

0.1
H

0
I I I I I I

0.1 0.2
H

CO
CO

0
IIx

CQ

II

p
0 0.1 0.2 0.3

n

o J i

0 0.1 0.2 0.3
H

CU00
O

IIx

CU0
II

0
IIx

6~I I I I

(

I I I I
(

I

4 —4 4~

p
0 0.1 0.2 0.3

rr

p
0 0.1 0.2 0.3

II

(b)

Q J I I I I I I I I I

0 0.1 0.2 0.3
H

FIG. 7. (a) TrK vs H trajectories of several points in an inhomogeneous solution (bars) of Fig. 6 and the same curves in a homo-
geneous solution with the same initial data (triangles). The temporal evolution is in an inert„.asing TrK direction. (b) Trajectories in
the II, N plane for the same points. The temporal evolution is in a decreasing 4 direction.



3272 DALIA S. GOLDWIRTH AND TSVI PIRAN

bations do not grow during the inflationary period but, as
the horizon increases rapidly, they become spread just as
expected from perturbations on a de Sitter universe. '

Results of such an evolution are shown in Fig. 2.
Another test for the accuracy of the code is provided,

in general-relativistic calculations, by the degree in which
the Hamiltonian constraint is satisfied. In the perturba-

tion calculations which are almost homogeneous, the rel-
ative error in the Hamiltonian constraint is less then
10 . Clearly, this accuracy is reduced when we intro-
duce larger inhomogeneity. Still, even when the initial N
was a narrow Gaussian [where b, , the width of the 4 dis-
tribution was 0.05, see Eq. (5.3), the relative error in the
Hamiltonian constraint was below 10 ]. Figure 3 de-
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scribes the variation of the error in the Hamiltonian con-
straint with time along evolution with (b, =0.8).

The final test, that we present here, is the usual numer-
ical test of comparisons of the results with different grid
sizes. We compare, in Fig. 4, the evolution of the same
initial data with 200 and 300 grid points. The error
grows during the evolution but even with relatively small

number of grid points it remains below 0.5%.
When the Universe contains only a massive scalar field

the strong energy condition' is violated when the
inflationary phase begins. For a closed cosmology this
results in a breakdown of the TrE =const slicing condi-
tion. To see this, we consider, first a homogeneous solu-
tion. Substitution of TrK from Eq. (2.11) and P from Eq.

0.02

o.015 —:
1.5

I I I I I I I

0.01
/-+ /~l

0-.005 +
0 i&~

0 O.5 1 1.5

0.5

0 I: J
I I I I I I I I I I I I I

O.5 1 1.5

I I I I

W~W ~M~M~%

4000 ~)~)L

a000 ~,phd

2000 &~X@

1000
=—~R:=R.:=X~~M~~~=-

0 O.5 1 1.5
I

0 0.5 1 1.5

0 1.5

0.5

0 05 1 1.5 0 0.5 1 1.5

1 —.

I

0.8 —',

1

0.6 —'',

0.2 8~%+M%~~~a~m ~ ~%~ se mme m mage %

0 0.5 1 1.5 0 0.5 1 1.5

FICi. 9. Evolution of a universe with an isocurvature initial data constructed from a massive scalar Geld with 6 =0.05 and a radia-
tion field. X= 1 slicing condition {for details about the direction of the time see Fig. 2). (a) R, TrÃ, g, and H~ vs y. (b) @, @z, ll,
and V vs y on different time slices.



3274 DALIA S. GOLDWIRTH AND TSVI PIRAN

(2.22) in Eq. (2.10) yields

3 II 3 BTrk (5.2)

8Trk/Bt is negative and TrE decreases if 3II /2R
(3/R . In Fig. 5 we show TrK for two homogeneous
solutions. The dip in TrK is evident in one of the solu-
tions. In this case TrK =const slicing exists, but TrK is

not a monotonic function of time. Clearly, one cannot
use in this case Eq. (2.10) with a positive F(t). When we
add a radiation field, the combined energy-momentum
tensor can satisfy the energy condition and monotonic
TrX =const slicing might exist (see Fig. 5). The same
phenomenon occurs with inhomogeneous data. When we
try to use TrK =const with just a scalar field the slicing
condition breaks down when inflation begins. The nature
of this breakdown is similar to the problem with homo-
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geneous initial data. Again, this problem disappears with
an appropriate choice of an additional radiation Iield (see
Fig. 10).

Figures 6—11 describe the evolution of universes with
both a massive scalar Geld and radiation. The initial
overall density is homogeneous but the scalar field is of
the form

II&o=4+2[exp( —y /b, )+exp[ —(m —y) /52j [

+ (y —m. /2) exp( rr —/6 ),
Q2

where 6 =0.8 for Figs. 6—8 and 5 =0.05 for Figs.
9—11. The initial momentum of the radiation field H+ is
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given by

n, =R'+2[p, =p(C, )], (5.4)

so that the total energy density is constant and the initial
data have an isocurvature form. The solution has an ear-
ly phase during which the radiation field decays rapidly.
After this period the scalar field dominates the evolution
of the Universe.

In Figs. 6—8 the width of the scalar Gaussian was large
(with Re =6, po=2. 3, and TrKo = —2. 58, b, =0.8 corre-
sponds to =5.4H ', i.e., to several horizon sizes). The
inhomogeneity was, therefore, on a relatively large scale
and it did not disturb the Universe from entering an
inflationary phase. This can be seen clearly in Fig. 7
where we compare the evolution of the several points in
an inhomogeneous universe with the evolution of homo-
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geneous universes with similar initial conditions (i.e.,
same values of Ro, TrKO, @0, and IIO). It is evident that,
apart from a small "rearrangement" period at the begin-
ning of the solution, each point in the inhomogeneous
universe behaves as if it is in a homogeneous universe
with similar initial conditions.

Figure 8 displays the evolution of the same universe
with Try=const slicing conditions. The radiation Geld
is su%cient, in this case, for this slicing condition to

work. During the early phase of the evolution X is large
in the inflationary region and it is small in the regions
that do not inAate. This behavior of the lapse function is
a typical indication for a situation in which one region of
the Universe expands rapidly relative to the others. The
lapse function N acts to slow the evolution in the region
around y=~/2 in such a way that the source becomes
homogeneous and the inhomogeneity of the slices is ex-
pressed only by variations in the value of R. The overall
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similarity between this evolution and the one displayed in
Fig. 6 suggests that the X = 1 slicing condition is not so
bad after all.

This situation has changed drastically when the width
of the scalar-field distribution was decreased to 6 =0.05
which corresponds to = 1.2H '. The evolution, as
shown in Fig. 9, is di6'erent from the one shown in Fig. 6.
There is almost no inQationary phase at all. The devia-
tions from the homogeneous solutions are even clearer in

Fig. 10, where we see that the phase H =const is much
shorter then in the homogeneous solutions. When we
evolve the same data with TrK =const slicing (Fig. 11) N
does not have the same peak at the origin that it had
when inAation occurred (see Fig. 8}. This is probably the
best indication that inflation does not take place with this
initial data.

In Figs. 12 and 13 we display a universe containing a
scalar field with a 'new inflation" potential. The initial
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scalar field has the form

@o=A 1 —exp( —g /b, ) —exp[ —(n.—y)2/52]

Q2 [(g—m /2 ) exp( —m /b, 2
)

+(~/2) exp( vr —/6 )] (5.5)

We used 3 =0.5 and 6 =0.8. Again the perturbation is
an isocurvature one and the scalar radiation field is given
by Eq. (5.4), with this @o. With this scalar-field
configuration the central region inAates, while the outer
region does not. The inflation at the center in the inho-
mogeneous case is much shorter than the inflation in the
homogeneous case. This can be seen clearly by the great
di5'erence between the trajectories of the two solutions
shown in Fig. 13. At the end of these calculations the
scalar field at the outer regions oscillates around the
minimum of its potential well.

Finally we display in Fig. 14 a universe with a massive
scalar field but without a radiation field. Here we solve
the initial-value problem using the modified York pro-
cedure and we cannot specify N arbitrarily. Our initial
guess for 4 has a form similar to Eq. (5.3), but with 3 in-
stead of 4 on the LHS and b, =0.8 [it looks like the solid

curve for N in Fig. 6(b)]. This form changes during the
modified York procedure as can clearly be seen by com-
paring the initial @ (the solid curve for @) in Fig. 14 with
the corresponding curve in Fig. 6(b).

VI. CONCLUSIONS

We have presented a numerical code for study of
spherically symmetric cosmologies coupled to a scalar
field. The code passed successfully several numerical
tests. Preliminary results indicate that inhomogeneity
does prevent infiation, and that a region of the size of the
local horizon must be homogeneous in order that
inflation will begin.
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