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A simple renormalization framework for constrained SU(2)1 XU(1) & X U(1) theories is presented.
If the relation tan P=(mar/cos 8~ —mz )/(mz —mtr/cos Oir) is regarded as exact (the m's are

1 2

the physical masses and P is the mixing angle of the neutral vector bosons), it is found that the
definition of sin 0~ must be carefully chosen to ensure consistency and avoid the emergence of radi-
ative corrections of 0 let/P), i.e., nonanalytic terms in the neighborhood of /=0. The formulation
developed in this paper prevents the occurrence of such potentially catastrophic terms and leads to
a definition of sin 0~ in terms of 6„, a, and m~ which is very close to the corresponding
SU{2)L X U(1)~ expression. A strategy to incorporate approximately the O(o'. ) terms in the neutral
currents of these theories is outlined. The discussion identifies in a simple way the mathematical
origin of the potential nonanalytic terms and emphasizes the role that the m, dependence of the ra-
diative corrections may have in the future in determining the tenability of these theories.

I. INTRODUCTION

p —1=sin P

2mz
2

2mz
1

(2)

where P is the mixing angle relating the mass eigenstates

During the last several years electroweak models based
on SU(2)t XU(1)&XU(1) have received considerable at-
tention. ' Indeed, such models often arise as the low-
energy limit of interesting grand unified theories (GUT's)
and superstring theories. It is understood that the
presently known or postulated matter fields, that is,
gluons and quarks and leptons of the three generations,
have the same transformation properties under SU(2)L
X U(1) i, as in the standard model (SM). There may exist,
of course, additional exotic underlying fields. The assign-
ment of the U(1) quantum number is left free initially.
We will see later on that in the cases of interest an ortho-
gonality constraint between the U(1) and U(1) r quantum
numbers exists, which can be traced to the fact that such
models are descendants of gauge theories associated with
simple Lie groups.

In this paper we discuss the renormalization and some
relevant radiative corrections for a class of these models,
characterized by the fact that the Higgs bosons transform
as doublets or singlets of SU(2)1. They are referred to as
constrained models. As is well known, because of the
mixing between the neutral bosons, the lighter mass mz

1

is somewhat smaller than the value attained by mz in the
SM and, as a consequence, p=rrtii, /mz cos Hii, ) 1. At

1

the tree level there is however an important relation:

m gr/cos l9ii Viz
2 2 2

tan (5=
mz m w/cos Ow

2

or, equivalently,

Z
&

and Z2 to the Z and C vector bosons associated with
SU(2)L XU(1)r and U(1), respectively. The gauge sector
of the constrained models is characterized, in general, by
six parameters that can be identified with e, mw, mz,
mz, sin Hid, , and the U(1) gauge coupling g; P is then a2'

dependent parameter specified by Eq. (1). In the cases of
interest renormalization-group arguments relate the
value of g and the SU(2)t coupling g=e/sin9ti so that
effectively the gauge sector is described by the first five
parameters.

When radiative corrections are considered, two possi-
ble strategies come to mind: (i) keep Eq. (1) as an exact
relation between renormalized parameters or (ii) allow for
the possibility that Eq. (1) is corrected by finite terms of
O(a). Clearly the distinction between (i) and (ii) would
reAect difTerent ways of choosing the renormalization
conditions. In this paper we adopt strategy (i). In our
view this has obvious advantages: the dependence of P
on the other parameters is particularly simple and trans-
parent; recent analyses which incorporate the effect of
the radiative corrections employ Eq. (1) as an exact equa-
tion; finally, as shown in Sec. II, Eq. (1) follows from the
natural requirement that t() be the angle that diagonalizes
the renormalized mass matrix.

It is also clearly advantageous to identify mw, mz,
1

mz in (1) with the physical masses. As present experi-
2

ments are compatible with /=0, we should allow a null
value in the range of variability of P. On the other hand,
in some interesting models the experimentally allowed
values of mz are as low as =110 GeV. This places an

important constraint: in order for (1) to hold for finite
mz and arbitrarily small P, cos gii, must be defined in

2

such a way that

lim cos Ow=mw/mz
$~0 1

that is, as $~0, cos Oii, must approach the SM definition
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in term of mw and mz . We will see in the course of our
1

analysis that if (3) is not satisfied, the response of the radi-
ative corrections is catastrophic: terms of O(a/P) arise
so that one loses the validity of the perturbation expan-
sion in the neighborhood of /=0. The mathematical ori-
gin of such potential nonanalytic terms is explained in
Sec. V. Notice that Eq. (3) is a consequence of (a) our in-
sistence that (1) be an exact relation valid in the presence
of radiative corrections and (b) our identification of mii,
and mz with the physical masses. If (a) and (b) hold we

1

cannot define for instance cos 49w by minimal subtrac-
tion, because (3) would not be true to O(a) and, as a
consequence, (1) would not be satisfied as $~0 for finite
mz . On the other hand, one could define consistently

2

the three parameters mw, mz, and cos Ow by minimal
1

subtraction. A. mixed convention, in which mw, mz are
1

identified with the physical masses and cos Ow is defined
by minimal subtraction can be only employed if we relax
(a) so that (1) is corrected by terms of O(a). In this paper
we accept premises (a) and (b). In the next sections we
show how cos Ow can be defined in ways compatible with
(3). As we will see the analysis leads to interesting gen-
eralizations of the SM definition of cos ew and the basic
radiative correction hr. Our discussion follows a pattern
parallel to that developed for the SM in Ref. 4. In partic-
ular, the emphasis is focused on developing a renormal-
ization scheme at the S-matrix level, so that radiative
corrections for physical processes can be evaluated in an
eftective and relatively simple manner.

2

rv'=m' W'W~+ — -Z Z~1 mw
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where the ellipses stand for terms of second and higher
order in the counterterms.

The first four terms in (7) represent the renormalized
mass matrix. The contribution of the neutral vector bo-
sons to this matrix can be expressed as

2
mw

mzc
C

& (ZP CP)
mzc mc2

Z. t

2 2 2 2 2 2mow=mw —6mw~ moc=mc —6mc,
2 = 2 2 2= 2 2mozc =mzc 6mzc, co =c —6c

where m w m c mzc and c —=cos 8 w are regarded as re-2 2 2 2—:
normalized parameters. In this way we obtain

II. MASS MATRIX OF THK VECTOR MKSQNS

In this section we discuss the mass terms of the vector
bosons and generate the corresponding counterterms. In
the theories under consideration, after spontaneous sym-
metry breaking the mass terms for the vector mesons are
of the form

&vMB=mo'w~t ~"+ ,'m~ozZ„Z" —+,'mo'cC, C&—

+ ozcZ„C" (4)

where mow, moz, moc, and m ozc are known combina-2 2 2 2

tions of coupling constants and vacuum expectation
values. All fields and coupling constants in (4) are un-
renormalized. In particular, we have

Z„=co8'„—soB„, A„=so 8'„+coB„, (5)

where 8'„and B„are neutral gauge fields associated with
SU(2)l and U(1)r, respectively; A„and Z„are then
identified with the photon and the neutral SU(2)L vector-
boson fields, respectively. Iil (5) co—:cosooiir so—:sinOoii,
with tanOoii, —:go/go, go and go being the SU(2)I and
U(1) r coupling constants.

In constrained models, we have the further relation
2

2 mow
moz (6)

co

The first two terms in (4) are then as in the SM.
In order to generate counterterms we write

where y=cosP, o =sing. Z~i and Zi2 stand for the mass
eigenfields. The mixing angle P and the eigenvalues are
given by

tan(2$) = 2mzc2

2mw
m

C2

2m Z1

2 2mw mw
+mc mc +4mzc

C c

(10)

with the sign of the square root reversed for 2mz . As in
2

all cases of interest, mc & mw/c, we see that the sign of
P is opposite to that of mzc. One can also eliminate mzc
and mc and obtain Eq. (1).

In terms of the mass eigenfields (7}becomes

mw8 8' + mz Zi Z)+ mz Z2 Z2

—6mw8'„8'"' —
—,'6mz Z(„Z",' ——,'6mz Z2„Z2

—6mz z Zi„Zz2

where

In (7) and (8), mii. and mc are positive but mzc, although
real, can have either sign depending on the model. The
Hermitian matrix can be diagonalized by means of an or-
thogonal transformation of angle P:

Z"=yZ~i —o.ZI2, C"=o.Z~) +yZ~2,
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6 z =y'6mz+~'6m, '+2~6m', ,

6mz =~'6mz+~'6m, ' —2~6mz, ,

5mz, z, = —yo 5mz+yo'5mc+(y o. )5mzc

f(o )-o as o —+0 .

Inserting (19) into (18) and recalling (17) we find

5mz z = [ReAz z (mz ) ReAz z (mz )]
1 2 2 2 2 1 1 1

(20)

mph' 6m~2
'

2

c m~
6c
c 2 (13)

2
tww m~

tz—z + f(o)+tz zc ' ' 2ogc 1 2

Eliminating 6mzg and 6m' we have the alternative ex-
pression

6mz z = 6mz + 6mz 6mz2 X 2 2 1 2
2o- 1 2g 2 2+o.

(14)

In order to identify m~, mz, and mz with the physi-
1 2

cal masses we set

5mw=ReAww(mw)+tww ~

5mz, =ReAz, z, (mz, )+tz, z,

5mz, ReAz, z, (mz, )+tz, z, .

(15)

Here the 3's are the contributions proportional to g" in
the unrenormalized (but regularized) self-energies:

II" (q)= A; (q )g" +B, (q )q "q' .

In turn the II",' equal ( i) tim—es the corresponding self-
energy diagrams with the external legs extracted. The t's
in (15) stand for the contributions of tadpole and tadpole
counterterms to the self-energies. A simple calculation
shows that to one-loop order the tadpole contribution to
the Z, Zz self-energy is given by

(21)
As o~0, tz z ~tzz and furthermore tww/c ~tzz.2

1 1

Thus, each term in (21) is regular as o ~0, and so is the
overall Z, Z2 self-energy which is proportional to
Az z (q ) +tz z 5mz z . In order to determine com-

1 2 1 2 1 2

pletely 5c /c and 5mz z we must still choose f(o').
1 2

This will be carried out in Sec. III where we study the ra-
diative corrections to p decay.

Finally, it is worth mentioning that in theories involv-
ing two U(1) groups, local gauge invariance allows in
principle the existence of counterterms proportional to
(B„B,—i3+„)(B"C—i3'C"). They are in general neces-
sary to remove divergent contributions to the 8-C self-
energy arising before spontaneous symmetry breaking
from fermions loops. As mentioned in Sec. I, in the mod-
els of interest the U(1)r and U(1) charges obey an ortho-
gonality condition; indeed, this condition prevents the
mixing divergences from occurring at the one-loop level.
For this reason, we will not consider these possible coun-
terterms hereafter.

III. INTERACTIONS OF VECTOR MESONS
AND MATTER FIELDS

2o. 1 1 2g 2 2 2yo

which exhibits a structure similar to that of (14).
Inserting (13) and (15) into (14) leads to

(17)
In the theories under consideration the interactions of

the vector bosons with leptons and quarks is given by

—( W Jg +H. c. )
— Z (Jg)ot 2 P co

5mz, z, = [ReAz, z, (mz, )+tz, z, ]
2 = X 2

+ [ReAz z (mz )+tz z ]
2X 2 2 2 2 2

1 2Re A ww™w)+ tww
20+c

2m~
6c

c
J

goso ~„J~ go Jc"C„. (22)

In (22) J" is the electromagnetic current of the matter
fields and Jg, and Jg the corresponding currents coupled
to Wand Z. The first three terms in (22) are exactly the
same as in the SM and the detailed form of the currents is
given, for instance, in Eqs. (17a)—(18c) of Ref. 4. In par-
ticular we recall that Jg is of the form

(18) (Jg)o= —,
' J3 —soJ i, , (23)

It is important to note that (18) contains terms that po-
tentially diverge as P —+0 (or equivalently cr —+0). To
prevent 6mz z from becoming singular in this limit, we

1 2

choose 6c /c to be of the form

5c' ReA ww(mw)+tww
2 2c m gr

C2
[ReAz z (mz )+tz z ]+f(o ), (19)

m gr

where f(o)is a function to be. determined later, which
however satisfies

where J)3 is the third current of the weak isospin. The
fourth term in (22) describes the interaction of the gauge
boson C„associated with the additional U(1) factor.
Specifically, we will write

Jc"=f)"(YL, & —+ YR&+ )f; (24)

here a+ ——(1+y5)/2, YL and Yz are diagonal matrices
and f is a column vector whose entries are the mass
eigenfields of quarks and leptons. We again generate
counterterms writing go=g —6g, co=c —6c, go=g —6g
and regarding g, c, and g as renormalized parameters.
This leads to
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X;„,=X;„,+5K, (25) Ai=At /(1 —b,r),
where

—( W„Jg +H. c. ) ——Z„Jg —gsA„J"
2 " c

Re A ww(q ) Re A ww(m'w) 25gAr= + V+B—
q m~ g

(38)
gJc"C

5X= —(W Jg +H. c. )+— — Z Jgv'2 " ' '
c g c

——5s J"Z„+5eA„J"+5gJ~l"C„,
5e =—s5g+g5s,

(26)

(27)

(28)

Here A ww(q ) arises from WW self-energy diagrams at
q~ values characteristic of p decay (q =0), V and 8
represent vertex and box diagrams after separation of the
V —A photonic corrections, and ReAww(mw) arises
from the mass renormalization counterterm 5m w [cf. Eq.
(15)]. The last term is the contribution from the 5g coun-
terterm in (32) and At is the zeroth-order amplitude:

Jg= —,'J3 —s J~y . (29)
~ 2

(u, y„a u„)(u y"a u ) . (39)

Jg =pe+ o JP, Jg—:—o Jg+ yJci'
j. g 2

we find

—( Wt Jg +H. c. )
—gsJi~A„

2

(30)

——(Jg Z,„+Jg Z2„),

5X= ( W„Jg, +H. c. )+5eJ~A„5g
2

Again we have neglected terms of second and higher or-
der in the counterterms. It is convenient to express X,„,
and 5X in terms of the mass eigenfields Z", and Z~z intro-
duced in (9). Defining

25g 25e 25s 25e 5c
g e s e s

and, recalling (19),

25g 25e c2 ReAww(mw)+tww+
2g e s m~

(40)

2

[ReAz z (mz )+tz, z, ]
m~

As shown in Ref. 5, the insertion of Ar in the denomina-
tor rather than in the numerator of (37), includes au-
tomatically the effect of large logarithmic contributions
associated with mass singularities to higher order in a.

From (28) we find

+ g Z,„(5pJg 5tJz —y5s J~y—) +f(o) (41)

where

+ g Z „( 5tJg +5qJ—g +o.5s J"), (32) Inserting the above expression into (38) and setting
q =0,

5q =o 5g 5c
g C

2 g5

5g 5c 2 5g
5p =y — +o

g C
(33)

(34)

Re A ww(m w2) A ww(0
hr, (o )=

m~

(42)

"'+V+B
e

5c
(35)5t =—yo. 5g 5g

g C g
We now identify e —=gs in (31) with the conventionally

defined charge of the positron. As shown in Ref. 4, this is
achieved by setting

ReAz, z, (mz, )+tz, z,+
2 2s mp

ReAww™w)+tww
2m pr

(43)

2
25e a 2 mp= —11 (0)—— +y —ln4~+ ln

e ]'~
m n —4 p

(36)
where II~~(q ) is related to the photon self-energy by

Arr(q )= —
q IIr~(q ). In order to define precisely g~,

or alternatively sin 0~, we consider the most accurately
measured charged-current process: namely, p decay. As
explained in Ref. 4, the traditional photonic corrections
of the V —2 theory can be separated out. The remainder
leads to a radiatively corrected amplitude of the form

As explained in Sec. II, in the limit P=o =0 we have
f(0)=0, mz, =mw/c, and c tz, z, /mw=tww/mw In
this limit the terms involving the self-energies as well as
5e/e become identical with the corresponding ones in the
SU(2)L XU(1)r correction Ar [Eq. (34b) of Ref. 4], with
the understanding that one must include the contribu-
tions of additional particles arising from the extended
Higgs sector or fermion structure of the various models.
The additional Z~2 becomes identical to C"; using the
Ward identities of the current algebra and noting that Jg,
commutes with JP, it easy to see that to O(6~a) this vec-
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tor boson does not contribute to the vertex diagrams V in

p decay. It does however contribute to the box diagrams
B leading to a small and finite additional contribution

3 z — 2 lnx(»z =—
8m x 1

(44)

where ( Yl )i is the 1'I quantum number of the e or p, lep-
ton doublets and x =—mz /mii, . We conclude that

2

b,r, (0)=b,r+(B)z (45)

The simplest strategy is then to choose

C f(o )=br, (cr) br—i(0),
S

(46)

which satisfies the requirement f(0)=0 [cf. Eq. (20)] and
leads to

hr =bri(0)=dr+(B)z
2

(47)

Following a line of argument identical to that of Ref. 4,
Eq. (37) implies

6 2
g

v'2 8m'(1 —b, r )
(48)

or, recalling g —=e /sing~,

z (37.281 GeV)
sin w

mii, (1—br )
(49)

where we used era/(G„v'2) =(37.281 GeV) . Equations
(47) and (49) are important in our formulation as they
provide the definition of the fundamental parameter
sin 0~. It is easy to see that this definition is consistent
with (1) and (3). Indeed, in the limit /=0 the radiative
corrections to p decay must be those of the
SU(2)L XU(1)r theory, evaluated with cos 6iii, =m~2/
mz, plus the additional contribution of the new boson,

}

the C =Zz field. But these are precisely the terms Ar and
(B)z in Eq. (47).

In the models of interest one has '

I'i, ~ =cosPQL, ~+»nPQP', ~

g=( —', )'~ g tanOii, v'A, ,

(50)

(51)

where /3 is a mixing-angle characteristic of the model, A, is
a renormalized paraIneter = 1 and

(Qx) =(Qx) = —3(QX) = —3(Qx)

3(Qk). =3(QE).= —(Qk)d = I

(Qf), =(QP). =(Q4).=-v'-, ',

It is easy to verify that the Qr and Q~ charges are or-
thogonal to the F hypercharges of U(1)r. Equation (51)
is obtained by following the evolution of the coupling
constants from the GUT scale to the mw scale. From
these equations we see that

(B)z = — [cosP+sinP( —,', )' ]
9uk ] /2 2 1IlX

16%cos Ow x —1

In this section we illustrate some interesting aspects of
the cancellation of the divergences in the one-loop
correction to v-induced neutral-current phenomena and
make some general reInarks concerning the finite parts.

At the tree level these processes involve the sum of the
two amplitudes depicted in Fig. 1: namely,

&fl&g, li &&vfl&z, „lv;&
At =i-o g

C m Z}

&f[~y li&&vflJz„lv, &

q
—mz

where ~i & (lv, &) and lf & (lvf &) represent initial and
final hadron (neutrino) states. In the case of leptonic pro-
cesses, i and f represent the initial and final charged-
lepton states.

The O(a) electroweak corrections can be separated
into three di6'erent parts: loop corrections to Fig. 1(a), to

Zy Z2

(a)
FIG. 1. Zeroth-order diagrams in v-induced neutral-current

processes. The shaded circles in this figure indicate that i and f
may be hadronic states. In that case f represents the final had-
ron state and may involve many particles. The amplitudes cor-
responding to (a) and (b) are denoted by A, z and A,z, respec-

} 2'
tively.

Using A, =1, cos Hw=0. 77, mw=81 GeV and noting
that [cosp+sin/3( —,', )' ] ~1.185 we find that l(B)z l

~1.6X10, 1.0X10, 7X10 for mz =100, 150,

and 200 GeV, respectively. For the Z„boson which
occurs in the breaking E6~SU(3) X SU(2)l X U(1)„
XU(1)„expected in some superstring models, we have

cosP=( —', )', sinP= —( —,')', and (B)z is greatly re-

duced: (B)z = —1.0X10, —6.3X10, —4X10
2

for the same mz values. We conclude that the correc-
2

tion to Ar arising from the Z2 exchange is indeed very
small. As a consequence, (49) is very close to the
SU(2)1 X U(1)r expression for sin Oii, in terms of 6„,a,
aIld mw.

IV. NEUTRINO-INDUCED NEUTRAL-CURRENT
PHENOMENA
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&a)

2

where the sum runs over all the fermions in the theory (a
sum over the color degrees of freedom is understood), Q,',
is the electric charge of the ith fermion, Pf means "finite
part" and the subscript f reminds us that we are consid-
ering the fermionic loops. In the models of interest,
which are the low-energy limit of GUT's described by
simple Lie groups, the orthogonality condition

X Qli(I'I. + I"~)=o
FIG. 2. y-Z2 mixing amplitude and associated counterterm

diagrams. The cross in (b) represents the insertion of the coun-
terterm proportional to J~Z» from Eq. (32).

&fIJ„Ii&(vfIJy Iv, &

z
q

—m 2
Z2

o.6s
sc

(55)

The counterterm 6s = —5c can be obtained from (19),
(43), and (46). Evaluation of the fermionic contribution
to the large parentheses gives

z
2

6s gXQQl (gl +yl )
12m

Fig. 1(b) and mixing y-Zz and Z, -Zz amplitudes, some of
which are illustrated in Figs. 2 and 3 together with
relevant counterterm diagrams. By convention we in-
clude the y-Z, mixing diagrams among the loop correc-
tions to Fig. 1(a) so that they are not depicted separately.

We consider first the diagrams of Fig. 2 and focus on
the fermionic contributions to the y-Z2 mixing. The sum
of Figs. 2(a) and 2(b) reads

is satisfied automatically. In fact, in such cases the third
component T3L of the weak isospin and the hypercharges
Y, Y are proportional to neutral generators of the higher
group which, as is well known, obey an orthogonality
condition of the form Tr(T, T ) ~ ti;z. Equation (57) im-
plies the automatic cancellation of the divergent part of
(56). The analogue of (57) when the, sum runs over the
scalars present in the theory applies to the Higgs sector.
In models which are not the descendants of GUT's de-
scribed by simple Lie groups, (57) may not be valid. In
such cases the divergent part of (56) would not vanish au-
tomatically even in the unbroken theory and one must
appeal to mixing counterterms of the type described at
the end of Sec. II.

We now turn our attention to the loop correction of
Fig. 3 with j =k. We note that both the divergent and
the finite parts of all the counterterms have been deter-
mined in Secs. II and III, with the exception of 6g. Con-
sideration of the above diagrams shows that, after taking
into account (57), the remaining divergences can be can-
celed by a judicious choice of 6g. Specifically the diver-
gent part of 6g is seen to be the term proportional to

X +Pf
n —4

1 y
—ln(4ir)

n —4 2

in

diaz

z (q )/dq or, equivalently, to
1 1

Zk

(a)

"Zk

2)

bm Z;Zk
———-X- ——--
Zj Zk

(b)

Jz;

Zk

1 ~—ln(4ir)
x

n —4 2

'n d~z z (q )/dq As to the finite part, a convenient
2 2

strategy is to simply define g by the modified minimal
subtraction scheme (MS) at the mass scale p =mii . Fi-
nally we consider the diagrams of Fig. 3 with j=2, k = 1

(the case j=1, k =2 is completely analogous). For this
case the sum of the amplitudes of Fig. 3 can be written as

2 (f I &P, I
i & & vf I Jz,„v; &

z, z c (q —mz )(q —mz )

(c)
FIG. 3. Self-energy and relevant counterterm diagrams. (a) is

assumed to include tadpole and tadpole counterterm contribu-
tions. Here j, k = 1,2; 5mz z =—5mz where 5mz (j= 1,2) are

J J J J
the counterterms defined in Eq. (15), and 5mz z is given by

1 2

Eqs. (21), (43), and (46). The crosses in (c) and (d) represent in-
sertions from relevant counterterms from Eq. (32).

where

C, z (q')= ~z z (q')+Sr(q' —m,' )+Sr(q' —m' )

[ReAz z (mz2 ) ReAz z (mz, )f
2X 2 2 2 1 1 1

(59)
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and f(o ) is defined by Eqs. (46) and (43). Assuming the
validity of (57), evaluation of the fermionic contributions
leads to

Cz, z, (~')

2

y~2 X~ + gc(&2 2)T (yi y i
i 4

~ 3i L R
&C

X +Pf,
where m, is the mass of the ith fermion. One can verify
that the divergent part of (60) is canceled by the
term proportional to f(o )/o. in (58). In particular, it is
worth noticing that the divergent part of (60) survives
in the limit o.~0. However, the term (c /
mii, )Redz z (mz ) in f(o ) [cf. Eqs. (46) and (43)] con-
tains a divergent part linear in o. and involving the m, ; it
survives in (mii, /2c )[f(cr)/cry] as cr~O and cancels
the divergent part of Cz z in the same limit. We also

2 1

note that the second and third terms between the large
parentheses in (60) arise from the axial-vector part of JP.
Indeed, if J& were vectorial, it ~ould be conserved be-
cause it is diagonal in Aavor space. As a consequence, in
that case the divergent part of the self-energies would not
be proportional to the m,

In summary we conclude that all the divergent parts in
the one-loop corrections to v-induced neutral-current
phenomena are canceled by the counterterms determined
in Secs. II—IV when (57) is taken into account.

Regarding the finite parts of the electroweak correc-
tions we note that the experimental upper bounds on P
and the magnitude of the amplitude ALz are quite small.
The latter is a consequence of either mz »mz and or

2 1

the fact that the Z2 couplings to the ordinary fermions
are quite weak. A sensible approximate strategy is then
to neglect the loop corrections to Fig. 1(b) and the mixing
contributions exemplified by Figs. 2 and 3 (with jWk)
and evaluate the electroweak corrections to the dominant
amplitude Jkz in the limit $~0. The latter become

I

then the corrections of the SU(2)L XU(l) i theory evalu-
ated with mz =mii /c . (See Ref. 6). This is essentially

1

the approximation employed in recent phenomenological
studies of the SU(2)L XU(l) i, X U(l) models. There is a
small difference with the present work: while the analy-
ses of Ref. 2 maintain Eq. (1) as an exact relation, they
approximate b, r ~b, r in the definition of sin 8ii, [cf. Eq.
(49)]. In most cases of interest (B)z ((1 and, as a conse-

2

quence, the di6'erence is negligible.

V. DISCUSSIQN

In the preceding sections we developed a renormaliza-
tion scheme for the constrained SU(2)L X U(1) i, X U(1)
theories that satisfies two main objectives: (a) it is con-
sistent with Eq. (1) even for arbitrarily small P and any

mass mz )mz and (b) it prevents the emergence of non-
2 1

analytic terms of O(a/P) in the neighborhood of o =0
(or, equivalently, P =0). These two requirements are
indeed related and are implemented by the constraint
f(cr)-o as o.—+0 [Eq. (20)]. This strategy led us in turn
to a definition of sin 8ii, [Eq. (49)] which, as pointed out
in Sec. III, is very close to the SU(2)L XU(l) i expression
obtained in Ref. 4 in terms of 6„,u, and m~. In princi-
ple, by altering our choice of the finite part of f(cr) we
could slightly shift Ar and correspondingly the definition
of sin 8ii, by terms of O(cr ). Our specific choice in (46) is
probably the simplest one consistent with (20). Aside
from this freedom, the choice in the definition of sin 0~
is greatly restricted. Suppose that an attempt were made
to redefine sin 8ii, so that it difFers from (49) by terms of
O(a) but of zeroth order in o. This requires a corre-
sponding change in hr and, because of (42), it would
demand f(0)WO. In turn this would lead to a catastroph-
ic consequence: because of (21) the counterterm 5mz z

1 2

would contain terms of O(a/cr ) and the feasibility of the
perturbation expansion in the neighborhood of o. =0
would be lost.

How is one to understand the potential emergence of
such nonanalytic terms' The answer turns out to be very
simple: because of Z-C mixing, the zeroth-order ampli-
tudes contain terms proportional to cryJ/Jc, i.e., -o. as
o.—+0. For fixed values of m~, mz, and mz, a variation

5cos 8ii of O(cc) but of zeroth order in a would induce
according to (1) a shift

—(mii /c )5c
6o.=—

2cr(rnz mar/c )

for smail cr, which is clearly of O(cc/cr). As a conse-
quence, such change in cos 0~ would result in a shift of
O(cc/a ) in the Born contributions and this must be com-
pensated by an identical and opposite modification of the
O(cx) corrections. Thus, the response of the radiative
corrections to such a change would be sharp and cata-
strophic in the neighborhood of n. =0. Qf course, this
would not be important if P was known to be a finite an-
gle »o; because in that case it would not be necessary to
consider the domain P —0. However, the fact that
present experiments are perfectly consistent with the
SU(2)L XU(1)i theory requires that this be included in
the allowed region of variability of o..

It is also important to emphasize that the Ar that ap-
pears in (47) and (49) is the complete b, r of the
SU(2)L X U(1) i theory, evaluated with cos 8ii, =mii, /
mz . This includes the efFects of the new Higgs multi-

1

plets and fermions whose masses are, of course, un-
known. Even if we assume that the e6'ect of the new par-
ticles on Ar is negligible, one faces the problem that at
present two of the important parameters of the minimal
SU(2)L X U(1) i theory, namely, m, and mH, are un-
known. In current analyses of the SU(2)L XU(1)r XU(l)
theories one essentially assumes that m, is not very large:
namely, m, &100 GeV. However, if one considers the
full range m, &180 GeV presently allowed by experi-
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ments, it is possible that the m, dependence of hr may
play a significant role in deciding whether the con-
strained SU(2)L XU(1)r XU(1) models are tenable, espe-
cially once the m~ and mz masses become accurately
known. The point is that according to Eq. (1) we must
have m~lcos 8~ ~ mz and because of Eq. (49) this may

1

be valid only for some range of values of m, . As an ex-
ample, let us assume that m~ and mz were known to

1

equal 81 and 92 GeV, respectively, with great precision.
This would imply that cos 0~~0.775. Inserting the
value Br=0.0713 corresponding to m, =45 GeV and

mH = 100 GeV, (49) gives sin 8~ =0.228 or
cos 0~=0.772 which is certainly compatible. On the
other hand, for m, =150 CxeV, Ar =0.0412 and (49)
would lead to sin t9~=0.221 or cos 0~=0.779 which
would lie outside the allowed range.
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