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By applying the Gaussian-effective-potential method to SU(2) XU(1) gauge theory, the quantum
version of the Higgs mechanism is examined in detail. The stability condition for a broken vacuum
leads to an estimation of upper and lower bounds on the mass of the Higgs boson:
0.925m~ &mH &2.07m~. An autonomous gauge theory is also achieved after removing the
momentum cutoff.

I. INTRODUCTION X(x)= —1G," G,„'B""B—„—
The Higgs mechanism plays an important role in stan-

dard SU(2) X U(l) electroweak theory. ' However, there is
some worry about its basis. Some authors showed that
the pure quantum A,p model may be trivial (i.e., A,2t

—+0,
no interaction exists at all) in four space-time dimen-
sions. Recently, aiming at the revival of A,P theory,
some eFort has been made using the nonperturbative
Gaussian-effective-potential (GEP) approach. One
method is to introduce explicitly a large but finite mo-
ment cutoff A and treat the A,P model as an effective
model at low energy. On the other hand, . in the so-
called autonomous theory, after performing a special
type of wave-function renormalization while keeping the
bare coupling parameter A,~ positive but infinitesimal
(A,tt

—+0+), one can let A~ ~ and regain a meaningful
model. From the practical point of view, there is a

benefit in the former kind of theory (with finite cutofF A)
as some bounds on the mass of the elusive Higgs boson
could be found when the gauge fields are included, '
whereas no observable restriction exists in the latter kind
of theory (with A~~). Moreover, the latter approach
has not been used in gauge theory. Both kinds of theories
will be discussed in this paper.

The organization of this paper is as follows. In Sec. II,
keeping a large but finite cutoF A, we obtain the criteria
for the existence of the broken or symmetric phase in the
SU(2) XU(1) model. Then in Sec. III, after carefully ex-
amining the stability condition of a broken vacuum, the
upper and lower bounds on the Higgs-boson mass are
found within some approximation. The so-called au-
tonomous theory is discussed in Sec. IV. The final sec-
tion contains a summary and discussion.

II. THE GEP AND THE EXISTENCE CRITERION
FOR BROKEN AND/OR SYMMETRIC PHASE

Let us begin with the Lagrangian density

+(D„P) (D P)+ P P —& (P —tb)',

where

D„P(x)= t)„+igA„,(x ) i B„(x) P(—x),
2 2

(2)

G~ =a~A: aA~ —ge.„A—t A;,
(3)

, (x)
P(x)= = —e

Pt(x)=(P& (x),$2(x)),

g(x)
(4)

where r, (a=1,2,3) are Pauli matrices.
As is well known, one redefines

W"= —( A", +i A2 ),1

Z"= 1
(g A 3 +g'B"),

(g2+gI 2)1/2

1

(g +g' )
2 I2 1/2

to represent the charged, neutral massive boson and pho-
ton, respectively. The quantization procedure is com-
pletely similar to that in Ref. 7, i.e., to evaluate the ex-
pectation value of Hamiltonian density in a Gaussian
wave functional (ansatz):
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%'=exp ——,' x — x I y — y —8'" x F 8' 8'* y + 8'* x I 8' 8'" y
Xg

Z—i'(x)F„(Z)Z„(y)+ A„(x)F"'(3 ) A (x) I (6)

For convenience in calculation we choose the temporal gauge O' =Z = 3 =0. Because of the time independence
of the effective potential (which is defined as a functional expectation in the time-independent ground state), we can also
choose 2), (m) =0 as a consequence of the time-independent gauge transformations which are still allowed in the tem-
poral gauge. '

In Eq. (6), F'J ( A ) has been fixed as

3 2$
jAj= d p P ij Pi+j ip(x —y)e

(2~)'

such that U(1) gauge invariance survives' and the mass of the photon m „ is zero.
After evaluating the expectation value of the Hamiltonian density in the Gaussian ground state (6) and minimizing

the result with respect to F (g), F„(W), and F (Z ) as in Ref. 7, we arrive finally at the GEP:

VG =3CIO(Pw) 2pwI1—(Pw)+TIO(PC) 4PCI1(Pg)—+
2

Io(PZ)2 3C 2 2 } 2 } 2 2 3C 2

'CpzIl—(P2z)+-'F ( ~ )+ C, , Il(pw)Il(pz)
g +g

3 2 &2C
+ ,'g C [I,(pw—)] +— I, (pw)G„'„'(A )

— [g + —,'I, (p~)]

2+ &2

+ g I, (p )+ I, (p ) [~ +—,'I, (p~)]+, I~ +3I,(p~)~ + —,'[I, (p
8 2g2

(7)

with C = ( —,
'

) ~, and the notation I„(p ) is defined by ' '

( 2) f I (p2+P2)1/2 —n

(2m. )'

The relations among I„(p ), F„~(B), and F ~'(B )

(B =g, W, Z) read

Ao
pq= —~o+ [k + ,'Il(pq)]-

+ ,'g CI, (pw)+———CI1(pz) .g +g 3 (14)

F„„(g)=Io(p~), F „'(g)=I1(p~),

(B)=C Io(pji), F „'(B)=CI, (pji)

(B=W, Z),
dGij(g) f d I liol ip. (x y)—

(2~)' p 5; —p,p

(10)

f F y(B )Fy (B ) 5(x z) (B W Z g) (11)Xg

ln Eq. (7), the mass parameters ps have been determined
by BVG/Op~ =0: i.e.,

4. 2 & 2

Pw gCI1(pw)+ 2
— 2I1(pz)+ 2 26 (A)

g +g g2+gl 2

W'...=Co=
~ Pg, . (15)

Now we turn to the criterion for existence of the sym-

metric or broken phase. We write Eq. (14) as

2 Ab= = 1+g
Pg ~0 Pg

3 2C 2+
2 & ~~

2 2 1IZg I( 2)+g+g I( 2)
oPg

Differentiating VG with respect to g, one is able to see

that the symmetric phase is located at g, =0, while the

broken phase is located at

2

+
4

N'+ —,'Il(pg)] .

4C 2+ I 2
2 g I (

2 )+ g g [P2+1I (p2)]
g +g

(12)

(13)

Il(
(16)

2pg

where rj =o o/A ~ Noticing (15), the existence of the bro-
ken phase is equivalent to the solubility of the equation
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=3
vac

0

2 A1+g
o pg

3g C 2 g+g'
Ii(pw~g=g )+ 2 Ii(pz~&

&
)

2A,

gpss

0 2g 0

Ii(pg, )

2pg
(17)

Similar to Ref. 8, by examining the extremum behavior of
the function b(x) =b—(A/p&), one sees that there is a criti-
cal value of oo or 2), say, 21„; Eq. (17) will have no solu-
tion for p~ when g & g„: i.e., the broken vacuum cannot

exist when o o & g„A . It is easy to show that

o 9g +3g'
'Vcr 2

+
16~ 32~

III. THE CRITERION FOR STABILITY
OF THE BROKEN VACUUM AND THE BOUNDS

ON THE HIGGS-BOSON MASS

Now we turn to the detailed analysis of the stability
condition for a broken vacuum which will lead to some
constraint on the value A,o/g and then on the mass of the
Higgs boson. The condition for stabilizing the broken
phase reads

8 VG o0. (19)ag'

For calculating a VG/ag, the following expressions are
useful:

ag

~Pw

ag

Bpg

ag

4(g +g' )[2 2Cg I2(p~—)/(g +g' ) +g CI2(pii, )]

8y+(Aoy+S )I2(pg)

4g'[2 —g'CI2(pz )]-
8y + ( A Oy +S )I2 (p~)

8(Aoy+S)

8y + (Roy +S )I2(pg)

(20)

(21)

(22)

with

y=2+g CI2(pii, )
E=g CI2(pii, )=2+0 l

I2(p'w)
(27)

S 3 (g2+gI 2)2 g 1

(g2+g~2)24

Xg C I2(p~)I2(pz)

—g'C'I2(p~)I2(pz )/(g'+g')' (23) It is reasonable to make a further approximation:

I2(pii, ) =I2(pz ) =I2(p&) =I2(p ) .

Then from (19) and (25) one finds

(28)

—',g g„„—3.22 (0.642 —Ao/g )/(7. 16+ho/g2)) 0;
'CI (

'
)

, , ——I2(pz) . (24)
g +g

By means of (20)—(22) we get 1.e.,

(29)

8 VG

ag 2

2g 2[4(Roy+ 3S )
—Ao(Roy +S )I2(pg) ]

3[8y+(X,y+S )I,(p', )]
(25)

0.642 & A,o/g'& 3.22 . (30)

On the other hand, there is a well-known relation be-
tween mH and m w at the tree level:

Aiming at finding some information from (19) and (25),
we resort to the approximation

g'+g"-g'
ma 4 ~o

2

m 2 3 g
2

Hence,

(31)

which implies that in generating the masses of 8' and Z
bosons, the SU(2) gauge fields play a dominant role
whereas the U(1) gauge field only plays a minor one.

Considering the difference of (13) and (12) pz —pii,
which is a nonzero factor and thus can be erased, we ob-
tain after using (26) that

0.925mw &ma &2.07mw . (32)

76&m~ &170 GeV . (33)

If m w
=82 GeV, one obtains the lower and upper bounds

for the mass of the Higgs particle:
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IV. AUTONOMOUS GAUGE THEORY

In previous sections, while treating the model de-
scribed by (1) as a low-energy effective theory, we allow a
large but finite cutoff A appearing explicitly in our calcu-
lation. This section will be devoted to an alternative
approach —the so-called autonomous theory, in which
one manages to remove the cutoff by setting A~ ~.

We know that the masses of 8' and Z fields should be
generated at the broken phase and not at the symmetric
phase. So we have to renormalize pw and pz [as shown
in Eqs. (12) and (13)j such that PWR and pzR are zero at
symmetric phase. That is to say, all the p~ and pz in the
efFective potential (7) should be replaced by pwR and
pzR, the results read

2I"zR 2 1
PwR =4g 0 4g, I2(pzR)+

g
2 +g

2 4m

1
PwR I2(PWR )+

24m

2 2 2
g'

8~' pl p'

2
pg —1

2
Pg

(34)

2

g +g' pg go
PZR = (Pq Pq)-I2(pg)

4'fT pg

2
pg —1

pg

2

+ (g +g )k g 2 z 2(P'WR )+
g +g 4m

(35)

and and

p~= —oo+
2

lk'+-,'Ii(pq)]+-„'g'CIi(p'wR )

+ (g +g )cI I (PzR ) (36)

From (34) and (35) we know that g, g', and Ao should
be the order of 1/Il(pwR ) to guarantee the finite masses
of the S' and Z particles. On the other hand, from Eq.
(15), p& =(Ao/3)g 0, in order to prevent the value of the

Higgs field from tending to infinity when removing the
cutoff (A —moo), a renormalization procedure of g is
necessary, say, A,og-@. Actually, we will take

a 2 b , 2
b'

~p= ~ g =
~ gI2(p)

' I1(p) '
I2(p)

(37)=
—,'I1(P )4

—oo+ I,(0)+—', g C I,(0)+ I, (0)
2g

G2=0
I2(p)

(38)

8 VG(@) I2(p)
B4 2

Substituting (37) and (38) into (34)—(36), one has

The constants a, b, b', cr, and o 2 in (37) and (38) are ad-
justed such that Vo(@) remains finite when A~ ~.
Once this is done, we can simply recast the i3VG(+)/BC&
into the form

b+b' 2 b C 2 b+b
PZR =

8
C' —

b+b, PwR+

1 $2C 2 2
I O'R I IVR

Iz(p) 4m (b+b') p

2
~+~ 2 O 2 I 2 2

p~ ln
2 +pain 2 +(p~ pg )—

64m o p p&

b@2 bc 2 bc 2 + b
WR 8 2(b+b )

PZR 2 PWR 16 Pgo Pg

1 & CPzR PzR
2 2 2

+ lnI,(p) 8~'(b+b')
PWR PeR2 2

ln
8m p

2

2 ~o 2 P
pg 111 2 +pgln 2 +(pg pg )

64m 0 p @2 o

(41)
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and

2= 8
Pk= 8+a

a, 3bc, b+b'1+
4

+ PwR+
b PzR8 2b

+ 8 1 a 2—O2+8+a I,(p) ' 32~~

3bC
PWR

2
pg

ln ——1

p
2 2

pwz b+b 2 Pzz
Pza

p 2 p
(42)

One can see from (39) and (42) that as I2(p)-ln(A/p)
the finite part of p& will provide an infinite contribution
to BVG/8@ and thereby to VG, whereas the infinitesimal
part of order 1/I2(p) in p& will provide a finite one. The
infinitesimal part of pr of the order of 1/Iz(p) only
makes a contribution to 8 VG/B4 of the order of 1/Iz(p)
and thus could be neglected. Keeping this in mind and
performing the tedious calculation, we arrive at

(b+b')[(b+b') (2+bC) —2b C](12—a)
96[(b+b') (2+bC) —b C ]

+0
I2(p)

=fz@ +0 1

I2I )
(45)

p =—@+0a 1

6 I2(p)

b(2 bC )(b+—b') (12—a )4& 1

96[(b+ b )~(2+ bC ) b'C'] — I, l p. )

(43)
together with the Gaussian effective potential for N,

E N 1
V =V — @ + +-—4 ln ——,(46)

4 2 4

where

=:fii,@ +0 1

I2(p)
(44)

and

8o.2
16+2a 3bC[fii, +(b+b )fz/(2b)]

(47)

K=m I16+2a 3bC[fz, +(b—+b )fz/(2b)]I ' +[3bCfii,+ 3(b+b )Cfz] 1
a
12

bCfz
3bCfii— , +Cf~

a a
12 48

a + b+b'
z (48)

and

4a 6bC[fii +(b+b')fz—/(2b)]
2(8+a ) —3bC[f ii, +(b+b')fz/(2b )] 6

(50)

It is easy to verify that, for b =b'=0, i.e., when removing
the gauge coupling [see (37)], Eq. (46) reduces to the case
of pure A,P model:

V =V .— N+- + —ln2 144

(51)

In (46), U is the vacuum expectation value of N and the
divergent parts have been canceled by the conditions

(49)

I

Furthermore, if cr3=0, i.e., for massless AP theory, Eq.
(51) is equivalent to the well-known result first derived by
Coleman and Weinberg. '

V. SUMMARY AND DISCUSSiON

(1) We have generalized the GEP method to the
SU(2) XU(1) gauge field theory. Just as in the case of
pure A.P theory, we get a broken phase only when
o.o& g„A . In addition to this, the stability condition of
this vacuum leads to the lower and upper bounds on the
mass of the Higgs boson: 0.925mii, & mH (2.07mii (see
also Ref. 7) or 76 (mH & 170 GeV for mii, =82 GeV. Be-
sides (28), an extra approximation (26) has been used.
The upper bound of the Higgs particle has been studied
by various authors. It ranges from 125 GeV to 1 TeV.
Some recent typical values based on the triviality prob-
lem of A @ are 640 GeV (Ref. 15),
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M '„=832'-'" Gev (W/(y) —= lor) . (52)

In Ref. 15, a low cutoff A=2~MH is taken, then a rather
high upper bound MH =640 GeV is found. Similarly, our
expression (52) will give M H

——700 GeV when
A-2~M H, whereas M II=170 GeV would lead to a
much higher value of A which exceeds the Planck scale.

(2) Furthermore, we consider the eFects of the fer-
mions on the bounds of the mass of the Higgs boson. The
stability condition for the broken vacuum, Eq. (29), will
then be modified to

0 ~0
~

—3.22 0.642— Xo
7. 16+ )y],

(53)
where y, is a small positive constant depending on the
mass of the top quark. So the fermion effect makes the
interval between the lower and upper bounds of the
Higgs-boson mass shrink more than estimated above.

(3) We have also established the autonomous theory for
SU(2) XU(1) gauge theory. It is worthwhile to mention

(1/+2)(3++6)' m~=135 GeV (Callaway and co-
workers' ) and 125 GeV if m, & 80 GeV, or
65 & m~ & 175 GeV if 80 & I, & 168 GeV (m, is the mass
of the top quark). "' Our lower and upper bounds are
near the results in Refs. 11 and 12 for 80 & I, & 168 GeV.

In our point of view, while the bounds on the Higgs-
boson mass are constrainted by the vacuum stability, for
a stability analysis in quantum field theory, the A depen-
dence is inevitable whereas the perturbative theory may
lose its way. If we agree to keep a finite cutoff A, then the
trivality problem renders the allowed region of A, /g
quite narrow. As an ambitious speculation, it could even
be determined completely. '

If in Eq. (19), we take the weak gauge coupling limit
g, g «A, instead of Eq. (26) (g +g' -g ), then we can
only get the cutoff-dependent upper bound on the mass of
the Higgs boson similar to that in Ref. 15:

that all the arguments of I, and Iz in Eqs. (37) and (38)
may all be different constants, but all the results except
(49) are independent of them. Since after renormalization
the parameters a, b, and b' are connected by (50), then
two of them together with V and o.

3 constitute four free
parameters in the automomous theory as the replacement
of four classical constants A,o, g, g', and o.

o before re-
normalization. Notice that, however, there still exists
some constraint. If we demand b )0 in (37) as it should
be, a too large parameter a is not allowed, otherwise the
condition p~z &0 would be spoiled. Indeed, if b'=0
[SU(2) gauge theory], Eq. (44) with (50) becomes

z 4—a z
I'wR =

27bC

so a &4 is required. The case a =4 corresponds to the
pure A,P theory.

(4) In pure A,P theory, there exists another type of
phase in the so-called "precarious theory" where the
bare coupling constant A,o is infinitesimal and negative,
say, A o

= —8/Iz (p ). We could also find such a kind of
phase in SU(2) X U(1) gauge theory if a = —8 together
with b and b' satisfying

(b+b') [b (2—bC)+ —,'[(b+b') (2+bC) —2b C]]=0 .

(54)

However, we believe that this phase is neither reliable nor
capable of generating the mass of gauge fields, so we will
not discuss it any longer.
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