
PHYSICAL REVIEW 0 VOLUME 40, NUMBER 9 1 NOVEMBER 1989

Masses of Skyrmions

M. Lacombe, B. Loiseau, and R. Vinh Mau
Division de Physique Theorique, Institut de Physique Nucleaire, 91406 Orsay CEDEX, France

and Laboratoire de Physique Theorique des Particules Elementaires, Universite Pierre et Marie Curie,
75252 Paris CEDEX, France

W. N. Cottingham
Physics Department, Uniuersity ofBristol, Bristol, BS81TH, England

(Received 5 July 1989)

When realistic enough for the description of mesons, Skyrme-type effective Lagrangians proposed
so far predict masses that are too high for the nucleon. We attempt to solve this problem by investi-

gating the effects of the quartic term originated by the e meson (J =0++,I =Oj when stabilized by
a sixth-order term. The possibility of new types of solutions for the Euler-Lagrange equations giv-

ing rise to a phase boundary within the soliton is explored. They are found to have the nice proper-
ty of lowering significantly the soliton mass and hence the baryon masses.

I. INTRODUCTION with

The idea of associating the soliton solutions of effective
chiral field theories of mesons with baryons has had some
success over the past few years. ' However, there is a
major shortcoming. The models proposed so far, when
they are made realistic enough for mesons, fail to repro-
duce the nucleon Inass. For example, in a previous work
we have constructed an effective Lagrangian, the parame-
ters of which are determined by fitting the low-energy
meson observables. The soliton solutions found, when
identified as baryons, satisfactorily predict their static
properties except for the masses which are about 50%
too large. Our Lagrangian contains the ~, p, 3 &, m, and
e mesons. We believe that the e meson, although it is a
broad resonance, should be included in order to account
for the pion-pion S-wave attraction. Moreover this is the
only meson to have the desirable property of lowering the
baryon masses. The counterpart of this good feature is
that it can make the soliton unstable, the energy density
is not always positive definite. To remove this unsatisfac-
tory feature, we here introduce a stabilizing term and we
investigate its effects. In the course of this study, we dis-
cover the possibility of new types of solution for the
Euler-Lagrange equations which give rise to a discon-
tinuity in the energy density. These new types of solu-
tions have the nice property of lowering significantly the
soliton mass and hence the baryon masses.

II. THE MODEL

Although we could start with the comprehensive La-
grangian of Ref. 2 we here adopt for simplicity the ap-
proximation obtained by eliminating the heavy-meson
fields in their large-mass limit. In this approximation, the
Lagrangian is of the form
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The instability is apparent in the y term which is nega-
tive but contains the highest power of (dg/dr) . Thus,
functions 8(r) which have rapid oscillations can make the
mass negative. Strictly speaking there is no global
minimum, although for small values of y there are local
minima. Of course, the effective Lagrangian is inade-
quate to cope with highly oscillating functions but it can
be anticipated that higher-order terms in the derivative
expansion, if properly included, would make the loca1
minimum a good approximation to the true minimum.

P(x) being the pion field.
It should be noted that this Lagrangian can be regard-

ed as the first terms of an expansion in powers of the
derivatives of the pion field. It contains the quadratic
term, the two quartic terms, and one of the possible
sixth-order terms. The term y[Tr(c)„UB~U )] destabi-
lizes the soliton, an effect which cannot be compensated
by the other terms. Using the hedgehog ansatz
U =e' ' '"' the energy functional can be written as
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We have a priori very little indication of the form of a
stabilizing term to be added to Xo. However, it must be
positive and diverge faster than (d 8/dr) when d 8/dr be-
comes large. In the framework of the derivative expan-
sion the lowest-order and simplest term which satisfies
these criteria is a sixth-order term of the form

$2
[Tr(a Ua~U')]' .

32F
(3)

Its contribution to the soliton energy is
T

8ms 2d 1 dO + sin 8
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(4)

The full Lagrangian we consider from now on is

X =ED+X„

and the soliton energy

E=E0+E„. (6)

The parameters appearing in Eq. (1) are related to those
of Ref. 2 by

e=v'2g, b=(p~ /m )

which yield e =5.6.8, b =4.89 with F =186 MeV,
P =9.3, m =782.6 MeV, and g =4. 1 as in Ref. 2.

The parameter y is also related to the meson parame-
ters of Ref. 2. We however, consider here both y and s to
be free parameters but with the constraint

y (se'/V'2

which ensures that the energy density is positive definite.
This constraint is sufficient but not necessary since it was
obtained by neglecting in Eq. (6) the terms with
coefficients 1/e and b/F which have positive contribu-
tions to the energy. The soliton mass is given by the
chiral angle 8(r) which makes this energy functional a
minimum. The masses and static properties of baryons
are calculated by introducing rotational dynamics as in

Ref. 4. The contribution of different terms of Eq. (2) to
the moment of inertia can be found in Ref. 3, that of the
stabilizer, Eq. (3), is

2
'
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III. SMOOTH SOLUTIONS OF THE EULER-LAGRANGK
EQUATIONS

Holding the parameters e =5.68, b =4.89 as given in
the previous section we find, with y =0.50 and s =0.031,
the results listed in column 1 of Table I. The value of s
was chosen so that the the contribution of the stabilizer
(a sixth-order term) is no more than 25% of that due to
the quadratic term and y was given by its maximum
value that yielded a smooth solution for 8(r). For com-
parison, we show in column 2 of the same table the re-
sults obtained with the same values for e and b but
without the stabilizer (s =0), y being again taken at its
maximum value, @=0.17. As can be seen, the presence
of the stabilizer leads to a significant improvement for the
nucleon mass. At the same time, it is satisfying to know
that with the stabilizer the soliton mass corresponds to a
global minimum of the energy. However, the improve-
ment is not important enough to bring the masses into
agreement with experimental data.

IV. BROKEN SOLUTIONS OF THK EULER-LAGRANGE
EQUATIONS

As is explained below, during our search for a minirniz-
ing function 8(r), we realized that dB/dr can be discon-
tinuous without any harm to the physical observables.
The chiral angle 8(r) which minimizes the energy func-
tional

E=4m f p(B, B,r)dr (lo)
0

must be continuous but need not have a continuous

TABLE I. Static properties of baryons. The different columns correspond to the different sets of the
parameter values I', e, b, s, and y.

Expt.

(MeV)
e
b

186
5.68
4.89
0.031
0.50

186
5.68
4.89
0.0
0.17

186
5.68
4.89
0.031
0.64

186

M (MeV)
M„(MeV)
M, (MeV)
p~(e/2M& )

p„(e/2M~ )

Iv, /s. ~

)r=o (fm)
( r' )M.', , {fm)

gw

1250
1294
1471

2.86
—2.44

1.17
0.67
0.86
1.06

1394
1440
1623

2.74
—2.38

1.15
0.60
0.82
1.03

929
991

1240
2.18

—1.59
1.37
0.66
0.76
0.41

939
1232

2.79
—1.91

1.46
0.72
0.81
1.23
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derivative 8(r) [8(r)=de/dr]. The possibility of discon-
tinuities in the solutions of minimization problems of this
type has been remarked upon in the literature but the
conditions that must be satisfied at points of discontinuity
are not well known. In the following we derive these con-
ditions and describe the method that we have used to im-
plement them.

First, making a small and smooth variation of a func-
tion 8(r) that minimizes E yields the Euler-Lagrange
equation

3p d Bp
B0 dr g0

If this equation has a solution 8(r) broken (i.e., con-
tinuous but with a discontinuous derivative) at a point
r =rs it is still necessary that dp/BO be continuous at re,
otherwise a Dirac 5 function 5(r re�—) would appear on
the right-hand side and although the left-hand side can be
discontinuous it will not have a compensating 6 function
and the equation will not be satisfied.

When comtemplating broken solutions the condition of
continuity dp/Be is not sufficient to guarantee a station-
ary value of E with respect to small variations. It is also
necessary to consider small variations 60 that move the
point of break, say from r& to rz+6r~. For such varia-
tions, 58 is not small in the interval 5rs. Consider 8,(r)
to have a break at r =re and Oz(r) a break at
r =rz+6r~, 60=02—

0& is infinitesimal for all r, and,
60=02 —

0& is also infinitesimal except for r~ & r( r~ +6r~. If 0& satisfies the Euler-Lagrange equation
then the infinitesimal change of E is, to first order,

that is the continuity of Bp/BO. If this condition is
satisfied Eq. (15) becomes

0BP 0'
a0 a0

(17)

S(D, ,D, )= a
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a0

and

and a stationary value implies the second condition

p-0' = p-0' (18)
a0 a0

that is the continuity of p —8 Bp/BO at the break point.
As an application of our techniques we consider the

parameters e =5.68, b =4.89, and s =0.031 as in column
1 of Table I but with varying y. The stability condition
(8) is satisfied for y~0. 70. For y larger than 0.5, the
maximum value that yields a continuous solution, we ob-
serve that solutions still exist but with a discontinuity in
de/dr and those with a break are found as follows. The
equation was first integrated out from r =0 with the
boundary values 8(0)=m and 8(0)=D& a trial number.
The equation was then integrated in from a large r =R
where we took 8(R) to obey the asymptotic condition
8(R)=28(R)/R and 8(R)=D2 taken as another trial
number. Values of D, and D2 for which these two solu-
tions meet give a possible continuous solution but broken
at the meeting point. To satisfy the other continuity con-
ditions we computed

6E= a
88
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Be G(D, D )= p —81& 2
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The —(+ ) sign indicates the functions evaluated with
8(r) on the left- (right-)hand side of the break.

Now

at the meeting point. The two conditions I' =0 and
G =0 were sufFicient to fix D

&
and D2 corresponding to a

solution with a minimum mass. We then checked that
the mass was in fact a true minimum by verifying that the
equipartition relation which results from the minimiza-
tion of the energy E was satisfied.

to first order, and

58(rs+5rIi )=58+5rii(-e —8+) .
Hence,
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If 6' is taken as zero, then for a stationary value of E
we recover the condition I
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(16) FICx. 1. Profiles of the chiral angle 0(r) corresponding to the

different parameter sets used in the different columns of Table I.
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We were thus able to find solutions for 0.50 (y (0.70.
No broken solutions were found for y (0.50 and no solu-
tion at all for y )0.70. As these broken solutions corre-
spond to larger values of y, they provide, as expected,
lower values for the soliton mass. In column 3 we show
the results obtained with y=0. 64 corresponding to the
broken solution 0(r) shown in Fig. 1. The major success
of this solution is that it gives good values for the nucleon
and delta masses without any modification of the values
of I„,e, and b as given by the meson observables. How-
ever the other static properties of the nucleon and espe-
cially the axial-vector coupling constant g~ are less satis-
factory.

In an apparently different context, it was shown that
scalar fields can be added to the Skyrme Lagrangian,
which can be simply identified with the scale anomaly of
QCD. DiFerent models and solutions have been investi-
gated in that reference, and it is interesting to note that,

in their minimal model with only one scalar field, the
solution referred to as the "deep bag" is able to give good
baryon masses using the experimental value for I' . This
solution has several similarities with our model. First,
the shape of the chiral angle 0(r), although not present-
ing a break like ours, does present a rapid fall in the re-
gion 0.8 —1.1 fm giving a small "tail" like our curve
(column 3). Second, their predictions for the mean-
square radii of the nucleon and for gz are very close to
ours.
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