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The possibility of quantizing the electric charge in supersymmetric, technicolor, and composite
models is examined by studying some specific examples. By requiring an anomaly-free theory, the

appropriate symmetry-breaking pattern of the gauge group, and mass generation, the electric
charges may be determined.

It has been shown that electric charge quantization in
the observable particle spectrum can be explained in terms
of the standard model (SM). Charge quantization in this
case is imposed by anomaly cancellation, ' the spontaneous
breaking of the gauge symmetry, and mass generation. 2*3

Although the SM has been extremely successful in
describing nature up to energies presently accessible by
experiment, there are many models which aspire to im-
prove on the SM. Will charge quantization continue to be
a consequence for models going beyond the SM~ For the
case of U(l), embedded in a simple or semisimple group,
it is well known that electric charge is quantized. The
U(1),m generator is a linear combination of the original
simple or semisimple group generators which have
discrete eigenvalues and are traceless. For gauge groups
which have a U(1) factor, the quantization of electric
charge is not as easily explained. The quantization of
electric charge in such models has already been discussed
in the context of gauge theories which rely on elementary
Higgs scalars to break the symmetry and generate
masses. 3 The electric charges can be quantized and fixed
by imposing the following conditions: (i) the U(1),
gauge symmetry remains exact, (ii) the gauge and mixed
gauge-gravitational anomalies cancel to ensure the re-
normalizability and the general covariance of the theory,
respectively, and (iii) the masses of fermions are generat-
ed by the Higgs mechanism in the usual way, including
the possibility of Majorana mass terms so that the electric
charge of the Majorana particle is zero. The purpose of
this paper is to extend the analysis of Refs. 2 and 3 to
models in which fermions appear in the symmetry-
breaking sector, and to composite models. Of course mod-
els with simple or semisimple gauge groups will automati-
cally have charge quantization for the usual reasons. So
only models based on gauge groups with U(1) factors will
be considered in this paper.

To set the scene for the rest of the paper, charge quanti-
zation in the SM is reviewed. First, we note a general
feature of the models to be considered. If we assume that
the underlying dynamics of the model are based on the
gauge principle, then the gauge bosons reside in the ad-
joint representation of the gauge group, and hence must
have zero charge of the corresponding U (1) factor.
Now consider the Higgs sector of the SM with the follow-
ing transformation properties under SU(3), SU(2) L
U(1)). .

I ~t/L@tttt +I qt/LCdtt +I,/L&ett +H.c. , (3)

where % iz2@*. This imposes some relations between
the hypercharges: i.e.,

y2 y~+1, y3-y~ —1, andys-y4 —1.
So far the hypercharges are not completely determined.
To proceed further, the constraint of anomaly cancellation
is imposed. There are three nontrivial gauge anomalies
and one mixed gauge-gravitational anomaly in this case:

[SU(3),] U(I)~. y2+y3-2y|,
[SU(2)L] 'U(1) y.. 3y |+y4-0,
[U(1)y] '. 6y|' —3y2 —3y3+2y4 —y5 -0,
Tr[Y]: 6y1 —3yq —3y3+2y4 —y5 0.

Solving Eqs. (4) and (5) results in

3 y2 3, y3 —3, y4 —1, ys —2

(5)

(6)

This corresponds to the usual set of charge assignments
for the SM fermions.

It has been noted that if a right-handed neutrino v~
(with hypercharge y6) is introduced to the SM, the situa-
tion changes dramatically. The analogous set of equa-
tions to those in Eqs. (4) and (5) no longer fixes the
charge, but leaves a free parameter. In this case, if the
right-handed neutrino is required to have a Majorana

If the gauge symmetry SU(3), SU(2)L, U(1)y is bro-
ken to SU(3), IU(1), by the vacuum ( v) of @ via the
Higgs mechanism, then the electric charges of the com-
ponents of @are fixed. The U(1), generator Q is unbro-
ken so it must annihilate the vacuum. %'orking in the
basis

~
v) (0,v) and applying Q to the vacuum results in

Q I3+ g (YjY&). By following convention we choose

Y& 1. Therefore the electric charges of the Higgs bosons
are determined from the symmetry breaking.

There remains the question of quantizing the charges of
the SM fermions. Their transformation properties are
listed as

qL —(3,2)(yi), tttt-(3, 1)(y2), t/tt —(»I)(y3)
(2)

/L —(1,2) (y 4), et' —(1,1 ) (y 5 ) .

The Yukawa couplings which connect left- and right-
handed fermions and give them masses through spontane-
ous symmetry breaking are given by
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(A) y~-o, y2-1, ys- —1, y4 1, ys 0,

1, nz —n) ng,
(ioa)

(B) y~--,', y2--', , ys- —-', , y4- —1, ys —2,
(lob)

1, n2 n I, nG unconstrained;

(C) yi-3, y2 3 y3 3 34 3 35 '4

(ioc)
1, nj n2 nG. —

Case (B) corresponds to the supersymmetric extension of
the SM. If one imposes the requirement that the Higgs
multiplets give each other masses, then n ~ n2 necessarily
and case (B) becomes the only viable solution. If one ar-
ranges for the vacuum to leave the putative electromag-
netic gauge group unbroken, then all three solutions imply
charge quantization. It is just that cases (A) and (C)
yield the wrong charges.

We now examine technicolor theories, in which the ele-
mentary Higgs scalar is replaced by a bound state of fer-
mions. The SM gauge group is extended to'

GycSU(3), @SU(2)L@U(l)y,

where Gyc is the gauge group of the new strong tech-
nicolor (TC) interaction. The usual quarks and leptons

mass, then the SM fermion charges are recovered.
In order to derive the above result, Eq. (4) was crucial.

Since these relations are due to the symmetry-breaking
and mass-generation sector of the theory, one can see that
charge quantization and symmetry breaking are intimate-
ly related. Other than Eq. (4) anomaly cancellation was
the major constraint. It therefore seems reasonable to in-
vestigate cases where the symmetry-breaking sector of the
theory also contributes to the gauge anomalies. There are
two obvious classes of theories where this can occur: su-
persymmetric models and (extended) technicolor theories.
In the first case the Higgs bosons have fermionic partners
which contribute to the anomalies. In (extended) tech-
nicolor models the Higgs sector is replaced by a fermionic
system.

Let us 6rst consider the spectrum of the supersym-
metric standard modeL9 It consists of left- and right-
handed chiral superfields having the quantum numbers of
Eq. (2) together with two types of left-handed Higgs
superfields:

OIL, —(1,2)( —1), &2L, —(1,2)(p) .

(The arbitrary normalization factor has been defined so
that +~L, has hypercharge —1.) Let nG, n~, and n2 be the
number of generations of quarks and leptons, @~L, and
@2L,, respectively. Assuming that the standard superpo-
tential term

W A, (lL(e')L, &&L, +~2$L, (u')L, @2L, +HEAL(d')LAL,

is invariant under U(1)~ leads to the relations

ys-y4 —1, y2 y&+4' ys y&

Imposing gauge and mixed anomaly cancellation then
yields three solutions:

are TC singlets. The new fermions on which G~c acts are
called technifermions. In analogy with QCD, G~c is an
asymptotically free unbroken gauge group and it is as-
sumed to be con6ning, with all physical states being TC
sin glets.

To investigate charge quantization in TC models, we
choose to examine a simple but typical example. For sim-
plicity, we will assume that the technifermions belong to
the fundamental representation of G~c [where for exam-
ple G~c may be SU(N)rc or SO(N)rc]. The technifer-
mions transform as

Qar. —(N, 3,2)(Yi)~ O'L, —(N~1~2)(Y4) i

U,g —(N, 3, 1)(Y2), Eg —(N, 1, l)(Ys),
D,~ —(N, 3, 1)(Ys), Ng —(N, 1,1)(Y6),

(i2)

and the SM fermions transform as

q,L,
—(1,3,2)(yI), lL, —(1,1,2)(y4),

ug/ —(1,3, 1)(yz), e/ —(1,1,1)(ys),
d.~ —(i,3, i )(y,),

(i3)

where a is the color index.
When TC becomes strong, the chiral symmetry of the

techniworld (in the limit of zero SM gauge couplings) is
spontaneously broken at a scale Apc by the condensates

(U, U, ) (D,D, ) 3(EE) 3(NN) Wo. (i4)

To fix the values of the otherwise a prf ori arbitrary hyper-
charges, we proceed as we did for the SM. By assump-
tion, the condensates of Eq. (14) will break the symmetry
of SU(2)LU(1)y to U(l), . To arrive at this, the
quantum numbers of the fermion bilinears which. con-
dense must be adjusted so that they transform as
(1,1,2)(l), the same as the Higgs doublet in the SM. To
see how this can give information about the hypercharges
of the technifermions consider, for example, the conden-
sate

(U.U.&-(U. U.,+U.,U. &. (is)
The 6rst term on the right-hand side of Eq. (15) trans-
forms with Is —,

' under SU(2)L and Y~ —Y2 under
U(1)y. This condensate must be invariant under U(1),
and so

YI —Y2 —1 . (i6a)

Similarly, from (D,D,), (EE), and (NN), one obtains

YI Y3 1, Y4 Y5 1, and Y4 —Y6 1. (i6b)

The condensates are also assumed to generate the quark
and lepton masses due to an effective interaction of the
form

(NFL�&&of-, (fLf~+H.c.),
A

where f and F are the generic SM fermions and technifer-
mions, respectively. For example, to give the u-quark
mass, one can have

Luf 2 QLQn ((U~QUgL)+ ' ' ' ) . (is)
A
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One then has

yi —y2

A similar analysis for the other SM fermions gives

y~ —y3 1 andy4 —y5 1.
By applying the anomaly cancellation conditions we have

[SU(2)L,] U(1)~. 3NY(+NY4+3y~+y4 0,
[SU(3),] 'U(1) r. 2NY& —NY2 —NY3+2y ~

—y2 —y3-0,
[SU(N) TQ] U(1 )r . 6Y) —3Y2 —3Y3+2Y4 —Y5 —Y6 0,
[U(1)~]: 6NY~ —3NY2 —3NY3+2NY4 —NY5 —NY6+6y~ +2y4 —3y2 —3y3 —y5 0,
Tr[Y]: 61VY& —3NY2 —3NY3+2NY4 —NY5 —NY6+6y& —3y2 —3y3+2y4 —y5 0.

(19a)

(19b)

(20)

y&-Y~ —', y2 Y2 3, y3 Y3

y4 Y4 & ys Y5» Y6 0
(21)

(ii) The anomalies due to the technifermions and SM fer-
mions cancel separately. In this case, the hypercharges of
the SM fermion, y;, are axed as in the SM. For the hy-
percharges of the technifermions the situation is the same
as in the SM with the inclusion of a right-handed neutri-
no. Notice that if the TC group Grc [e.g., Grc

SU(N)] has a (Grc) anomaly, then the technifermion
N~ plays an important role in the cancellation of this
anomaly. Ho~ever, if GTc is automatically anomaly free
for all representations [e.g. , Grc SO(N) with Ne6],
then the existence of N~ is unnecessary and Y6 can be set
to zero.

In the above discussion, the eH'ective Lagrangian of Eq.
(17) was assumed to generate the SM fermion masses. It
is obvious that this four-Fermi interaction is not renormal-
izable. In order to have a renormalizable theory, it is as-
sumed that Eq. (17) is due to the exchange of scalar or
vector (V„) particles. Since TC theories already assume
that there are no fundamental scalars the latter option is
taken. This is, in fact, the extended technicolor (ETC)
model. ' In one such model the ETC group is assumed to
be SU(N+1)are. The technifermions and SM fermions
are embedded into the fundamental representation of
SU(N+1)are. At some energy scale Auric, SU(N
+1)pry is spontaneously broken to SU(N)rc with the
technifermions transforming as the fundamental represen-
tation and the SM fermions transforming as singlets of
SU(N)rc. In this case, it is essential to have the right-
handed-neutrino v~ with hypercharge y6, so that the
[SU(N+1)pre] anomaly vanishes. In this model the
vector bosons V„correspond to the broken generators of
SU(N+ 1)pre and induce an effective four-Fermi interac-

Combining Eqs. (16), (19), and (20), we are able to fix

y4 —$ and y5 —2, but not the other hypercharges.
There are two special cases where the hypercharges are
completely determined. (i) If Y; y;, then by solving the
above equations we obtain the standard hypercharges for
the technifermions and the SM fermions,

tion between the f and F, such that

&es'
2 (fr. y"FL,F~yJ'g+H. c.) .

+ETC
(22)

After the formation of the technifermion condensates and
a Fierz rearrangement, one obtains Eq. (17) with A
changed to AFrc. Notice that because f and F are embed-
ded in the same representation of SU(N+1)pre, one then
naturally has Y; y;. Carrying out the same analysis as
for the TC model, the hypercharges satisfy the same equa-
tions as those in the SM with a right-handed neutrino.
Therefore the electric charges are not completely deter-
mined.

There are several ways in which the hypercharges may
be completely fixed. One possibility is that the ETC
group should be automatically anomaly-free for all
representations. For example, if the ETC group is
SO(N+1)urc (N+la6), then it is unnecessary for v~
and N~ to appear in the theory. In this case, Y6 does not
appear in the theory, and hence the standard hypercharge
assignments are recovered. It may also be possible, due to
some mechanism, that v~ and N~ develop Majorana
masses. This gives Y6 0 which in turn 6xes all the other
hypercharges, and hence the electric charges, to their
standard values.

Of course, extended technicolor theories in the past
have encountered phenomenological problems with
fiavor-changing neutral currents" (FCNC's). The above
examples of ETC models are therefore only indicative of
the basic structure of a hypothetical realistic model. (One
should note that recently progress has been made on the
FCNC problem. ' ) However, we feel that this structure,
though motivated by unrealistic models, should have more
general relevance.

We now move on to consider another interesting facet
of electromagnetic interactions. Hitherto we have studied
models where SU(2)L SU(1)y is gauged and the photon
is a linear combination of the neutral SU(2)L and U(1)~
gauge bosons. This embroiled us in the issue of elec-
troweak symmetry breaking. The other possibility, which
seems viable only in composite models, is that the photon,
although an elementary particle, is not the result of elec-
troweak symmetry breaking. In these models the 8'—
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and Z bosons are composite and U(1),m rather than
SU(2)L U(1) r. is gauged. This situation is distinct from
that considered in the paper so far, and for completeness
should be analyzed.

In order to say something definite about charge quanti-
zation one should have in mind a reasonably well-defined
and phenomenologically successful model of composite
electroweak bosons. A major example of such a model is
that due to Abbott and Farhi. ' We will consider gauge
anomaly cancellation at the fundamental (preonic) level
and show that charge quantization results.

The gauge symmetry of the Abbott and Farhi model is
SU(3),SU(2)L U(1) y, in which the SU(2)L coupling
constant becomes large and confining at a mass scale of
the order of the known weak-interaction scale. Therefore
all physical states must be SU(2)I singlets. In this model
weak isospin SU(2) is not the SU(2)L, local symmetry, but
rather a certain global symmetry. The particle spectrum
of the model is given as follows. The preons transforming
under SU(3), SU(2)L U( I )3. are

QaL —(3,2)(Y)), +L —(1,2)(Y4),

uaR —(3,1)(Y2), eR —(1,1)(Y6),

d,R —(3, 1)(Y3)~ vR (1,1)(Y6),

y-(1,2) (Y,),

(23)

daR (3» I ) (Y3)i VR (1srl ) (Y6) ~s

Notice that the right-handed fermions remain elementary
at the composite level.

For three generations of SM fermions, the model has a
global SU(12) SU(2) symmetry for the preons when the
color and electromagnetic interactions are turned oK The
't Hooft anomaly-matching conditions, ' necessary for the
generation of light composite fermions, are satisfied by the
bound-state spectrum in Eq. (24). These conditions play
no role in charge quantization.

The cancellation of the gauge and mixed gauge-
gravitational anomalies yield the same equations as in the

and the composites which represent the known quarks and
leptons are

uaL QaLQ —(3,1)(Y(+Y4), VL spLQ —(1,1)(Y4+Y~),

daL QaLQ —(3, 1)(Y(—Y4), eL +Lp —(1,1)(Y4—Y4),
(24)

u R —(3,1)(Y2), eR —(1,1)(Y5),

SM with a right-handed neutrino. Anomaly cancellation
is not sufficient to fix the hypercharges of the model.
However, the model allows fermion mass terms which are
similar to the Yukawa terms of the SM:

Y~, Y2 arbitrary, Y4 —3Y~,

Y) 2Y) —Y2, Y5 —2Y) —Y2,

Yp Y2 —Y), Y6 —4Y)+ Y2.

(26)

We have included the right-handed neutrino VR in this
model. Imposing a Majorana mass term for v~ gives
Y2 4Y~ and Y6 0. We also get the same result if v~ is
excluded from the model.

Note in this model U(l)3. is identified as U(1), . No
electroweak mixing is involved at the preonic level. ' The
electric charges are determined up to an overall normali-
zation factor which is of no physical consequence. There-
fore charge quantization is obtained from Eq. (26) provid-
ed either v~ is omitted, or is given a Majorana mass. The
mathematics is actually the same as for the SM, but the
interpretation of the result is different, due to the fact that
SU(2)LU(1)3. play quite different roles in the two
theories.

To summarize, we have examined charge quantization
in supersymmetric, technicolor, and composite models by
studying some simple examples. In the supersymmetric
SM we discovered three solutions, all of which feature
charge quantization. If one requires the Higgs superfields
to pair up in mass terms then the phenomenologically
realistic solution is the only viable one. By requiring an
anomaly-free theory, the appropriate symmetry-breaking
pattern, and mass generation, the charges in the tech-
nicolor models were determined. In the Abbott-Farhi
model, where the photon does not result from SU(2)L
SU(l )3.-symmetry breaking, we also found anomaly can-
cellation and mass generation imply charge quantization,
provided v~ is either omitted or given a Majorana mass.
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+mass ~u'uaR(QaL~ )+~ddaR(QaL~ )

+);eR (lLsrs) +X„vR (ILp) +H.c. .

The constraints imposed by the mass terms and the gauge
anomaly equations give
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