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Profile function of the chiral quantum baryon
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We investigate the Skyrme soliton in a simple chiral model of pions without the Skyrme term
which is stabilized by quantum fluctuations. It is proved that the profile function F(r) with the usu-
al boundary conditions [F(0)=nm and F( &e ) =0] in the hedgehog ansatz does not exist. It is also
shown that the solution with the asymptotic form r has a singularity at the origin.

where f = 132 MeV is the pion decay constant and U is
a 2X2 unitary unimodular matrix describing the pion
fields. The classical equation of motion derived from the
Lagrangian (1) can be solved by the hedgehog ansatz:

Uo =exp[i'. rF(r)], (2)

where rk represent the usual Pauli matrices for SU(2) and
r=—r/r (r = ~r~). The profile function F(r) must satisfy
the equation

d F+2 dF 1 . (2F)
dp2 p dp

(3)

It should be noted that this equation has scale invariance.
If F(r) is a solution of (3) with boundary conditions

In a recent paper, ' Jain, Schechter, and Sorkin have
pointed out that a putative Skyrme soliton in a simple
chiral model of pions without the Skyrme term can be
stabilized against collapse by quantum fluctuations. Mig-
naco and Wulck have also shown the same fact in a
more detailed treatment of the profile function F(r)
which appears in the Skyrme ansatz.

They start with the nonlinear o.-model Lagrangian

F(r)=nn+c, r+c2r +
Substituting this equation into (3) we obtain the solution

C3, ]5 C l y C5 35 C ] 7 ~ ~ ~

C2 =C4 =C6 = ' ' =0,
(7a)

(7b)

This conjecture apparently means that the solution with
both boundary conditions (4) and (5) does not exist except
for the trivial solution F(r)=0. An example with n= 1

and c
&

= —1 is shown by the solid line in Fig. 1.
Now let us consider the same problem analytically. If

we introduce a new variable y:—1/r, Eq. (3) can be
transformed into

d F 1
sin(2F) .

where c, is not determined and becomes an arbitrary
constant (scale invariance). We have carried out numeri-
cal calculations of F(r) with the initial conditions (7).
The asymptotic behavior of F (r) seems to be

nm+m/2 (ci )0),
F(r +00)= —nm (c, =0),

num/2 (.c—, (. 0) .

F(0)=n m, .

F(r)~0 (r~ co ),
(4)

then F(cr) (c is an arbitrary constant) is also another
solution of (3) with the same boundary conditions. This
fact led to collapse of the classical soliton F (r) by
Derrick's theorem and the necessity of the introduction
of the Skyrme term. However it was the main conclusion
of the above-mentioned authors that if we quantize the
scale parameter c (t) as a collective variable, the Skyrme
soliton without the Skyrme term can be stabilized against
the collapse by virtue of the collective kinetic energy.

The purpose of this paper is to investigate the solutions
of (3) in detail and in particular to prove that the solution
with the boundary conditions (4) and (5) does not exist
mathematically.

In order to do this we assume only the boundary condi-
tion (4) at the origin. Let us expand F (r) around r=0:

0
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FIG. 1. The numerical solution of (3) with the boundary con-
dition (4): n= 1 and c

&

= —1.
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+ (m =odd), (lob)

where m is an even [odd] integer in (a) [(b)] and c is an ar-
bitrary constant. The ct in (10b) is a constant to be deter-
mined adequately. Usually the solution (a) is preferred
but the other solution (b) cannot be excluded mathemati-
cally.

Which does the solution with the boundary condition
(4) approach —(a) or (b)? Multiplying (9) by y F'(y) and
integrating with respect to y from y to ~, we get

oo 1
QO

cos(2F)
(1 1)

2

2

f "yF'dy = y F'
2

[F'(y)= dF/dy]—. Since our solution has the asymptotic
form (6), Eq. (11) is reduced to

y F' (y)+ f 2yF' dy =1—cos[2F(y)], (12)

where use is made of (4). Noting that the quantity of the
left-hand side is always positive, the value of F (y) is lim-
ited to the interval

n~ vr &F(y—) &nor+~ . (13)

We obtain two kinds of solutions of Eq. (9) around y=O
[it is called a regular singular point if sin(2F) =2F] as

m~(a) F(y)= +cy + . (m =even),
2

m~ — &7
(b) F(y)= +&cy cos ln(cy)+a

2 2

,z 2sin F(y) r2sin F
y

+
~ y

with the use of (10a). Thus we obtain

(15)

F'(y) =const (16)

in the asymptotic region y~ ~ which means F ~1/r
(r~0) Thi. s solution has a singularity at the origin and
cannot satisfy the usual boundary condition (4).

In conclusion, we have proved that the profile function
of (3) with the usual boundary conditions (4) and (5) does
not exist in the simple chiral model without the Skyrme
term. It has been also shown that the solution with the
usual asymptotic form (10a) has a singularity at the ori-
gin. This singularity may suggest the necessity of the de-
gree of freedom of quarks at the origin such as the chiral
bag model. It will be interesting to investigate whether
the chiral bag without the Skyrme term can be stabilized
by quantum fluctuations.

with the help of (10). Since the quantity of the left-hand
side is positive, we must take m=odd. This and Eq. (7)
mean that the solution with the boundary condition (4) ap
proaches (10b) with m =2n+1 and cannot satisfy the
asymptotic condition (5). This fact is nothing but the con-
jecture (8) obtained by numerical calculations.

What behavior will the other solution (10a) have in the
asymptotic region y —+ ao (r ~0)? In order to see that, let
us multiply (9) by F'(y) and integrate from 0 to y. The
result is

Moreover taking the limit y ~0, (12) is reduced to

f 2yF' dy =1—( —1)
0

(14)
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