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We present a general parametrization of the semileptonic decays of the baryons obtained, as for
the magnetic moments, performing a unitary transformation that connects the exact states to the
model states. We show that again the nonrelativistic-quark-model (NRQM) description amounts to
selecting certain terms among those of the general parametrization; in the no-flavor-breaking ap-
proximation the parametrization contains two parameters (¢ and b) linearly related to the
Cabibbo’s D, F and associated, in the NRQM language, to the one-quark and two-quark terms. The
NRQM amounts to keeping the largest (one-quark) term with a coefficient a (=0.75); b is 3—-10 % of
a. Finally, we clarify the variety of possible terms that appear on going beyond the flavor-

symmetric approximation.

INTRODUCTION

In a previous paper' we have introduced a unitary
transformation connecting the exact states of a hadron to
its model states. We have shown that, using this trans-
formation, the baryon magnetic moments or the masses
calculated with a relativistic field theory (e.g., QCD) can
be parametrized as a sum of many terms with different
spin-flavor structures, each multiplied by some
coefficient. We have also shown that the nonrelativistic
quark model> (NRQM) can be interpreted as providing a
selection of certain terms in the above complete parame-
trization and that for the baryon masses and magnetic
moments the terms considered in the NRQM are the
dominant ones.

Here we apply the method of Ref. 1 to the semileptonic
matrix elements of the baryons and compare the general
parametrization with the NRQM calculation. We will
see that (1) in the approximation of no flavor breaking the
general parametrization is of course equivalent to the Ca-
bibbo parametrization; it contains only two parameters
(equivalent to D and F); (2) in the NRQM treatment the
smaller of these two parameters is absent, leading to
D/F=3/2; (3) as to the terms breaking flavor, their
number, already at the first order, is too large to make
the parametrization useful; and (4) a by-product of the
treatment is to clarify (once more) why the frequent state-
ment that the NRQM produces a value 3 of g , /g for
the nucleon is wrong.

The weak current containing the quark fields is, of
course,

j: (x)=cosO J(x)r+y”( 1+y5)P(x)
+sinf YAy, (1+7y5)%(x) , n

where 6 is the Cabibbo angle and 7% =A,+ilA, and
AT =A,+i)s (the A,;’s are the Gell-Mann matrices; Ag, to
be used later, is simply Diag[1,1, —2] without the 1/ V73
in front). In (1) the quark fields
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are defined (see Ref. 1) as the renormalized fields; but the
values of the quark renormalized masses will not inter-
vene except for establishing the flavor-breaking parame-
ter Am /m;.

We now parametrize the matrix elements of
f Jj ,f (x,0)exp(iAP-x)d*x in the limit in which the four-
momentum transfer AP, =0 and, in particular, the initial
and final baryons A4 and B are both at rest; the parame-
trization of the semileptonic matrix elements to be given
below (starting from an underlying relativistic field
theory) will be general and relativistic, although nonco-
variant, exactly as that! of the magnetic moments.

In obvious notation the only nonvanishing matrix ele-
ments (with AP, =0) are

(1) ps=0= <BT l fJ(X,O)T“Lyu/J(x,O)d:’x ‘a T)

=(Bt|TT|41), )
(1)AS=,=<BT [fwx,omwm(x,o)d&j/tf)
=(BtILT|A41), (3)

and
(UZ>AS=0=<BT ‘f$<x,0)r+y4az¢<x,0)d3x|AT> , @

<az>As=1=<BT’lsz(x,owna,zp(x,om&‘AT) )

We now express the exact states |4 ) and |B) (each of
which can be thought as a superposition of an infinite
number of Fock states with quarks, antiquarks, and
gluons) as

[4)=VI$ ), |BY=Vldp), (6)

where V is the unitary operator transforming the three
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quark-model states |¢,),|¢p) into the exact states
| 4),|B); both the model states and the operator V are
defined as in (Ref. 1); recall that ¢ 4, and ¢ are the usual
L =0 wave functions of the octet baryons [Eq. (10) of
Ref. 1]. Inserting (6) in (2) and (3) we have, for the Fermi
matrix elements,

(1>As=0:<¢BT‘VTT+V|¢AT>

=(¢st

where the last equality is due to the fact that ¥ commutes
J

3
2

i=1

ol ¢AT> ) (7
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with T% (because of isospin conservation) and V*V‘—‘l;
for {1),5—; we have

<1>AS=,=<¢BT|V*L+VI¢AT>

where the last passage is due to the Ademollo-Gatto
theorem® (Fermi matrix elements receive only second-
order corrections by flavor breaking due to the fact that
L is a generator of flavor symmetry).

We turn to the parametrization of the Gamow-Teller
(o, ) matrix elements; from (4)—(6) we have

[ >+O( Am /my)?) , (8)

i=1

(Uz )ASZOZ<¢BT ‘VTIJ(XaO)T+Y4Uz¢(X’O)d3X V‘¢A T>E<¢BT|FZ+I¢A T) s 9)

(. as=1=(0a 1 V' [ Fx, 00" yio, b(x 00 *x V[041) = (051101641 . (10

We now summarize the main points of the procedure.

(a) After normal ordering and contraction of all the
quark and gluon creation and destruction operators, I't
and Q7 defined in (9) and (10) are three-body operators,
to be constructed in terms of the space-spin-flavor coor-
dintaes of the three quarks that appear in the wave func-
tions ¢ 4 and ¢p.

(b) Because of the choice of the model states ¢ , and ¢
(wave functions factorizable into a space-color antisym-
metric factor times a symmetric spin-flavor factor) the
most general structure of the axial-vector operators I'"
and Q7, after integration on the space-color coordinates,
is very simple, as shown in detail' for the analogous case
of the magnetic moments.

We assume, as in Ref. 1, that the underlying field
theory breaks flavor symmetry only via the mass
difference between the quarks A and W, ? so that the only
flavor dependence is proportional to the projection opera-
tor P* on the A quark: P*=(1—24)/3.

To construct all the I'"’s and Qs in (9) and (10) we
must write the most general expression of a three-quark
axial vector, linear in the 7;"’s [Eq. (9)] or in the A;"’s [Eq.

(10)], containing a product of P}s, up to a maximum of
three. Here we start with the case of no flavor breaking,
where no P* appears in r" or Q+ Later we consider
first-order flavor breaking (one P).

THE FLAVOR-SYMMETRICAL CASE

In this case the only axial vectors, linear in 7% or A},
that can be used to construct I'" or Q% are

3 3 3
r+: ET?GU 2 Ti+a-k7 E ( ,~+—T;L)(a,~><ok),
i=1 k=1 k=1
i#k i#k
3 3 3 (11
Qt: S Ao, S Ao, S A=A Xoy) .
i=1 k=1 k=1

i*k ik (12)

In principle I't can be a linear combination of the three
operators (11) and Q% a linear combination of the three
operators (12). Note that each operator in (11) and (12) is
symmetrical in the three quarks, as it must be because ¢ 4
and ¢y are symmetrical in the spin-flavor variables. This
is the reason why in (11) and (12) we have not included

2 T; o, Xoy)
iLk,j=1
o

or

3
S Af(o;Xoy) .
ikj=1
kA
We will now show that the terms in (11) and (12) con-
taining (o; X o) have vanishing matrix elements. In
fact, with 2J=o0+0,+ 03, it is

3 3 3

S (rif =i No Xo )= o, x@QN—-2N 7o,
ik=1 i=1 i=1

i+k

(13)

and it is straightforward to check that the matrix element
of the right-hand side of (13) between the two J = 1 states
¢ 4 and ¢y vanishes for any 4,B. A similar conclusion
holds, of course, for

3
Lk=1
i#k
Thus in the flavor-symmetric case the most general T' "
and Q7 are

3 3
r'=a3 rfo,+6 3 ro,, (14)
i=1 Lk=1
i*k
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3 3 = = 3 /3 —_ = 5 /3
Q+=a2 }\«,+0',+b 2 )\-,+0'k , (15) (1)2~A 0, <02>27A ‘/2/3((1 b) ‘/2/3D (20)
i=1 i’,-k;:kl and thus
where a and b are two parameters. Note the following: a=iD+F, b=F—2D (21a)
The coefficients a and b in (14) and (15) must be the same-
because in the flavor-symmetrical approximation the  ©f
operator V appearing in the (middle) expressions (9) and D=a—b, F=2a+1b . 21b)

(10) is the same and is flavor independent; no matter how
complicated, ¥V acts in the same way on
P%(x,0)7"y,0¢(x,0) and on ¥(x,0)A " y,0¥(x,0).

The above can be thus summarized by the statement
that in the flavor-symmetric approximation the most gen-
eral expressions of (1) and {o,) are

3
>
i=1

3
3 A

i=1

( 1>As=0:<¢BT

¢AT>,

(1>As=1:<¢BT ¢AT> > (16)

3 3
<Uz >AS=()=<¢BT 02 ’ri+0'zi+b E Ti+0'zk ¢AT>
i=1 t,il;:kl
3 3 .
z(%r @=8)S 1o+ 7 (2J,) ¢AT>,
i=1 i=1
(17
3 3
<02)As:1=<¢BT ay, )"i+0-zi+b 7“i+0zk é 4 T>
i=1 z,l};&l]“cl
3 3
E<¢BT (@a=b)3 Ao, +b3 A (2J,) |4, T>-
i=1 i=1
(18)

Note that (2J,) in the second form of (17) and (18) can be
replaced by 1 (since the functions ¢ 4,1 and ¢z 1T have
J,=1); we have left it as (2J,) only to make clear the pas-
sage from the first to the second form.

It should be stressed that in spite of the noncovariant
appearance of (16)—(18), they are fully relativistic (they
have been derived from a relativistic field theory in the
limit AP, =0) and general (in the flavor-symmetric ap-
proximation) because, as shown, no other term can be
present.

It is now straightfoward to relate the parameters a and
b to D and F of the Cabibbo parametrization. It is
sufficient to consider two independent matrix elements
and express them in terms of a,b or D,F. For the N—P
matrix elements it is

(1 >Np =1,
(19)
(0,)yp=3%(a—b)+b=3a—2b=D+F .

For =~ — A we have

The physical meaning of a and b is very direct: a is the
coefficient of an expression additive in the quarks,
whereas b is the coefficient of an expression containing at
the same time the variables of two quarks. As already
stated in connection with the magnetic moments, the
NRQM, in its simplest form, amounts to selecting,
among all the possible terms, only those additive in the
coordinates of the individual quarks; here this implies to
put b =0 in (17) and (18); indeed, b =0 corresponds to
the well-known NRQM result D/F=3/2. Note also
that the NRQM approximation (b=0) implies
(8 4/8y)np=73a; the frequent assertion that the NRQM
predicts (g 4/8y)yp =73 is incorrect; as remarked long
ago* 2 is a result of abstract SU(6), not of the NRQM.

The value of D /F depends to some extent on how the
experimental data are analyzed, in particular on whether
the Cabibbo angle is fixed by the same hyperon semilep-
tonic decays’ or is determined differently (e.g., as in Ref.
6, from the 0" —0" B transitions). In the first case’
(sinf-=0.231£0.003) one gets D =0.756%0.011,
F=0.477%£0.012 and D /F=1.58+0.04; one has a fit to
the hyperon decays that does not show appreciable SU(3)
violations; in the second case® (with sinf,=0.225
+0.002) the overall fit requires D /F =1.7410.04 and an
appreciable amount of flavor breaking is needed to have a
reasonably good fit to all the data. We shall discuss
below the question of the flavor breaking; here we note
only the values of the ratio b/a corresponding to the
values of D/F stated above. It is b/a=[1
—(2D /3F)]/[1+(D /3F)] and therefore for D /F =1.58
one has b/a=—0.034, whereas for D/F=1.74 it is
b/a=—0.10. In both cases b is much smaller than a,
from ~3% to =10%. Thus the “two-quark term” (that
with coefficient b) in (17) and (18) is depressed with
respect to the “additive” one-quark term (with coefficient
a) as it happens for the magnetic moments.! This is
another confirmation, additional to those in Ref. 1, that
the additive terms prevail over the two-quark ones.

FIRST-ORDER FLAVOR BREAKING

We now extend the above treatment [Egs. (16)-(18)] to
take into account flavor breaking to first order. Nothing
changes, to first order, for the vector current ({1) matrix
elements). On the other hand, for the axial-vector
current ({0, ) matrix elements) a variety of new possible
terms appear. We list them, noting that for first-order
flavor breaking only one P* operator can appear.

AS =0: in addition to 3; 7;70';, S x; 71 0k, the matrix
elements of the following operators appear in the parame-
trization of {0, ) x5 to first order:
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(1) 3 7ifa,PY, (2) 3 7o, P},
i i*k
(22)
(3) 3 7o P}.
iEkAj
AS=1: In addition to 3;A; 0,3~ Ao, the ma-
trix elements of the following operators appear:

(1) Afa Pl (2) 3 AtoPl,

i*k
(3) 3 AtoPY, ()3 Afo,P), (23)
i*k i*k
ik

plus terms containing (o ; X oy ).

Clearly the number of parameters, if we take into ac-
count all the above terms (without knowing their
coefficients from, say, QCD), is too large to make a gen-
eral parametrization with first-order flavor breaking of
interest; the no-flavor-breaking approximation is the only
case where a parametrization exists with few enough pa-
rameters to have predictive power (Cabibbo parametriza-
tion). .One might try to reduce the number of flavor-
breaking terms by assuming that the contributions of the
“additive” terms among (22) and (23) are more important
than the remaining ones, and neglecting the two-quark
terms; then only the term 3, A;fo;P} in the AS =1 ma-
trix element would remain and just one more parameter
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would intervene: namely, that (call it Aa) multiplying
S Ao P}= 3,0 0,. In this case (16) and (17) do not
change, whereas (18) changes into

<0z)As=1
. 3 3
=(¢Br (@+Aa)3 Ao, +b 3 Aoy «m},
i=1 ’Yl'k?&=kl
24)

where we expect Aa to be of the order ~a(Am /m,).
However, if the flavor-breaking effect that fits the data
amounts, as suggested in Ref. 6, to a difference between a
value of (D /F)pg—o (=~1.34) and (D /F),g—; (=1.82),
then the introduction of Aa along cannot produce such a
difference. The reason is that if b =0, the value of D /F is
always 3, independently of the value of a; now b is not
zero, but is very small as seen above; thus a comparative-
ly small change in a (by Aa) cannot produce the nécessary
change in D/F. Then the flavor breaking must be due
also to a difference in b between the AS=0 and AS=1
transitions and possibly also to the presence (with
coefficients some percent of a) of many other terms listed
in (23). At this stage we do agree with Ref. 5 that the
possibilities are too many to make a more detailed discus-
sion fruitful, although we agree with Ref. 6 that the data
seem to indicate effects of flavor breaking (and that there
is no reason why such effects should be absent or totally
negligible in this case).

1G. Morpurgo, this issue, Phys. Rev. D 40, 2997 (1989).

2G. Morpurgo, Physics (N.Y.) 2, 95 (1965) [also reproduced in J.
J. Kokkedee, The Quark Model (Benjamin, New York, 1969),
p. 132].

3M. Ademollo and R. Gatto, Phys. Lett. 13, 264 (1964).

4Among the many references where I stressed this point, com-
pare G. Morpurgo, in Theory and Phenomenology in Particle
Physics, proceedings of the International School of Physics
“Ettore Majorana,” Erice, Italy, 1968, edited by A. Zichichi
(Academic, New York, 1969), pp. 83-217, in particular, p.

126.

5J. M. Gaillard and G. Sauvage, Annu. Rev. Nucl. Particle Sci.
34, 351 (1984).

6J. F. Donoghue and B. R. Holstein, Phys. Rev. D 25, 2015
(1982) [we have preferred to give the values of D /F rather
than of ap =D /(D +F) as done in the paper by Donoghue
and Holstein]. Compare also A. Garcia and P. Kielanowsky,
Phys. Lett. 110B, 498 (1982). The numbers quoted in the text
are from the first of these references, but the analysis in the
second reference (particularly the fit B) is similar.



