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We consider the thermal creation, fusion, evaporation, and destruction of nontopological solitons
(NTS's) after a phase transition in the early Universe. By defining and following NTS statistical
equilibrium and departures from it, we show that depending on particle-physics parameters one of
three possible scenarios occurs. If reaction rates are high enough, a period of equilibrium occurs
and relic abundances are determined by the "freeze-out" temperature. We show that equilibrium
first drives most NTS's into their constituents (free P particles) and then causes rapid fusion into
large NTS's. If freeze-out occurs during the first phase, the NTS's are almost entirely destroyed,
while if it occurs during the second phase, solitosynthesis occurs and NTS s may be cosmically
relevant. For slow reaction rates the NTS's are "born frozen out'* and have the abundance deter-
mined by the phase transition. We develop analytic approximations for determining the abun-
dances and test them by numerically integrating a reaction network in an expanding Universe. Un-
fortunately, for most of the parameter space considered, solitodestruction and/or evaporation
occurs.

I. INTRODUCTION

Nontopological solitons (NTS's) are classically stable
field configurations which have been studied by many
groups in recent years. ' They exist in a variety of field
theories, but most simply one considers a complex scalar
field P, carrying a conserved charge, coupled to a neutral
scalar in such a way as to allow regions of false vacuum
where the P is massless and true vacuum where P has a
finite mass. NTS solutions occur when some number Q
of the P's are trapped in a region of a false vacuum and
are unable to escape because their energy is lower than
Qm&, the rest energy of Q free P particles.

If they exist, nontopological so1itons are interesting ob-
jects; they could have masses ranging from below a pro-
ton mass to above a galactic mass, with properties quite
diFerent from ordinary matter. One is lead to ask wheth-
er there is any mechanism for actually forming this kind
of coherent state. One possibility, suggested by Frieman,
Gelmini, Gleiser, and Kolb (FGGK), is that during a
phase transition in the early Universe when regions of
false and true vacuums coexist, a certain number of P's
could be trapped in the false-vacuum regions and as these
regions shrink they could become NTS's, perhaps surviv-
ing until today. FGGK estimated the relic abundance of
NTS's, and under several assumptions found that
QNTs-1 was possible. (QNTs is the ratio of NTS density
to the critical density. ) However, FGGK did not consid-
er the actual fate of NTS's after the phase transition.
Several possibilities exist: they could disassociate or
evaporate into free P particles; they could absorb free P's,
fuse, and become larger; or they could be created
thermally by the fusion of free P's. The object of this pa-
per is to study these mechanisms and the resulting relic
abundance of NTS's.

In many respects the problem of thermal creation and

destruction of NTS's in the early Universe is similar to
big-bang nucleosynthesis. There, light elements such as
helium, deuterium, and lithium are synthesized' out of
protons and neutrons at a temperature of around 1 MeV.
Borrowing ideas from big-bang nucleosynthesis we will
take two general and complementary approaches: (l)
solving a network of reactions involving the annihilation
and fusion of a system of free P's and NTS's in an ex-
panding Universe and (2) analytically understanding the
results of the network integration by defining and follow-
ing NTS statistical equilibrium and departures from it.

By NTS statistical equilibrium (NTSSE) we refer to a
state where all reactions involving creation and destruc-
tion of NTS's are proceeding faster than the expansion
rate of the Universe, and the number densities of all
species are determined by their binding energies and the
entropy of the Universe. If NTSSE ever exists,
knowledge of the abundance of NTS's created during a
phase transition is lost and therefore irrelevant. At high
enough temperatures and densities we expect NTSSE to
obtain, but as the temperature drops, the number densi-
ties eventually fall so low that reaction rates for processes
which establish NTSSE become less than the expansion
rate and the relative abundances of NTS's "freeze-out. "
We denote the temperature at which this happens as TF,
the freeze-out temperature. Of course, NTS's can only
exist after the phase transition finishes, so another impor-
tant temperature is the Ginzburg temperature TG, after
which false-vacuum bubbles are unlikely to spontaneous-
ly Aip into the true-vacuum state. If TG )Tz we expect
to have a period of statistical equilibrium, while if
TF ) TG we expect the relic abundances to be more or
less determined by the phase transition, as discussed by
FGGK. Finally, we note that for low enough tempera-
ture NTSSE drives all free P particles into NTS's. This is
in marked contrast to FGGK's phase transition where,
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for a relic density of NTS s near critical density, the relic
density of free P's was orders of magnitude larger. We
solve for the temperature TD at which the density of
NTS's begins to dominate the density of free P's and
show that if TD & TF we truly have solitosynthesis, the
creation of significant numbers of large NTS's by the
fusion of free P particles. For the opposite case, T~ & TD,
we find that almost all NTS's disassociate and/or evapo-
rate and it is unlikely that NTS s survive in significant
numbers.

We will illustrate these various possibilities using the
Lagrangian and phase-transition model of FGGK, and
check the simple conclusions described above by running
a network of reactions. We find good agreement between
the network and the analytical approximation for most of
the range of parameters we consider.

The plan of this paper is as follows. In Sec. II we de-
scribe the Lagrangian, review some necessary aspects of
the NTS solution, and review the phase transition
scenario of FGGK. In Sec. III we define and derive the
formulas for NTS statistical equilibrium. We then devel-
op the important features of NTSSE and find an approxi-
mate formula for TD. In Sec. IV we list the reactions
which go into maintaining NTSSE, write down the net-
work equations, and solve them numerically for a trun-
cated system. We also find an approximate solution for
the freeze-out temperature Tz and compare this with the
numerical results. In Sec. V we present our results,
describing conditions under which we have solitosyn-
thesis and conditions under which we have solitodestruc-
tion. Section VI sums up the paper.

We note that B & 0 (implying that the NTS is classically
stable) occurs as long as Q & Q;„, where Q

(cr —cro) . If Q (Q;„the binding energy
is negative and at zero temperature the NTS presumably
fiies apart into free P particles.

For simplicity, we wi11 consider only the value
A,2=0. 15k,

&
used in FGGK, in which case the model is

described by the parameters A, &, Q;„, and cro alone. In
this case we have A=0. 6i, ,cro, h =4.24(A, , /Q, .„)'
M& =5. 150 OA, i Q, m

&
=5. 15crok.

&
/Q;„', and the

NTS radius Rg =0.8(Q/A, , )' /cro.
In considering the development of the phase transition,

FGGK define a critical temperature T& =2o.o after which
the Universe divides up into domains of true and false
vacuums separated by domain walls. Because the poten-
tial energy density of the false vacuum is higher, regions
of false vacuum soon shrink, and in this scheme the re-
gions of false vacuum which contain a net charge greater
than Q;„eventually form nontopological solitons. How-
ever, not all regions of false vacuum remain false vacuum.
Thermal fluctuations of the o. field can be large below Tc
and regions of false vacuum can become true vacuum and
vice versa. These fluctuations freeze-out at the Ginzburg
temperature TG which FGGK estimate as TG
=1.3o.o/A,

&
. They estimate the relic density of NTS's

as the density of regions (at T= TG) which have charge
greater than Q;„. Defining the number density of free
P's as n&, the number density of free P's as n&, and the P
asymmetry, q&=(n& n&)/n, their e—stimate of the NTS
relic number density is

3/2

II. REVIE%' OF NONTOPOLOGICAL
SOLITONS AND SOLITOGENESIS

nels .— '9y=~2
nr A, iQ;„

exp( —Q;„A,, /2i)~), (3)

We will use throughout the model and conventions of
Frieman, Gelmini, Gleiser, and Kolb (FGGK). More
details concerning nontopological soliton solutions in
general can be found in Ref. 1. The Lagrangian we con-
sider is

—~
I y I'(cr —cr o)' — cr 0(cr —cr0)' —A,

where P is a complex scalar field and cr is a real scalar
field. The field P has a conserved Noether charge Q, a
mass of zero at the local minimum o. =oo, and a mass
m& =h(cr cro) at —the true minimum cr=cr

By introducing a spherically symmetric trial solution
of the equations of motion derived from Eq. (1), and
minimizing the resultant energy with respect to the NTS
radius, one can find the mass (energy) of an NTS of
charge Q: M&=4ir&2g~r A'~ /3, where A is adjusted
so that the value of the potential is zero at the true
minimum. We define the binding energy of an NTS as
the difference in mass between the NTS of charge Q, and
Q massive P particles:

(2)

where nr =2/(3)T /rr is the photon number density and
is related to the entropy density. We see from Eq. (3)
that NTS's become exponentially rare as Q;„ increases,
and that in this scheme almost all NTS have charge Q
those with Q »Q;„are suppressed, and, of course,
there are none with Q (Q;„. Equation (3) must break
down as g&~0 since the charge in a small region due to
Poisson Auctuations will then be larger than the charge
given by the asymmetry, but we will ignore this here.
The corresponding density of free P's is roughly

n
& n&

— exp( —r;„)
"r ~min

(4)

where r;„ is the factor in the exponential in Eq. (3).
Since r;„must be greater than one, as long as Q;„&1

the free P density dominates the NTS density. There is,
therefore, a problem with having a closure density of
NTS's unless the free P particles (which are massive) can
annihilate, or are allowed to decay and the P's inside the
NTS's (which are massless) are not. Even in this case,
however, the P's inside the NTS can "leak out" quantum
mechanically and decay. The calculation of NTS decay
and the subsequent restrictions on solitogenesis are dis-
cussed in Ref. 4 and will not be considered further here.
This concludes our review of solitogenesis, but the in-



SOLITOSYNTHESIS: COSMOLOGICAL EVOLUTION OF NONTOPOLOGICAL SOLITONS 3233

terested reader is referred to Refs. 1 and 2 for more de-
tails.

' 3(g —1)/2
Yeq (c )(g —i) Q T

g
—C)'g

Pl
p

III. NTS STATISTICAL EQUILIBRIUM (NTSSE)

If the system of free P particles, free (t& particles, and
NTS s is in statistical equilibrium, the number density of
each species is determined by its binding energy and the
temperature and entropy of the system. In kinetic equi-
librium the number densities of NTS's of charge Q, and
of free P's and II)'s are given by

X ( Y&q )~exp(8& /T),
3/2

m&
Y~q =(c,g) exp[()Lt —m

&
) /T],

Y&q = Y&qexp( 2p/—T),

where c, =g(3)&32/m=3. 836, and

I
n& =

2 TM&exp(IM&/T)K2(M&/T),
27T2

4QX', "
Bg:mpQ Mg iy4

Q min

' 1/4
Q min

1n~= Tm ~exp(p~/T)K2(m~/T),
27T2

(5)

n&= z
T m&e xp(P& /T) K2( m& /T),

1

2%.2

where T is the temperature, the p's are chemical poten-
tials, and K2 is a modified Bessel function of the second
kind and second order. We define statistical equilibrium
to consist of kinetic equilibrium, defined above, plus
chemical equilibrium which, if present, means reactions
proceed fast enough to ensure relations among the chemi-
cal potentials. For example, in chemical equilibrium, the
reaction /+pro. +cr proceeds fast enough to ensure
p&+p&=0, and chemical equilibrium of reactions such as
QQ~II&&+X, where X is some state with Q =0 and 4& is
an NTS of charge Q, implies Qp&=)Lt&. Other reactions
imply p& = —p&. These relations allow us to specify the
system in terms of known binding energies, the tempera-
ture, and one chemical potential p =—p&.

In order to find the number densities we must find p,
which may be done using charge conservation. The total
charge in a comoving volume, R, will be conserved;

QToT in/ nQ+gQ 'Q . Q(n=g —ng)]R whe«Q
is the largest charge NTS under consideration and in
principle is infinity. Since the photon density is propor-
tional to the entropy and scales as R we can define the
total charge asymmetry,

is the binding energy of an NTS of charge Q. The quanti-
ty Y& is the same as Y& with Y& replaced by Y&. The
charge-conservation condition becomes

max

Yyq —YP+ y Q( Yg —Ygq)=1,
min

which, after specifying g and T, can be solved for p and
then all number densities can be found.

In Fig. 1 we display the equilibrium number fractions
of (tI's, (t 's, and NTS's for a system containing NTS's from
Q;„=4 to Q,„=5 and their anti-NTS's. We set
X,= l, g=0.01, and the temperature is divided by TG so
that o o scales out. Figure 2(a) shows the total fraction in
NTS's for the same system but several values of g. Fig-

I I I I
]

I I I I I I I
]

I

~1 & &dmin & ~max 5& 7

0

0
01

—10
40

g=n
~max

n& n&+ —g Q(n& n&)—
~= ~min

(6)
—80

and remark that g is constant as long as entropy is con-
served. The value of g is a free parameter and can range
from zero (equal numbers of (t&'s and (t&'s) to 10 (roughly
the asymmetry of the baryons) to around —,

' (P's as
numerous as photons and very few P's).

For most of our work we will use a nonrelativistic ex-
pansion of K2(x)=e (m./2x)', although this is not
necessary. Taking this limit, we find the number frac-
tions Y; =n; /gn z in statistical equilibrium to be

-30
1 0.3 0.1 0.03

T/T,
0.01 0.003 0.001

FICz. l. Abundances as a function of temperature in NTS sta-
tistical equilibrium for a system consisting of Q, Q, II&4, @„II&4,&I&,

(Q,„=5). Parameter values Q;„=4, A, I=1, and ran=0. 01 were
chosen. Temperatures are divided by TG so the oo dependence
scales out. Since charge is conserved the algebraic sum of all
the 1 s (which are actually QY's) is unity.
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ure 2(b) shows the effect of varying the size of the system,
parametrized by Q,„, and Fig. 2(c) shows the NTSSE
values of p for the same parameters values as Fig. 2(a).
These plots show similarities with the corresponding
plots of light element abundances during nucleosynthesis.
At a given temperature, typically one isotope (charge) is
favored, and as the temperature drops, species with
different binding energies take over. Figures 1 and 2 can
be understood qualitatively from the charge-conservation
equation and from Eq. (7). Equation (9) can be approxi-
mated as Yp[1 —e "/ +(rfTY&q)~ 'e / ]=1, where
the first term is the contribution from Y&q, the second
from Y&, and the third is the order-of-magnitude contri-
bution from YNTs.

Consider a relatively small value of g. Then at T= TG,
p [Fig. 2(c)] is small, Y&q = Y&q ))1 (just about cancelling
each other) and YNTs is smaller than either. As the tem-
perature drops, Y&q a: exp[(p —m

& ) /T] drops exponen-
tially (IM «m&), as does Y&q = Y&~. The exp(B/T) term
increases, but the combination of the T~ ' and ( Y& )~
dominate at first and so YNTs drops also. As the temper-
ature continues to drop, p approaches m&, and Y&q ap-
proaches 1, after which time Y& levels out and Y& drops
exponentially. (At this point YNrs is insignificant, so Y&q

cannot drop below unity and still satisfy the charge equa-
tion. ) Since Y&q is no longer dropping, the exponential
exp(B /T) eventually overpowers the T 2 ' factor and
YNTs begins to increase exponentially (at this point Y& is
insignificant) still having little efFect until it approaches
unity. When YNrs gets close to unity, (Y&q) ' must
drop to balance the exp(BIT) factor, and so Y&q drops
away and we are left with YNTs = 1 and negligible
amounts of anything else. For larger asymmetry the
same evolution occurs, except that the drop in YNTs is
not as deep and the final rise in YNTs occurs sooner.

The temperature at which YNTs starts to dominate
(defined as TD in the Introduction) is important in under-
standing the evolution of the system, and can be fairly
well approximated analytically. Since the binding energy
of the highest charge NTS is most important, in a system
with highest allowed charge Q,„, the charge-
conservation equation can be approximated as
Y&q —

Y& + YNTs 1, where YNTs Qmax Y& . Defining

TD as the temperature when YNTs= Y& =
—,
' and noting

that Y&q (and therefore YP) is typically very small at TD,
we can solve for the temperature:

I I I I I I I I I I I I
i

I
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0
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0.3 0.01 0.0031 0.03 0.001

T/T,
FIG. 2. Abundances of nontopological solitons in statistical

equilibrium for a system with Q;„=4and A, I
= l. In (a), the to-

tal abundance of NTS's ( YNrs ) is shown for Q,„=5 and
several values of the asymmetry (g=0.5, 10,10 ', 10 ). In
(b), YNTs is shown for q=10 and several values of the system
size (Q,„=5,40, 200). In (c), the value of the chemical poten-
tial p is shown for Q,„=5 and several values of rl.

TD(Q,„)
TG

a~yTG

(Q —l)ln(4A, T /rIT ) —ln[(Q )
'" (Q )

/ ]
(10)

For the case we considered numerically, pt ——1, Q,.„=4,
and Q,„=5, this becomes TD /TG = —0.767/[2. 08
+41nri+61n(TD/TG)], which is in good agreement with
the numerical results of Fig. 2. A plot of our approxi-
mate values of TD for various values of q is shown in Fig.
3.

aS Qmax

TD( cc )

TG

4g3/4Q —i /4
1 min

In[4k, T /( T Q )]

If we are interested in an infinite system, we note that, For the values of parameters used in Fig. 2 this gives
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dY~

dx
=cgI —&~. lul &(Y&Y, —Y;qY',q)

+ & ~, I. I &(Q,.—1)

X[Y Y YeqYeqY min /(Yeq) min ]
Q —1 Q —1

Q 4 Q

—&~, lul&(Y, Y, —Y;qYpY, +, IYp+, )I,
(15)

where

3& 5$(3)Tompi = —0.014 67TGmp1,~7/2+g
(16)

7?l p1 is the Planck mass, and we took the number of de-
grees of freedom, g, =100. There are similar equations
for Y&, YQ, etc. , and these are displayed in Appendix A.

Next we need to consider the cross sections appearing
in the equations. For the P+P~o +o process we can
use the interaction contained in the Lagrangian, Eq. (1):

X,s-1.06ook, ,x +Ii lPl x (17)

where x is the o field shifted to the true minimum of the
potential. Using this we find, at the tree level,

0.014m,'"
Qi/2 2

g1/2~ 1/2
1 ~min

12.5
(18)

For processes such as P+@& ~Cg& +, we are at a
min min

loss to calculate the cross section, so as a rough approxi-
mation, we will set (o.

l
u

l
) -mR&, where R& is the radius

of the NTS taking place in the process. Thus we have
&oblul &-&o, lul &-2Q"„I(~i"~0)
-2+Q;„+1/(X', o.o). Note that all the cross sections
scale like o.

p

The last step before integrating the coupled set of ordi-
nary differential equations (ODE's) is to specify the initial
conditions. We will start at TG in NTSSE, although it
would probably be more correct to start with the distri-
bution of YNTs [Eq. (3)] derived from the phase transi-
tion. However, the equations are extremely stiff and we

dYQ

dx
= —c2) ( o

l
u

l ) Y'q ( Y —Y'q ) . (19)

Defining 6= Y&
—Y'q, Eq. (19) can be rewritten as

de/dx= —cslios~cIiYsse —dYgs/dx, and as long as
the departure from equilibrium is small we can set
d b, /dx =0 and solve for b, :

d Y('2q/dx

e21(o, lul &Y~q
(20)

Defining freeze-out as 6=1.5' (see Ref. 6) and using
Eq. (7) for Y& and Y&, we find

either have a period of statistical equilibrium after TG, in
which case YNTs immediately evolves to YN(rs, or we do
not have a period of equilibrium, in which case the reac-
tions do nothing and we know that we are left with the
initial YNTs produced in the phase transition.

Figure 4 shows an example of an integration of a net-
work consisting of g))'s, P's, and NTS's of charge Q;„=4
through Q,„=5. Values of /(, , = 1, 2) = 10, and
o.0=10 TeV [Fig. 4(a)] or o.o=7X10 TeV (Fig. 4(b)],
were used. Note in Fig. 4(a) that all abundances trace
their NTSSE values (shown in Fig. 1) until around
T /To -0.1, when YNTs (the sum of the charge four and
five NTS abundances) "freezes out" and becomes con-
stant. Y& and Y& follow NTSSE for a good while longer
in Fig. 4(a), but with the smaller cross section ( eg o 0 ) of
Fig. 4(b) they too freeze out and become constant by
TITo-0.02. This is the generic picture. Abundances
follow their NTSSE values until freeze-out, which is
determined by the cross sections, after which they be-
come constant.

Since we are potentially interested in systems with
large Q,„, and since we cannot numerically integrate
such systems, we would like an analytic approximation
for TF just as we have for TD. Toward this end we first
note that P and P typically stay in equilibrium longer
than NTS's so that during freeze-out of the NTS's we can
approximate Y& and Y& by their NTSSE values. The key
reaction is then Eq. (12b), which is our source of thermal
NTS's, and the equivalent of Eq. (15) for Y& can be ap-
proximated as

TF

TG

(iM/To )+4(&i /Q';„)
ln[(0. 12Ai Q';„xF' mpi/cro)/( zxF QpITo+4Ai Q—/Q';„Bg/To)]— (21)

plot of p for several values of 21 is given in Fig. 2(c).
The approximation, Eq. (21), agrees quite well with the

results of the numerical integration (typically within
10—20%) for small 2), but becomes worse as 21 becomes
large (21~0.1). For example, with large rj, A, , =l, and
Q;„=4 the network gives TF ITG ~0.3 almost indepen-
dent of the value of o.p, while the approximation predicts
smaller values which vary with op. A plot of our approx-
imate TF for several values of crp and g is given in Fig. 5.

where xF = TF/Tzo. For A, , = 1 and Q =Q;„=4, this be-
comes

(22)

where p must be found from the NTSSE calculation. A

TF (IJ, /TG ) +2. 8

TG ln[(0. 14xF/ m pi lo o)I( ——', xF 4p /To+ 11.3)]—
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T~ decreases, so for solitosynthesis a low value of o.o is
desirable. (Cross sections are proportional to O.o, and a
larger cross section will keep things in equilibrium
longer. ) Taking a very low value of o o (and correspond-
ing very large cross section) does not help much, howev-
er, because the dependence of TI; on ao is logarithmic.
For example, a crops section 10 times larger than mR
would be needed to have TD) TF for Q,„=40 and
g=10

The value of the asymmetry is important. For values
of tI near the baryon asymmetry (i)-10 ) we always
have T~ & TD and cannot have a substantial relic abun-
dance of NTS's. As g increases both Tz and TD increase,
but TF increases to a smaller extent. Therefore, the best
hope for solitosynthesis is when g is large.

Finally we must decide what value of Q,„ to use.
Since TD(Q+1)) TD(Q), the larger the effective size of
the system (Q,„),the larger the area of parameter space
in which solitosynthesis can occur. With the present
analysis we have not been able definitively to decide the
effective size of the system (we cannot numerically in-
tegrate a very large system), but we'will discuss this ques-
tion in some detail in Appendix B. In Fig. 6 we show the
regions of parameter space for which each of the three
scenarios, solitosynthesis, solitodestruction, and "born
frozen out" takes place. We choose favorable (for soli-
tosynthesis) parameter values of Q;„=4 and A,

&

= 1 and
plot the o.o, g plane. The dotted-dashed line shows the
boundary between solitodestruction and born frozen out,
destruction occurring to the left of the line. The solid
lines show the boundary between solitosynthesis and soli-

I ', I I I

todestruction for two values of Q,„(Q,„=9 and 44).
Below these lines solitodestruction and/or evaporation
takes place. As discussed in Appendix 8, we favor a
boundary with a low value of Q,„as it agrees with an es-
timate of the allowed region of solitosynthesis made using
a difFerent method. The dashed line shows the division of
parameter space found by requiring enough time to gen-
erate an NTS of charge Q,„via one-body reactions.
This is a necessary but not sufhcient condition for soli-
tosynthesis (see Appendix B). Taking the Q,„=9line as
the boundary, we see that even for the favorable case of
Q;„=4, A,

&
=1, and pro= 1 TeV, we find TD ) TF only if

g) 0. 1. This is very near the degenerate limit and while
such a value for g is not impossible, it is hard to imagine
it arising in a natural way. Therefore, we conclude that
for most all values of our parameters we will not have
substantial numbers of NTS's extant today. Typically we
either are left with the distribution created by the phase
transition or we destroy even these, although there is a
window of parameter space for which NTS's are natural-
)y produced and could contribute, for example, QNTs- l.

Now we briefly consider what happens if processes
such as the reverse of Eq. (12b), (Q~;„—1)P—+@& +P

min

are left out of the network. If NTS's can only be de-
stroyed and not thermally created, the "equilibrium"
state has YNTs=0. Starting from an NTS distribution
after a phase transition, or from actual statistical equilib-
rium one then finds the "evaporation rate" of NTS's by
integrating such a network. The results of this integra-
tion are shown in Fig. 7. Comparing Fig. 7 with Fig. 4,
we see that YNTs does drop very quickly to zero (and nev-
er rises again), while when thermal creation processes are
allowed, the drop is more controlled and temporary. In
this type of scenario, the only way to have any relic
NTS's is to have TF & TG, that is, to have the NTS's born
frozen out.

Finally, we mention that while the results presented
above are in one sense very dependent upon the particu-
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is approximately zero. Above and to the left of the solid (and
dashed) lines solitosynthesis occurs. Here, large numbers of
NTS's are synthesized possibly leading to cosmically relevant
abundances. Several methods of deciding the boundary between
solitosynthesis and solitodestruction are displayed (see text and
Appendix B) but the solid line labeled Q,„=9is probably the
most relevant.

-
ANTS (without)

—30
1

I s I i I

0.9 0.8 0.7
I i I i I

0 6 0.5 0.4 0.3
T/TG

I

0.2 0.1

FIG. 7. Pure evaporation, the abundance of NTS's found by
integrating the network when "creation" of NTS's is disallowed.
The total abundance of NTS's drops quickly to zero. To be
compared with the case when all reactions are allowed (dashed
line and Fig. 4).
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lar NTS model we used, in another sense they are quite
model independent. The important temperature scale TD
depends primarily on the NTS binding energy and asym-
metry; the freeze-out temperature depends on these as
well as the cross sections. So while for different NTS
models the precise regions of parameter space which give
rise to solitosynthesis and solitodestruction will differ, we
still expect the answers to be given by Eqs. (10) and (21),
and to be qualitatively the same.

VI. CONCLUSIONS

In conclusion, we see that for the model of FGGK
there are three generic outcomes, depending on the
values of the parameters. If T~ ) TG, NTS's are born
frozen out and Y&Ts « Y& is determined by the phase
transition. If TG & TF, a period of statistical equilibrium
occurs, which erases all knowledge of NTS's formed dur-
ing the phase transition. If TL, & T~, which occurs only
for fairly extreme values of the parameters, Y~Ts —1 and
solitosynthesis gives rise to large, perhaps cosmically
significant abundances of NTS's. If TI; & TD, then all
NTS's formed during the phase transition are destroyed,
Y&Ts « Y&, and the relic abundance of NTS's is prob-
ably insignificant.
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APPENDIX A

In this appendix we list the complete set of coupled
Boltzmann equations used in running the solitosynthesis
network. The symbols were all defined in Secs. III and
IV:
dY

dx
=ci) I

—o., ( Y~ Yg
—Y~q Ygq Yg+, /Ygq+, )

+ob(Q —1)
X [ Y~ Yg —YPYgq( Y~)g '/( YP)g ']

—o, ( Y~ Y~ —Y~q Y~q ) I,
dY~

[Y~Yg ~'~g' Y~" '
( F)

—o (Y Y —Y'qY')a
—ad( Y~ Yg+, —Y~qYgq+, Yg/Ygq)I,

(A 1)

=ci? I
—cr, ( Y~ Yg —Y~q Ygq Yg+i/Ygq+i )

—ob[Y Yg —
Y~ Yg (Y~)g '/(Yp)g ']

+od( Y~ Yg+, —Y~qYgq+, Yg/Ygq)I,
dY

=cg[o, ( Y& Yg —Y&qYgqYg+, /Ygq+, )

~d( Yy Yg+i Yy'Yg'+i Yg/Yg')]
where o, stands for (cr; ~u ~ ) and Q =Q;„ throughout.

APPENDIX 8

The discussion in the main body of the text which de-
cided the boundary between solitosynthesis and solitode-
struction and/or evaporation was very simplistic, but we
feel probably adequate. In this appendix we discuss the
caveats and our reservations in more detail.

In comparing TD with TF the question arises as to
what size system (effective Q,„) is relevant. It was seen
that TD(Q+ I)) TD(Q), for all Q and therefore the
larger Q,„ the larger the region of parameter space
which would allow solitosynthesis. This is basically a
bottleneck question, and since it is exponentially sensi-
tive, is difficult to answer with confidence. Consider a
temperature between TD(Q;„+1000) and TD(Q;„+1).
NTSSE would drive Y~~s to unity in a system of size
Q;„+1000, but force Y&Ts « 1 in a system of size
Q;„+1. Can the system generate the large number of
NTS's needed to reach NTSSE when Y&, Y&q +&, etc. ,

min min

are extremely small and when the N& 's are generated
max

by a sequence of reactions such as @g +/~ 4&g +,?min min

One approximate way to answer this question is to
consider the number of reactions such as

+P~4&g +, which could have taken place be-
min min

tween TG and TD(Q,„). This number X must be greater
than or equal to Q,„ for NTSSE to obtain. N is overes-
timated by N=(ou)n' (Qq;„, TD(Q;„))tD, where tD is
the time which corresponds to Tn and n'q(Q;„) is evalu-
ated in a system of maximum charge Q;„. (This overes-
timates N since n'q would be smaller for a system with

&min

a larger maximum charge. ) Setting X=Q,„and solving
for TD(Q,„)one finds the effective size (maximum possi-
ble charge) of the NTSSE system as a function of the La-
grangian parameters. Q,„=N)Q;„ is a necessary (but
not sufficient) condition for solitosynthesis. In Fig. 6 we
show the line Q,„=Q;„(for Q;„=4) in the i), o 0 plane
(dashed line). Note that it falls between the Q,„=9and
44 solid lines found previously and argues for a small
efFective Q

This might have been anticipated. At temperatures
where Y&Ts « 1, high-Q NTS's are very much
suppressed compared to NTS's of charge Q;„,so one has
an effective maximum charge of Q;„(or Q;„+e, where
e is small). If the system freezes out before
TD(Q,„=Q;„+e),then there was never a time when
large numbers of NTS's of charge Q;„,Q;„+1, etc. , ex-
isted, and so no way to generate large numbers of Q
charge NTS's even if NTSSE would have liked it.

Another oversimplification of the discussion in
the main body of the text was the use of T„, the freeze-
out temperature of reaction Eq. (12b), (Q;„—1)P

+P. If any of the reactions, Ng +g, +P
—+N& +, freeze out then the system will stop building.

min

Defining a freeze-out temperature TP' (for example, for
the reaction above) and using the same method as in Sec.
IV we find
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(Bg B—g i ) /TG

ln{ [0.057c&(Q —1)' (xp)'/ mp&/ere]/[ ——3xp+Q( p—/TG+4A3i/4Q;i/4 ) —&&/TG]I

where xg= Tg/TG and

0.48Q /„
g]./8

1

~

9/s

Q
—1

We find that TP) Tg ' for all Q, so the higher charge
reactions freeze out first and are, therefore, the only ones
which need be considered. However, in comparing TF~

with the previously defined TF, we find TF slightly larger
or equal to TP for moderate values of Q. Since TF

Q;„
~min +

TF '", etc., freeze out later, the use of TI;, as was done
in the body of the text, seems adequate. Other limita-

I

tions of our analysis include neglect of the NTS surface
energy (clearly not well founded with the small Q;„'s
considered here) and the use of the zero-temperature
form of the potential.

Finally, a potentially serious Aaw in our analysis is that
the reactions of Eq. (12) are perhaps not the relevant
ones. One might expect many-body reactions such as
Q;„P—+4&& +X to exist, as well as @& +Pmin min

+/~4& +2, etc. If these go at appreciable rates large
min

NTS's could be built much faster and a larger region of
parameter space might allow solitosynthesis.
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For parameter values not shown in Fig. 2(c), a reasonable ap-
proximation for the chemical potential is p=min(p, »,p&),
where p„~/TG =4k, ', /Q', „and

pi /TG = ( T/TG )arcsinh [0.24r)Q3~„'A, , ~'( T/TG )'~2

Xexp[4A3ii Q 3i4(T/TG)]j .

In order for perturbation theory to be valid (whatever that
means in a theory such as this) we expect k& & 4 (roughly) and

h & 1. Following FGGK and requiring that m& ~ TG so that
P's can be trapped at TG, we find 0.16Q'~„' ~ A, , ~ 0.056Q;„.
This constraint cannot be satisfied unless Q;„~4 and in this
case A, , =0.27. Using this with A, , ~ 4 implies 4 ~ Q;„
&15000 and 0.27&A, , &4. There is some uncertainty in

these bounds since the value of TG and input constraint in-

equalities are only approximate. Throughout we used
X2=0. 15K,&, but there is not much latitude here either since

requiring that the false-vacuum bubbles do not grow implies
that A,~ is not too small.


