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A deformed black hole produced in a cataclysmic astrophysical event should undergo damped vi-

brations which emit gravitational radiation. By fitting the observed gravitational waveform h (t) to
the waveform predicted for black-hole vibrations, it should be possible to deduce the hole s mass M
and dimensionless rotation parameter a =(c/G)(angular momentum)/M . This paper estimates the
accuracy with which M and a can be determined by optimal signal processing of data from laser-
interferometer gravitational-wave detectors. Et is assumed that the detector noise has a white spec-
trum and has been made Gaussian by cross correlation of detectors at diferent sites. Assuming,
also, that only the most slowly damped mode (which has spheroidal harmonic indices l =m =2) is
significantly excited —as probably will be the case for a hole formed by the coalescence of a
neutron-star binary or a black-hole binary —it is found that the one-sigma uncertainties in M and a
are AM/M=2. 2p '(1 —a) ', ha=5. 9p '(1 —a)', where p=h, (vrfSI, ) '~2(1 —a) 0~ . Here p is
the amplitude signal-to-noise ratio at the output of the optimal filter, h, is the wave s amplitude at
the beginning of the vibrations, f is the wave s frequency (the angular frequency co divided by 2m),

and Sz is the frequency-independent spectral density of the detectors' noise. These formulas for AM
and ha are valid only for p 10. Corrections to these approximate formulas are given in Table II.

I. INTRODUCTION AND SUMMARY

In 1971 Press showed' that black holes can vibrate,
and in fact have normal modes of vibration; and in 1974
Teukolsky and Press showed that the gravitational
waves emitted by a black hole will always be dominated,
after an initial transient period, by a superposition of the
outputs of a set of discrete normal (or quasinormal)
modes. Since then the vibration frequencies m of the nor-
mal modes and their radiation-reaction-induced damping
times ~ have been computed as functions of the hole's
mass M and c}imensionless rotation parameter a
=(c/G)(angular momentum)/M by Chandrasekhar and
Detweiler, Detweiler, Leaver, and others.

In 1977, when Detweiler's calculations revealed that
for the most slowly damped mode of a rotating hole the
waves' parameters Ico, rJ are a unique and invertible
function of the hole's parameters IM, aI, the possibility
arose of being able to infer a hole's M and a from the
waves it emits. This possibility is enhanced whenever,
among all the hole's modes, the most slowly damped one
is preferentially excited. Detweiler has argued that this
will be the case if the hole is rapidly rotating (if a is very
near unity). Moreover, it will likely be the case for the
most interesting and strongest emitting of all black-hole
events: the formation of a deformed hole by the coales-
cence of a neutron-star binary or a black-hole binary. The
reason is that during the coalescence the binary will have
a rotating shape corresponding to spheroidal harmonic
indices I =m =2, and the most slowly damped mode has
precisely these indices. '

Although the idea of determining a hole's M and a
from measurements of its gravitational waves has been
around since 1977, nobody has yet estimated the accura-
cy with which this can be done, i.e., the rms errors 4M

and ha due to the noise in the detectors to be expected in
such a determination. This paper is devoted to an esti-
mate of AM and Aa and their correlation.

Our estimate will rely on a number of assumptions.
(i) Which normal modes are present in the ringdown

waves and in what mixture? Motivated by the above dis-
cussion, we shall restrict attention to the case where only
the most slowly damped (fundamental), l =m =2 mode is
present.

(ii) What is the transient waveform that precedes the
ringdown? This transient, for a coalescing compact
binary system, should consist initially of periodic waves
whose frequency increases due to the spiraling orbital
motion that brings the two bodies together, and then a
burst due to the start of the coalescence itself. %'e
suspect, but have not tried to prove, that hM and ha will
be rather insensitive to that transient, provided we ex-
press them in terms of the signal-to-noise ratio p for the
ringdown waves and leave the initial transient out of p.
Furthermore, . the signal-to-noise ratio for the transient
waveform may be small in comparison with that of the
ringdown: in some model simulations this is true, and for
rapidly rotating holes (a near unity) the high Q factor of
the ringdown enhances its signal-to-noise ratio. %'e shall
presume for simplicity that there is no transient; and,
more specifically, that the waves' waveform is

—(~ —t, )I~,
e t, Ae ' ' sinco, (t t, ) for t—~ t, ,

hik (t) =
0 for t(t, .

Here ejk is the polarization tensor, 2 is the amplitude, ~,
and ~, are the normal-mode frequency and damping time,
and t, is the waves' arrival time. (The subscript s, stand-
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ing for "signal, " is used to distinguish this co„~„and t,
from the values cop, ~p, tp that are estimated by the exper-
imenters and the values cok, ~k, tk that the experimenters
use in their optimal filters; see Sec. II below. )

(iii) What is the spectral density Sl, (f ) of the noise in
the detector? [For a detailed discussion of Sz(f) see Ref.
8.] The most promising of all gravitational-wave detec-
tors are the multikilometer laser-interferometer detectors
(also called "interferometric detectors" or "beam detec-
tors") that are being planned in the United States, Bri-
tain, Germany, France, Italy, Japan, and Russia; for a re-
view see Ref. 8. These are broadband detectors; and in
the frequency ranges of optimal sensitivity their noise is
likely to be white, S& (f) independent of f. Accordingly,
we shall assume white noise. Since black-hole waves have,
for the mode we have chosen, a quality factor

Q, =——,'co, r, =2(1—a) ~ 2, (1.2)

—
(, t —t, )/~,'sinto, (t t, ) for t ~t,—,h, e

h(t)= .
0 for t(t, ,

h, = Ae k(l~l" —m Jm ");
(1.3)

see Ref. 8.
(iv) What are the statistical properties of the detector

noise? Individual detectors exhibit some excitations due

the band of frequencies involved in the signal (1.1) is rela-
tively narrow, b,f &f. This narrowness means that our
results should not be very sensitive to the white-noise as-
sumption. ¹te:the signal h (t) which is to be compared
with SI, (f) is the projection of h k on the unit vectors l
and mI, which point along the beam detector's legs,

to local, non-Gaussian noise —e.g. , due to sudden strain
releases in the wires suspending the detector's mirrors or
to inadequately shielded voltage fluctuations in the elec-
tric power lines. In order to have any likelihood at all of
successful detection of waves it is essential to remove
such excitations from the detectors' output data. For-
tunately, the non-Gaussian noise comes in short spikes,
separated by long intervals of purely Gaussian noise.
Those short spikes are uncorrelated between two widely
separated detectors and thus are easily removed by cross
correlation. Thus we shall assume, in accord with the ex-
perimenters past experience, that the remaining noise is
Gaussian.

(v) What method is used to analyze the data? Wiener
optimal filtering: more specifically, we shall assume that
the data are run through a set of filters, each of which is
optimized for detecting a signal of the form (1.3) but with
values of the frequency cok, damping time ~k, and arrival
time tk which differ from those of the signal. (The experi-
menters, of course, do not know in ad~vance what co„~„
and t, are. ) The experimenters choose as their best esti-
Inates of co„~„and t, those filter values col„~k and tk
which give the output with the largest signal-to-noise ra-
tio. We shall denote these best estimates by cop, ~p, and
I;p.

In a large number of different measurements with iden-
tical input signals, but with Gaussianly fluctuating noise,
this procedure will give different values of cop 7 p and tp.
These values will be Gaussianly distributed with means
co„~„and t„ if the signal-to-noise ratio is high enough.
Correspondingly, the values Mp and ap of the hole's mass
and angular-momentum parameter inferred from cop and
~p will be Gaussianly distributed, with means M and a,
respectively. The bottom-line result of this paper is the
Gaussian probability distribution (integrated over start
times) for the inferred Mo and ao.

(Mo —M)
P(Mo, ao) = exp

2rrb. Mha(1 —C~, )' 2(1 —C~, ) b,M
2C~, (MO —M)(ao —a) (ao —a)+ . (1.4)

AMha Aa

AM/M=2. 2p '(1 —a) f~(a),
ba =5.9p '(1 a)' f, (a), — (1.5a)

where f~ and f, are functions that are nearly equal to
unity and are tabulated in Table II, p is the amplitude
signal-to-noise ratio at the output of the filter, and these
formulas are valid only for p ~ 10. Because the best infor-
mation about M and a comes from the waves' frequency
(their ringdown time is less well determined), the fluctua-
tions of Mp and ap away from the true values,
6M =Mp —M and 5a =ap —a, are strongly correlated;
the correlation coefficient appearing in (1.4) is

C~, =0.976f~, (a), (1.5b)

where fM (tabulated in Table II) is very nearly equal to

The variances AM and Aa of the inferred mass Mp and
angular momentum ao turn out to be (Sec. IV)

X2.26(1 —a) ' f~(a) . (1.6)

Here f and f' are correction functions close to unity
that are tabulated in Table II. The faster the hole rotates,
the larger is its quality factor, and thus for fixed initial
wave amplitude h„ the larger is the signal-to-noise ratio p
and the better determined are the hole's mass and angu-

I

unity throughout the range 0 ~ a + 1.
It is important to note that the signal-to-noise ratio p

at the output of the filter depends not only on the waves'
amplitude h, and the detector's noise S&, it also depends
on how long the waves last, i.e., on their quality factor Q,
[Eq. (1.2)]:

(~ S )
—i/22Q3/2( 1+4Q2) —i/2

=h, [2/(co, Sp )]' (1—a) "f~(a)
=h, S&

'/ (GM/c )'



3196 FERNANDO ECHEVERRIA

lar momentum. The determination improves not only due
to the increase in p. Expressions (1.5a) also show a direct
and larger improvement with increasing a in addition to
that produced by p. They also show that for slowly rotat-
ing holes, a & 0.8, the rotation parameter is less accurate-
ly determined than the mass, b,a ) b,M /M; but for
a ~ 0.8 it is better determined, Aa (b,M /M.

The body of this paper, in which these and other re-
sults are derived, is organized as follows: Section II out-
lines, briefly, the theory of optimal filtering of signals that
are contaminated by noise. Section III uses that theory to
determine, for p ~ 5, the accuracies Am, A~ with which
the parameters co„r, of the waveform (1.3) can be de-
duced in the presence of the white, Gaussian noise S&.
Section IV translates those Ae and A~ into correspond-
ing accuracies (and Gaussian probability distributions)
for the inferred mass Mp and rotation parameter ap of
the hole. Finally, Sec. V points the direction toward fu-
ture, followup research.

II. GENERAL APPROACH

In this section we sketch, brieAy, the application of
Wiener's theory of optimal filtering to our problem.

The experimenters' initial task is to estimate the signal
parameters t„cu„and ~, from their experimental data—
data consisting of the signal (1.3) corrupted by detector
noise.

The simplest variant of the Wiener optimal filter deals
with a slightly different task: The parameters t„cu„and
r, [and thence the full signal h (t)] are presumed known
in advance, and it is desired merely to determine whether
or not the signal is present. For this task the optimal filter
K(t) is the one which, when integrated against the noisy
signal, gives the largest integrated signal-to-noise ratio.
More specifically, let the uncontaminated signal be h (t)
[Eq. (1.3)] and let the noise (a Gaussian random process)
be n (t) Then the. value obtained as output of the optimal
filter is

In our case, the signal's parameters cu„~„ t„and am-
plitude are unknown; and thus the experimenters cannot
know in advance the exact form for the optimal filter
function (2.3). However, since the general shape of Ii (t) is
known, and since the optimal filter gives the maximum
signal-to-noise ratio S/N on output for the signal it is
tailored to, we can (and shall) assume some arbitrary ini-
tial parameters (cok, r&, tk) for the filter function and then
perform a fine-tuning, changing these parameters in order
to maximize the output S/N. The maximum value of
S/N will occur when (cok, rk, tk) are equal to (co„r„t, ).

This maximization of S/N cannot be accomplished ex-
actly in practice, since at the output of the filter we do
not know the output signal S and the output noise v sepa-
rately, but only their sum 8'. The best we can do is take
the total output 8' as an estimate of S, apply the above-
described procedure to maximize 8'/N, and thereby ob-
tain estimates (coo 7 p to) of the exact signal parameters.
Obviously, the weaker the noise (the higher S/N), the
closer these estimates will be to (co„r„t, )

In this paper we shall compute the uncertainties in (coo,

ro) —i.e., the amounts by which they are expected to de-
viate from (co„~,). Our computation will be based on the
statistical properties of the background noise and the
effect of the filtering and optimization processes on those
statistical properties and on the total (corrupted) signal.
We shall carry out this analysis analytically with ap-
propriate approximations for the weak-noise case (large
S/N). The same procedure, implemented numerically,
could give details of the uncertainties in co„~, for the
strong-noise case; but we shall not attempt such calcula-
tions.

Once the uncertainties in cop, ~p are known, these can
be (and will be) translated into corresponding uncertain-
ties for the mass and angular momentum of the black
hole. This can be readily performed using the known nu-
merical results that relate these two sets of parame-
ters. ' We will also find the correlation between these
uncertainties.

8'= j K(t)[h (t)+n (t)]dt =S +v,
where

S= J K(t)h(t)dt, v= f K(t)n(t)dt,

and K (t) (the optimal filter) is defined by

(2.1)

(2.2)

III. SIGNAL PARAMETERS

The signal function we will use is the damped sinusoid
described by Eq. (1.3), which starts at t =t, For ease of.
calculation, we will choose t, =0, so that the estimate tp
will be distributed around zero, and h (t) will have the
form

K(f) ~&(f)/St, (f) . (2.3)

Here the tildes denote Fourier transforms, Si, (f)

represents the spectral density of the noise n (t), and the
constant of proportionality is arbitrary. Note that, while
S is a constant, independent of the moment of detection
[because if h (t) is shifted in time K (t) is shifted too], v, in
a given experiment, is just an instance of a random vari-
able, and will be different if detected at a different time or
even by another identical detector at the same time, since
n (t) is a random process. The filter (2.3) is optimal in that
it gives the maximum possible value for the output
signal-to-noise ratio S/N, where N is the standard devia-
tion of v considered as a random variable, i.e., N —=o

—t /7-,
h, e ' sinco, th(t)=
0 if t(0.

if t~0,
(3.1)

We will follow the process described in Sec. II to obtain
the estimates cop 7 p tp for ~„~„and t, =0 and to deter-
mine how much uncertainty is introduced in the process.

Now, since we assumed that the detector introduces
white noise, its spectral density will be constant:
Si, (f) =Sh for all f. Then, according to (2.3) the optimal
filter would be proportional to the signal h (t). However,
since in practice we do not know the values of co„~„or
t„we are forced to use, as our filter,
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stook (t tk
—) if t ~ tkK(t)=

0 if t(tk (3.2)

where cok, ~k, an@ tk are the parameters that have arbi-
trary initial values, and are fine-tuned to maximize W/N.

By inserting Eqs. (3.1) and (3.2) into (2.2), we obtain,
for the filtered signal,

S= f K(t)h(t)dt

—,'h, e" "(I I+ ) —if tk &0,

—,'h e " *(J —J+) if tk ~0, (3.3)

with

I+ =( Tcosco'ktk+~ co+ lscni) tkk)/(I+co+r ),

J~ = ( crosco, tk + r co+ sine, t/, )/( I +e+r ),
(3.4)

oo —
g //~k

e " sincokt n (t + tk )dt .
0

(3.5)

Viewing this v as a random variable, we see that its distri-.

bution is Gaussian, since it is a linear combination of the
Gaussian random variables n (t +tk ) (Ref. 11). As an aid
in evaluating the variance o. of v we introduce the ran-
dom process

where 7 =7 k1 /(%k+7 ) and co+ —=cok+co, .
We will now analyze v, the output of the filter when

the input is n (t) We can. look at v in two very difFerent
ways. First, we can consider it as just the real number ob-
tained, added to the useful output S, in one specific exper-
iment. Second, we can view it as the random variable cor-
responding to the diFerent results that an ensemble of
identical detectors would give for the same experiment.
We must use the first viewpoint when we try to reproduce
the steps that would be followed in the analysis of the
data from an actual experiment, e.g., the fine-tuning of
parameters by maximization of the output signal-to-noise
ratio. We need, however, to use the second point of view
when we want to study the statistical variations that are
to be expected in actual experiments, given the fact that
n (t) is unpredictable.

From (2.2) and (3.2), v is given by

v= f™
K(t)n(t)dt

crv'= f S,(f)df =S„f IK(f)l'df

=(S„/2) f lK(f)l df

=(S„/2) f K'(t)dt, (3.8)

where the first equality follows from the definition of
spectral density, ' and the last one from Parseval's
theorem. However, the random variable v=&(0) is just
the value of the random process 0 at one specific time, so
their variances are the same: o. =o.&. Hence,

N =cr,=(v ) =(S/, /2) f K (t)dt

=(S/, / 8)co/, r/, /(1+cokr/, ) . (3.9)

We now want to perform the maximization of our
"best estimate" of the signal-to-noise ratio, W/N
=(S+v)/N. It is impossible to do this analytically to ob-
tain an expression for the optimal values of cok, ~k, and tk

since the expressions (3.3) and (3.9) are not simple
enough. If, however, we restrict ourselves to the case in
which the noise is sufficiently low, i.e., S /N is big
enough, we can assume that the optimal values for the
filter parameters will be relatively close to the exact sig-
nal parameters. In this case we can write

cok =co,(1+E), rk =r, (1+g),
(3.10)

+p, Er)+p2Eg+ p3gg), (3.11)

where the coefficients can be expressed in terms of the
quantities

1

s 2~$ is
(3.12)

q 2Q (1+4Q2)—1/2 —
co r (1+co2r2 )

—i/2

which are dependent only on the product of the signal's
frequency and damping time, and not on each separately.
The parameter Q, is the resonance factor or quality fac-
tor for the damped wave. Note that q, can only take
values between 0 and 1, but for the values of cu, and ~,
corresponding to the fundamental normal mode with
1 =m =2 of Kerr black holes, Q, ranges from about 2 to
~ [see Eq. (4.3)], so q, is always very close to unity. In
terms of these parameters the coefficients in (3.11) are

p=q, h, (r, /2S/, )'/

t/, =g/cu, ,

where we need only consider values of s, g, and g much
smaller than 1. We can then show that, in this approxi-
mation, we get the simple expression

S/N =p(1 —ais —a221 —a3(

v(t')= f K(t —t')n(t)dt, (3.6) a =—'q4 —-„'q,'+Q,',
so that v=v(0). The spectral density of this v(t') will

then be'2

(3.7)

CX3
=—g

p, = —q, +q,

(3.13)

Consequently, the variance of the random process v( t ')

will be

s

P = —
—,'Q, '.
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We can do something similar with the noise contribu-
tion to W/N: we can construct a series expansion for v in
powers of E, g, and g and keep the leading terms. In order
to do this, we note that from (3.5) and (3.10) the filter
function depends not only on t, but also on E, g, and g;
i.e., it can be expressed as K(s, g, g, t). Therefore, it can
be expanded in powers of e, q, and g. Keeping terms up
to first order, we get

f,(t)+f, (t)E+f,(t)rt+ f, (t)g if t ~0,
(3 14)0 if t(0,

2a) —P( —
P~

—p, 2a2 —
p3

p2
——

p3 2u,

Cp C)

'gp —p 6 C2

0p C3

(3.21)

5coz /co~—:Ep= k(dpvp+d ~v~+d2v2+d3v3)

57 /7—:Yjp
=k ( e p vp+ e

& v& + e 2 v2+ e 3 v3 )
(3.22)

The solution of these linear equations, rewritten using
(3.13) and (3.19), is

—t/~,fp(t)=e 'si ncpt,
—t/~,f, (t) =co, te ' coscp, t,

-t/~,f2 ( t ) = ( t /r, )e ' sin cot,

f3(t)=e *(—,'Q, ' isnoot —costo, t) .

(3.15)

with

di=qs' ( —', + i'~Qs ')+ —,'q, '

Therefore, the expansion for v is

v=vp+v, E+vzg+v3( &

where

(3.16)
d3=(Q, +-,'Q, ')q,'—(-,'Q, +-,'Q,-')q,'+ Q,

(Q2+ 1 )q2+ 7Q2 3Q2q
—2 (3.22a)

v,.=;tn t t for i =0, . . . , 3 (3.17)

v/N=b(cp+c, e+c,rI+c, g), (3.18)

- where

can be viewed as four Gaussian random variables in-
dependent of the filter. Next, taking into account the
dependence of N on e, rI, and g, we get

ez =q,~ —(Q,~+ —,')+2Q, q,

e 3
= —( Q, + —,

'
Q, ')q,'+ (Q, + —,

' Q. ')q'

k =46, '/(h, q, r, ),

b=q, '(8/Shr, )'

Cp Vp c, =v, —(1—
q, )vp,

C3 =V3c2=v, —
( —,
' —

q,')vp,

(3.19)

where b„ the determinant of the 3X3 matrix in (3.21), is
given by

b, =~—(Q, + —,'+ —,', Q, )q,

+(—,'Q, +1+—,', Q, )q,

(3.22b)

V, „g[(S+v) /N j =0 (3.20)

are our best estimate of (s„g„g,) for a given experiment.
By imposing (3.20) with the help of (3.11) and (3.18) we
obtain the linear equations

Note that the c;, like the v;, are Gaussian random vari-
ables. By adding expressions (3.11) and (3.18) we obtain
W/N =(S+v)/N.

Now, we are ready to maximize (S +v) IN. The values
( E 'q g) = ( Ep 'qp gp) for which

Analogous expressions can be obtained for gp, but we do
not give them, since in this paper we are not interested in
the accuracy of the start time. (Our only reason for in-
cluding g=cp, tk in the analysis was to take account of its
impact on the accuracy of read-out of cp, and r, .)

We should notice that cp and gp will, in general, be
correlated, since they are ultimately dependent on the
same random process n (t). Furthermore, since this pro-
cess is Gaussian and the dependencies are linear, they
will have a joint normal distribution, with probability
density

1f (ep 'qp) =
2 &&2

exp
2vro, o„(1 r,„).—

0 IO 0~0

1 ~p
2

2(1—r, „) o,

2~~ q ~p Ip0 j0

O~ O~0 0

2
Y/p

O~
(3.23)
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=(Sl, /2) f g'(t)dt
0

3

=(k'S„/2) g d, d, I,,
i,j =0

(3.25)

where

=(Sq/2) f h (t)dt
0

3
=(k Sl, /2) g e, e,I,

l,J =0

I;, —= f f, (t)f, (t)dt . (3.26)

Here we have defined the "typical fractional errors"
b,co, lco, and b,r, /r, in the signal parameters to be their
standard deviations. [These standard deviations should
not be confused with the actual —but unknown—
fractional errors 5co, /co, = (coo —co, ) /co, and 5r, /r,

(10 r ) lr, .] Explicit calculation of the integrals I;~
yields

2
Ipp =—~,q, ,

where r, „ is their correlation coe+cient, and o, and o „0~0 0 IO

are the standard deviations of cp and gp, respectively
(after integrating over the other variable). Once we have
computed cr, , cr„, and r, „we will know from (3.23) all

0 IO 0 IO

the statistical properties of zp and gp.
In order to compute o, , cr„, and r, „,we must ex-

0 ~0 0 10

press Ep and gp as linear combinations of the values of
n (t) [i.e., as integrals over n (t)]. By combining equations
(3.17) and (3.22) we obtain the explicit expressions

Cp= g tn t, qp= h tn t, 3.24

where
3

g(t)=k g d, f, (t),
i=0

(3.24a)
h(t)=k g e,f, (t) .

i=0
Then by analogy with (3.5) and (3.8) we obtain, for the
variances,

(4co, /co, ) =cr, =(Eo)

To compute the correlation coefFicient r, „we begin
0 10

by evaluating

o~o)

g tn tdt h t'n t'dt'
0 0

= f dt f dt'g(t)h(t')(n(t)n(t'))
0 0

= f dt f dt'g(t)h(t')(S, /2)5(t t'—)
0 0

=(S,/2) f g(t)h(t)dt .
0

(3.28)

Here we have used the equality (n(t)n(t'))
=( SI /2) 5(t t'—), which follows from the fact that the
noise's correlation function C„(r)—= (n (t)n (t +r) ) is the
cosine transform of its spectral density Sz (f) (Wiener-
Khintchine theorem). Next, using (3.24a) and (3.26) in
(3.28) we obtain

(cog, ) =r, „a,o„
3

=(k S&/2) g ed I;.
/, J =0

(3.29)

g&, /r, —=o„——2p 'f.(Q, ),
, =Corr(5co, /co„'5r, /r, )

S S

=r, „=—
—,'Q, 'f, (Q, )

(3.30)

From (3.25) and (3.29) we can draw the conclusion that
the correlation coefficient r, „ is a function of Q, only;

0 IO

i.e., it does not depend on the frequency or damping time
of the signal separately. Moreover, it does not depend on
the noise level that is present in the detector or on the ini-
tial amplitude of the signal.

Using the fact that Q, )2 and q, = 1, we can see that
only one or a few of the terms in the sums (3.25) and
(3.29) make significant contributions to o, , o„, and

0 ~0

r, . By identifying and evaluating the dominant terms,
0 0

we can find the following analytical expressions for the
uncertainties in the signal parameters and their correla-
tion:

Sco, /co, =—c,,=p 'Q, 'f (Q, »

I)( =
—,'r, Q, ( 4q, +9q, 6q, +2),— —

I22 = rq, (4q, —9q, +—6),
I33 =—'Z, ,

Io) =I)0= 4r, q, (1 —q, ), —

I02 =I20 8 rs q,'( 3 —2q, )

I03 =I30=0,
I&2=I2) =

—,'r, Q, ( 4q, +llq, —10q,2+3), —

I)3=I3)= —4r, Q,

I23 =I32 = ,'r, Q, (1—q, ) . —

(3.27)

Here p [Eq. (3.13)] is the signal-to-noise ratio, aside from
small corrections that are shown in Eq. (3.11); and ff„f, are "correction functions" which depend on the
quality factor Q, and are very close to unity. These
correction functions are tabulated in Table I.

These results can be summarized as follows: The frac-
tional uncertainties in the frequency and damping time
are inversely proportional to the signal-to-noise-ratio p.
The uncertainty in the frequency is very nearly inversely
proportional to the signal's quality factor, while the un-
certainty in the damping time is essentially independent
of the quality factor. Finally, the correlation coefficient,
which is independent of the signal-to-noise ratio, is nearly
inversely proportional to Q„' and, given the numerical
values of Q, for the fundamental normal mode with
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nal parameters co, and ~, into those of the mass M and
angular momentum parameter a of the black hole. In or-
der to make this translation, we need the functional rela-
tionship between the two pairs of variables (co„r,) and
(M, a). That relationship has been computed numerically
by Leaver using the theory of small perturbations of
Kerr black holes. We shall write that relationship in the
form

TABLE I. Corrections for the uncertainties and correlation
of the signal's frequency and damping time as functions of Q, .
These corrections are defined in Eqs. (3.30).

0.9480
0.9902
0.9975
0.9989
0.9994
0.9996
0.9997
0.9998
0.9998
0.9999
0.9999
0.9999
1.0000
1.0000
1.0000
1.0000
1.0000

2.1

5.0
10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0
70.0
75.0
80.0

1.1021
1.0196
1.0050
1.0022
1.0012
1.0008
1.0006
1.0004
1.0003
1.0002
1.0002
1.0002
1.0001
1.0001
1.0001
1.0001
1.0001

0.7517
0.9513
0.9876
0.9945
0.9969
0.9980
0.9986
0.9990
0.9992
0.9994
0.9995
0.9996
0.9996
0.9997
0.9997
0.9998
0.9998

r, =g (a)M, (4.1)co, =f (a)/M,
where the functions f (a) and g (a) are plotted in Fig. 3(c)
of Leaver (Ref. 5); and we shall write the inverse relation
as

(4.2)M=l((Q, )/co, .a =P(Q, ),
The functions P(Q, ) and P(Q, ) can be determined from
tables of f (a) and g (a) (obtained by private communica-
tion from Leaver, since they are not tabulated in Ref. 5
for the case l =m =2).

It is interesting to notice that the angular momentum
parameter a depends only on the resonance factor Q,
and, furthermore, that this dependence is monotonic and
thus invertible. An analytical expression for the inverse
function is

Q, =
—,'~, r, =f (a)g (a)

=2(1—a) ' fg(a), (4.3)

where the approximate expression is corrected by f&,
which is close to unity, and is tabulated in Table II. For
the sake of completeness we also give an analytical ex-
pression for the function f (a), which determines the fre-
quency cu, :

f (a)=[1—0.63(1—a) ]f&(a), (4.4)

where the correction is also given in Table II.
We now want to know how the uncertainties in the sig-

nal parameters are translated into the corresponding un-
certainties of the hole's parameters. In order to determine
this we replace co, and r, in (4.2) with the values coo and
7 o obtained by the procedure described in Sec. III, thus
obtaining approximate values ao and Mo (the
experimenter's best estimates) for the hole's angular
momentum parameter a and mass M. These can be writ-
ten as

(4.5)MD=M(1+p),ac=a+/,
where g and p are the errors the experimenter makes.
Then, using expressions (3.10) and the approximations
co, go«1, we obtain linearized expressions for these er-
rors:

(=6a = 3Eo+Bgo,

p =5M/M =Cc.o+Dgo,
with A, B, Cand D givenby

(4.6)

IV. BLACK-HOLE PARAMETER/

l =m =2 of Kerr black holes, the correlation coe%cient
turns out to be small for all the range of interest, and ab-
solutely negligible for rapidly rotating holes (high Q, ).
This means that the errors in the values of m, and ~, ob-
tained in one specific experiment will be essentially in-
dependent of each other.

From these results we can see that the condition
c,g«1, on which our analysis relies, is satisfied if and
only if

p))1 . (3.31)
By using the results obtained to check the errors in the
approximate expansions (3.11) and (3.14) for typical
values of co and go, it is found that with p = 5 these are
5 10%%uo for all Q„so the results can be considered valid
for p+5.

Let us now briefIy look at the initial amplitude h, of
the signal. We will show how it can be determined from
the experiment, and why the lack of knowledge of its pre-
cise value does not significantly affect our knowledge of
the uncertainties and correlation coefticient of the fre-
quency and damping time.

From the experimental data, we have to take
8'=S +v as our best estimate for S. Then, from this best
estimate, using (3.3) and using coo, ro, to in place of cok,

~k, tk, we obtain a best estimate of h, . Because of the
presence of v in O' =S+v and the deviations of mo, ~o, to
from co„~„t„ this procedure produces fractional errors
of order p in our estimated h, . Similarly, there are frac-
tional errors of order p

' in our estimate W/N for the'
value of p=S/1V —and these errors produce fractional
errors of order p

' in our knowledge of the values of
Ace, /co„b, r, /r„and C„, [Eqs. (3.30)]. For p~ 5 we can

S S

regard these errors as negligible.

We now describe the final step of our analysis: the
translation from the values and uncertainties for the sig-

A =B=Q, P'(Q, ),
D =C+1=Q, f'(Q, )/g(Q, )

(4.7)
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TABLE II. Corrections for quality factor, signal-to-noise ratio, and hole s mass and angular momen-
tum parameter as functions of a. These corrections are defined in Eqs. (4.3), (4.4), (4.10), (4.11), and
(4.15).

0.0001
0.1000
0.2000
0.3000
0.4000
0.5000
0.6000
0.7000
0.8000
0.9000
0.9200
0.9400
0.9600
0.9800
0.9850
0.9900
0.9950

1.0501
1.0402
1.0297
1.0182
1.0057
0.9918
0.9763
0.9587
0.9389
0.9184
0.9149
0.9124
0.9121
0.9187
0.9236
0.9326
0.9523

1.0100
0.9934
0.9789
0.9668
0.9572
0.9505
0.9475
0.9494
0.9587
0.9815
0.9891
0.9983
1.0099
1.0252
1.0297
1.0346
1.0392

1.0237
1.0165
1.0094
1.0026
0.9954
0.9870
0.9762
0.9605
0.9442
0.9233
0.921S

0.9171
0.9036
0.9246
0.9285
0.9408
0.9695

0.9417
0.9541
0.968S

0.9846
1.0025
1.0215
1.0409
1.0589
1.0724
1.0764
1.0755
1.0722
1.0636
1.0512
1.0427
1.0307
1.0083

fMa

1.0000
1.0000
1.0000
1.0001
1.0001
1.0002
1.0001
0.9997
0.9990
0.9977
0.9973
0.9969
0.9963
0.9959
0.99S8
0.9956
0.99S5

0.9969
0.9947
0.9922
0.9895
0.9864
0.9828
0.9786
0.9739
0.9688
0.9649
0.9650
0.9659
0.9685
0.9763
0.9806
0.9876
1.0018

1.0044
1.0097
1.0162
1.0242
1.0332
1.0429
1.0521
1.0585
1.0666
1.0679
1.0689
1.0644
1.0441
1.0468
1.0383
1.0304
1.0169

0.9239
0.9478
0.9750
1.0058
1.0406
1.0794
1.1219
1.1670
1.2114
1.2450
1.2475
1.2445
1.2289
1.1902
1.1661
1.1289
1.0577

fp

1.0192
1.0067
0.9933
0.9789
0.9634
0.9464
0.9278
0.9074
0.8853
0.8646
0.8621
0.8616
0.8655
0.8832
0.8942
0.9131
0.9533

g +D g +2/D7 g g
0 0 0 IO 0 ~0

rr„o~o„=ACo, +BDcr„+(AD+BC)r, „o,o„0 10 0~0 0 ~0

(4.8)

Correspondingly, the typical errors in the estimated
black-hole mass M and angular momentum parameter a,
and the correlation of those errors, have the general form

ha—:o ~=p 'F(Q, ) =p 'F(a),
hM/M:—o.„=p 'G (Q, ) =p 'C(a),

C~, = Corr( 5a; 6M /M)

= r~„=H(Q, ) =H(a),

(4.9)

where the functions F, G, H and F, G, H are computable
from Eqs. (3.30), (4.2), (4.7), (4.8), and Leaver's numerical
results for P(Q, ) and g(Q, ). It is important to note that
both the uncertainties b,a and AM/M are inversely pro-
portional to the output signal-to-noise ratio p, and that
their correlation depends only on a, and not on M. The

Given the shapes of the functions P(Q, ) and iN Q, ), it is
found empirically that the linear expansion (4.6) is a good
approximation as long as the condition co, go«1 holds.
More precisely: using o, , o„ from (3.30) as typical

0 ~0

values for co, go, it turns out that the diA'erences between
the exact g and p [defined by (4.5)] and their approximate
values [defined by (4.6)] are ~ 30% for p ~ 10. So we will
consider the results obtained below to be valid only for
p~10.

Finally, we need to determine the probability distribu-
tion of g and p. Since Eo and iso have a joint Gaussian
probability distribution, g and p, which are the linear
combinations (4.6) of sp aild imp also have a joint Gauss-
ian distribution" with variances and correlation given by

a = 3 o. +B g. +2ABr o. g.
0 0 0 IO 0 j0

author has evaluated the functions F, 6, and H by the
above prescription. The numerical results can be ex-
pressed in the form

aM/M=2. 2p '(I —a)'"fM(a),
ba =5.9p '(I —a)' f, (a),
CM, =0.976fM, (a ),

(4.10a)

(4.10b)

(4.10c)

p=h, [2/(co, Sh )]' ( I —a) f (a)

=h, S&
' (GM/c )' 2.26(l —a) ' f'(a), (4.1 I)

where in the last step we replaced ~, with its dependency
on a and M as given by Eq. (4.1), and where f and f'
are corrections given in Table II.

where fM, f„and f~, are corrections that are close to
unity and are given in Table II.

Expression (4.10b) shows that, for a given p, the uncer-
tainty in the angular momentum parameter a decreases in
a nearly linear way as a increases, vanishing for a =1. If
we now take into consideration the multiplicative factor, .

it turns out that to get a reasonable precision in an esti-
mate of a black hole's angular momentum, the hole
would have to rotate very rapidly, or else we would need
a very high signal-to-noise ratio.

By contrast with a, the fractional error b,M/M in the
mass does not decrease so rapidly with increasing rota-
tion of the black hole. However, the multiplicative factor
in (4.10a) is small enough that b,M/M can be small for all
the range of a (including the Schwarzschild case, a =0)
with just a moderate signal-to-noise ratio (p~ l0). There
is a crossover at a =0.8; above the crossover
Aa & AM/M, i.e., a is better determined than M.

We should note the fact that p is not independent of a,
since it is defined in terms of r, (or co, ) and Q, [Eq.
(3.13)]. For fixed signal amplitude h, and detector noise
S&, p increases with increasing a as given by
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o, =+2(1+rt„) .

We see that, as we should have expected, one of these
variables, z+, is very poorly determined relative to the
other, since its standard deviation is nearly equal to 2 for
all a, while the other, z, is very well determined, since
its standard deviation is very small, o., =0.22 indepen-

dent of a. This means that we can expect to have

(4.13)

l5a /b, a 5M/'b, MI &0—.22 . (4.14)

That is, for one speeifie experiment, the ratio of the actu-
al error 5a that we make in our estimate of a to the typi-
cal error Aa does not differ from the ratio of the actual
error in the mass 5M to the typical error hM by more
than 0.22 typically. Thus, the errors in a and M have al-
most the same relative magnitude and the same sign. This
might be of importance in case there is some independent
and more precise determination of either the mass or the
angular momentum but not both. Then we could readily
obtain an almost equally better estimate of the other pa-
rameter with very high certainty.

Finally, we reexpress b,M/M and Aa of Eqs. (4.10) in a
form that depends solely on the signal's amplitude h„ the
detectors' spectral density of noise Sh, and the hole's M
and a. This form is obtained by inserting expression (4.11)
for p(M, a, S&,h, ) into (4.10). The result is

b.M/M=0. 14
h,

S1/2
h

10-"Hz-'"

10Mo
(1 —a) fM(a), (4.15a)

10
—20

Aa =0.37
g 1/2

h

10
—23 H

—j/2

10MQ
(1 a)' 'f,'(a), —(4.15b)

The correlation between the two uncertainties [Eq.
(4.10c)] turns out to be remarkably high: it is essentially
independent of the rotation rate and very close to unity.
This is due to the fact that 5a and 5M/M are a linear
combination of the 5', /ai, and 5r, /r, [Eq. (4.6)], and
since the damping time is much less well determined than
the frequency (5', /co, «5r, /r, ), the uncertainties in the
mass and angular momentum are produced almost entire-
ly by the uncertainty in the damping time. Thus, the er-
rors 5a and 5M/M must be highly correlated. This high
correlation means that if the error is big (or small) in one
of the parameters a or M, it is highly likely that the error
in the other is also big (or small) and of the same sign.

We can quantify this statement a little better by study-
ing the pair of uncorrelated variables

p 5a 5M
(4.12)

ot o ba bM '

which are linear combinations of 5a:—g and 5M/M—:p.
Using the analog of Eq. (4.8), it can be shown that the
correlation of z+ and z vanishes and that their stan-
dard deviations are given by

where fM and f,' are correction functions tabulated in
Table II, and where one should keep in mind that the
waves' frequency co, and damping time ~, are given in
terms of M and a by Eqs. (4.1), (4.3), and (4.4).

V. ISSUES FOR FUTURE RESEARCH

This paper constitutes a first, approximate, study of the
problem of extracting black-hole parameters from broad-
band gravitational-wave data. Several issues not treated
here deserve future study.

This paper's analysis is valid only for rather large
signal-to-noise ratios, p ~ 10. However, most gravita-
tional-wave bursts observed by future Earth-based detec-
tors are likely to have p= 5 [see Eq. (34) of Ref. 8]. Our
analysis could be extended to such bursts (or even smaller
p's) by using a numerical implementation of our optimal
filter algorithm, together with a numerical (Monte Carlo)
simulation of the detector noise. This could also be
achieved by evaluating exactly the uncertainties in the
black hole's mass and angular momentum, instead of us-
ing a linear approximation [Eq. (4.6)], since we found that
it is this step that introduces the largest errors, reducing
the range of validity of the results from p ~ 5 to p ~ 10.
We should also note that the Monte Carlo approach
would be worthwhile in itself, since it would also make it
possible to analyze the effect on the accuracy of the esti-
mates due to arbitrary transient waveforms and other
changes in our initial assumptions.

In this paper attention was restricted to black-hole
events in which only the most slowly damped, l =m =2
mode is excited. While many black-hole events should
satisfy this restriction (see the abstract and Introduction),
others will not. For example, axisymmetric collapse will
excite only m =0 modes and is likely to excite several
such modes significantly. ' It would be useful to extend
this paper's analysis to such multimode situations.

This paper ignored the gravitational-wave transient
that precedes the ringdown waves. It would be useful to
redo the analysis with waveforms that include the tran-
sients. One especially important case would be the gravi-
tational waves from the spiraling orbital motion and the
coalescence of a two-hole binary system to form a single,
larger hole. In this case the full waveform would consist
of a Keplerian, spiraling portion (periodic with increasing
frequency) [Eqs. (42) of Ref. 8], followed by a several-
cycle coalescence wave, followed by the ringdown wave.
Although the precise form of the eoalescenee wave is not
yet known (future supercomputer simulations will tell it
to us), a reasonable guess at it could be made for explora-
tory purposes. It would be interesting to see how much
can be learned about the two initial holes and the final
hole, in the presence of detector noise, from the combina-
tion of the three pieces of the waveform: spiraling, coales-
cence, and ringdown. Such a study would constitute a
marriage and extension of this paper's results and
methods, and those of Smith, ' who has studied the ex-
traction of information from the spiraling portion of the
waveform.
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