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Field theory and the nonrelativistic quark model:
A parametrization of the baryon magnetic moments and masses
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We show that the results of calculations of physical quantities (e.g. , the magnetic moments and
the masses) in a relativistic field theory can be parametrized in a way typical of the nonrelativistic
quark model (NRQM). For a relativistic field theory that, as QCD, satisfies the two properties that
(a) the electromagnetic current is carried only by the quarks and (b) Aavor breaking is due only to
the mass difference between the quarks, the most general expression of the magnetic moments of the
baryon octet contains ten different types of terms and therefore ten parameters. If one neglects
terms that break flavor at an order higher than the first, the ten terms reduce to seven and these are
determined from the seven known magnetic moments. We find that (1) among the seven parameters
determined by fitting exactly the data, the two parameters characteristic of the simplest NRQM
description are indeed the largest ones (their values, in spite of the presence of five more parameters,
are almost unchanged with respect to the NRQM), and (2) the X Ay rate (to first order in flavor
breaking) is related to the magnetic moments of the octet baryons; the prediction is consistent with
the present data on the rate. For the masses, in the Aavor-breaking approximation to first order, we
obtain a five-parameter formula containing the Gell-Mann —Okubo relation of the octet and the two
equal-spacing relations of the decuplet. Comparing this general mass formula with that obtained
with the NRQM (with the potential between quarks used by De Rujula, Georgi, and Glashow) it
turns out that (1) one of the above five parameters does not intervene in the NRQM (it happens to
be by far the smallest among the five) and (2) noting that in the NRQM the ratio between two of our
parameters is related to the mass difference Am between the A, and P quarks, the ratio Am/mq
determined in this way is 0.31; that obtained from the magnetic moments is 0.35. These results, and
others on the Ml and E2 A~Py transition, show that the NRQM provides an approximation to
the exact solution correct to = 15%.

I. INTRODUCTION

The nonrelativistic quark model' (NRQM) gives a fair
fit of the magnetic moments of the baryons (Fig. 1).

The fit is based on assigning to the constituent quarks
P and JV magnetic moments + ', per and —

—,'ptr —(in the
same ratio as the charges) and to the strange quark A, a
magnetic moment —(a/3)p, o where a (1 may be due to
the A, quark mass being larger than that of P and JV; the
magnetic moment operator of a baryon is then written as
the following two-parameter expression:

y(z P &

A'

We have used in (1), instead of a, the parameter
A =p(1 —a) to separate (last term) the effect of fiavor
violation by the A, quark. To obtain the magnetic mo-
ments of the baryons of the octet one calculates the ex-
pectation value of (1) using the wave functions of the
NRQM; the spin-flavor factor of these functions has the
SU(6) structure; this is a consequence of the orbital angu-
lar momentum L=O and space symmetrical wave func-
tion in the NRQM, not an additional assumption. Clear-
ly the magnetic moments from (1) for the octet baryons
depend only on the two parameters p and 3 (or, if one

prefers p and a); the fit in Fig. 1 is with @=2.79, a=0.65
(Ref. 2).

The problem is to compare expression (1) (used in con-
junction with the 1.=0 NRQM wave functions) with
what one gets from a relativistic field theory of quarks
and gluons. A calculation of the magnetic moments from
field theory, say, from QCD, is hard (QCD lattice results
are still preliminary). In this paper we shall (a) give a
general procedure to parametrize in a relativistic field
theory the results of the calculations of physical quanti-
ties (e.g., the magnetic moments or the masses) in a way
leading to the "nuclear physics" expressions typical of
the NRQM, and (b) show that if the underlying field
theory satisfies two properties, these parametrizations be-
come rather simple. The two properties are (1) that the
electromagnetic current is carried only by the quarks and
(2) that the Lagrangian is flavor independent except for
the mass terms; QCD satisfies these properties, although
they are more general than QCD. These properties are
sufficient to get the simple results presented in the follow-
ing; how necessary they are will not be explored here.

For a theory with the above properties, the most gen-
eral expression of the octet-baryon magnetic moments
turns out to be the sum of ten terms. If the flavor break-
ing is taken into account only to first order, these reduce
to seven. In terms of them we get the following expres-
sion for the magnetic moments of the octet baryons [in
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p (Z~A) = —1.61

(IExpt I =1.61+0.09)

(2), S=strangeness, Q=charge, J=total angular momen-
tum]:

M=(@+AS)g( 2rr —,'o ——
—,
—'o )+ go +F(2J)Q

+H(2J)S+ —Qgtr +G(2J)QS .
3

(2)

A fit with (2) of the magnetic moments of the seven
baryons P, N, A, X+', :- produces (Sec. VII) the fol-
lowing values for p, A, K,H, G, L (all in proton magne-
tons): @=2.869, 3=+1.005, If=+0.289, F = —0.076,
H=+0.086, G = —0.15, L = —0.17. It appears that all

FIG. 1. The measured magnetic moments of the baryons
compared with the values (solid lines) calculated with the simple
two-parameter formula (1) of the NRQM with p, =2.793 and
2=0.96 (that is a=0.65) having used as input only the proton
{+2.793) and A ( = —0.613+0.004) magnetic moments. [Calcu-
lated and (measured) values are neutron= —1.86 (

—1.913);
X = —1.04 (

—1.16+0.025); X+ = +2.68 (+2.42+0.05);
= —0.50 ( —0.65+0.03);:- = —1.43 ( —1.25+0.014);

p(X~A)= —1.61 (~expt~ =1.61+0.09). The experimental
value 2.42+0.05 for X+ is the average of two measurements, one
giving 2.38 and the other 2.48, both with stated errors near
+0.02 (the calculations in Sec. VII of the text have been done
separately for each of the above two values); the experimental
value of —0.65+0.03 given above for = includes the recent
preliminary data of C. Newsome et al. [Fermilab Report No.
E761 (unpublished)] and of K. Johns et al. [Fermilab Report
No. E756 (unpublished)] quoted in Ref. 2; otherwise it should be
—0.69+0.04.]

the new terms F,K,H, G, L are smaller than 3; this is the
reason for the approximate validity of the NRQM formu-
la (1), and is the fact that a complete field-theoretical cal-
culation should explain; at the same time it emerges that
there is no reason to expect (1) to give a very accurate fit
to the magnetic moments. We will also show that (2) can
be used to calculate the X ~Ay rate to first order in
fIavor breaking.

At this point the following remark is necessary: our pa-
rametrization is a ' restricted" one in the sense that, for
instance, the values of the coefficients in (2) given above
refer only to the lowest baryon octet. If, for example, we
knew experimentally the magnetic moments of an octet
of radially excited baryons, we should not expect, after
fitting them, to find for the coefficients in (2) exactly the
same values as those given above.

One final remark: the procedure to be used for the
magnetic moments can be extended to other cases. The
treatment of many problems given by the NRQM turns
out to be a simplified version of the parametrization that
can be derived from the underlying field theory. In par-
ticular we conclude the following. (a) The qualitative
language of the NRQM is independent of the velocity of
the quarks inside the hadrons or of the neglect of qq vir-
tual pairs and virtual gluons; all that matters is the ex-
istence of a correspondence between the exact state of the
hadrons and the nonrelativistic states with a fixed num-
ber of quarks of an appropriately constructed "model"
Hamiltonian. (b) As to the quantitative results of the
NRQM [such as, e.g. , the fact that (1) provides a fair fit
to the magnetic moments, or the fair estimate of the X-A
mass difference and its sign using the nonrelativistic
Breit-Fermi formula of the spin-dependent forces be-
tween quarks], this is another matter; this paper takes the
first step: it shows that the parameters entering the
NRQM description in the cases examined are in fact
more important than all the other parameters that inter-
vene in the general parametrization; but one still has to
understand why the NRQM is such a reasonable approxi-
mation to the results of the basic theory or, in other
words, why the simplified parametrization of the NRQM
is successful.

All these conclusions emerge already from the treat-
ment of the magnetic moments on which we now focus
our attention.

II. AN OUTLINE OF THE PROCEDURE:
THE MODEL STATES AND THE MODEL

HAMILTONIAN

JN= —.,' f d r j(,r)Xr . (3)

In this section we outline the procedure to derive Eq.
(2); for some points see Appendix A. Call H the exact
Hamiltonian of the relativistic theory of quarks
and gluons to be taken as the starting point and let

~ lljs )
be its eigenstates corresponding to the bar yons 8
(B =P,N, A, X—', :- '

) at rest; we thus have
H~tf'tt ) =Mii ~hatt ) where Mii is the mass of the baryon.
The problem is to calculate the expectation value in

~ gs )
of the magnetic moment operator AL:
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For the current j(r) in (3) we assume the canonical form

j„(x)=e [—',uR (x)y„uR (x)——,'dR (x)y~dR (x)

gSR(x)Y SR(x)] (4)

MB-&FBI~ eB& (6)

Below we suppress often the index B, restoring it when
needed; to avoid confusion the index B will be used only
to specify the baryon.

It is useful to read Eq. (6) as follows: M is the expecta-
tion value of a simple operator [the current j„(x) in (3)
has the simple structure (4)] on the complicated state

In fact the state IP& appearing in (6), being the ex-
act state of a strongly interacting system of quarks and
gluons, is extremely complicated; it can be displayed as a
superposition of an infinite number of Fock states, start-
ing with three quarks; it includes four quarks and one an-
tiquark, three quarks plus one gluon, and so on.
Schematically,

Iit &
= Iqqq &+ Iqqqqq &+

I qqqG &+ .

where the ellipsis stands for the sum of an infinite number
of additional states and the amplitudes that multiply each
state (depending on the momenta, spins, flavors, colors of
the intervening quarks, antiquarks, and gluons) have been
left understood.

We introduce now an auxiliary Hamiltonian &, nonre-

where the fields uR(x), dR(x), sR(x) are the renormalized
fields of the respective quarks (we have suppressed a color
index on the quark fields and a sum over colors in the
current because this is unimportant for the following). In
what follows the values of the renormalized (or "physi-
cal") masses of the quarks will not intervene explicitly,
except to ensure that it is reasonable to treat only to first
order flavor breaking [due to the A,

—P (or A') mass
difference] and except when we will make contact with
the NRQM. However, the mass renormalization implies
that the "physical" (or better the "effective") masses of
the quarks appearing in the quark propagator for calcula-
tions in the low-k regime are not the bare masses (deter-
mined to be a few MeV by the algebra of currents); they
must be identified with the constituent-quark masses,
possibly in the range of some hundreds of MeV for the
light quarks; in fact we identify the constituent quarks P,
JV, and A, [the symbols used in (1)] with the fields of the
renormalized quarks:

P:uR(x), JV—:—dR(x), A, =sR(x) .

The exact Hamiltonian H is assumed, as stated, to be
Aavor independent, except for the only breaking due to
the mass difference between the A, quark renormalized
mass (m+6m) and the common value (m) of the P, A'

renormalized masses; thus the only flavor breaking -part of
His

m Id r[u R( x) uR( x) +d R( x) dR( x)+s R( x)s R( x)]

+5m J d rsR(x)sR(x) .

The magnetic moment of a baryon is

lativistic or semirelativistic (by this we mean that the "ki-
netic" energy of a particle with mass m can be written
p /(2m) or [(p +m )' —m], or also differently), that
operates, by construction, only in the three-quark sector
[compare Eq. (A4) of the Appendix]; the operator &,
called the "model Hamiltonian, " has the sole purpose of
providing a set of three-quark baryon states that we call
the three-quark "model" states IpB &. In principle we can
now write the exact state i)'jB & in (6) as

where V is some very complicated unitary operator that,
again in principle, can be constructed in terms of H and
& using, for instance, the adiabatic construction of the
bound states (the question of a unitary V in the adiabatic
construction is dealt with in the Appendix). Using (8) the
expression (6) for MB becomes

M, =&y, l Vt~VlyB & . (9)

The difference between (6) and (9) is that in (6) W is sim-
ple but the states I g & are very complicated; in (9), on the
other hand, the states IP & are simple and all the compli-
cations are transferred into V JK V.

This has an advantage: V Af. Vis indeed a complicated
field operator, but since it has to act only on the coordi-
nates (space, spin, flavor, color) of the three quarks
present in the state IP &, it must be (after contraction of
all the field operators) necessarily a function of these
coordinates only. In the following the three quarks in
IP& will be numbered 1,2,3. Thus, after the elimination
of all the creation and destruction operators, V Af, V in (9)
behaves as a color-singlet three-body operator acting on
1,2,3.

In (6) Aftransfor, ms as an axial vector (since it is a
magnetic moment) and the same is true for V JNVin (9),
because V is a rotationally invariant operator (it is ex-
pressed in terms of H and & which are both rotationally
invariant). As to

I P & in (9), it depends on how we select
the model Hamiltonian &. The main point now is that
by choosing & as the simplest, most naive, most unrefined
nonrelativistic quark model Hamiltonian, the parametri-
zation of &/I V A1, VIP& can be considerably simplified.
We select & so that for the lowest octet (and decuplet)
baryons the wave functions pB of the baryons states

I pB &

have a nonrelativistic space-spin structure with the fol-
lowing properties: (1) pB is the product of a space part
X(r„r2,r3) symmetrical in r„r2, r3, times a spin-flavor
part WB(1,2,3) times a color-singlet factor S, (1,2,3); (2)
the space part has orbital angular momentum L=O; thus
X=XL 0(r„rz, r3)

Altogether for the baryon 8,

4B XL =0(rl r2 r3) WB(1,2, 3)S,(1,2, 3)

The assumption L=O and the symmetry of the space
wave function imply automatically that the spin factors
WB(1,2,3) of the wave function have the SU(6) structure.

As to the selection of the model Hamiltonian &, that
is, of the model wave functions P, the following remarks
are in order.

(a) Because the operator V in (8) is written in terms of
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creation and destruction operators of Dirac particles, the
spinors appearing in WB(1,2,3) must be four-component
spinors; otherwise the operation of V on

i pB ) would not
be defined. This is achieved by simply completing the
Pauli spinors of the NR wave function with two zeros in
the lower components. This is entirely compatible with
our nonrelativistic choice of the model Hamiltonian &.
In fact & operates on two-component Pauli spinors, but
it is formally possible to enlarge the space of such spinors
to that of the four-component spinors, provided that & is
extended so that it does not connect the spaces of the
upper and lower components and gives zero when operat-
ing on the latter.

(b) The XL 0(r, , rz, r3) part of the wave function (10)
does not carry the baryon index B; this is because we
have chosen & to be fiavor independent [in particular the
masses of the quarks in & are taken equal, all with the
value m +(Am/2), in the notation of (5)]. A11 the fiavor
breaking is left to V: recall that V depends on the exact
Hamiltonian H of the theory and H contains the flavor-
breaking term (5). We might have made a dNerent
choice, assuming & to be fiavor dependent, but, at least
for the problem at hand, it is convenient to proceed as in-
dicated.

The operator V W V has a role only when inserted be-
tween three-quark states; this is because V in (8) contains
& that was constructed specifically for the three-quark
states. But, of course, one can introduce auxiliary Hamil-
tonians for states different from the three-quark ones, for
instance, the qq states of the nonexotic mesons or the
qqq q states corresponding to exotic mesons (if these are
bound); then V would operate also in sectors additional to
the three-quarks one.

Calculating the expectation value of the field operator
V JkfVin th. e state ipB ) gives the same result as calculat-
ing the expectation value of a certain quantum-
mechanical three-body operator JR on the wave function
pB in ordinary three body quantum -mechanics; the search
for the most general parametrization of the magnetic mo-
ments is then reduced to writing the most general opera-
tor Sftransfor, ming as an axial vector in ordinary nonre-
lativistic quantum mechanics. Some steps will be given in
the next section.

III. THE EFFECTIVE THREE-BODY
MAGNETIC-MOMENT OPERATOR

We first write explicitly the state ipB ), with the wave
function pB given by (10), in the occupation number
space. It is

lWB~ g g q(pi pz P3)yp, p,p,ap, p, ap, p,ap, p, l» .
I li 2i 3 P1P2P3

momentum space of the rotation and translation-
invariant function XL 0(ri, rz, r3); y is the transform

P 1P2P3

to the space of the indices p&p~3 of the spin-Aavor-color
factor 8'B(1,2,3)S,(1,2,3).

On inserting the above expression (11) into (9) we ob-
tain

M, =&y, i V'uviol, )

= g g % (P )X & P iz I

V'~ Vi PP ~ q'(P )X,
'

pp pp

where we have introduced the abbreviations

(12)

P—:P]P2P3& P =P 1P2P3

and ipp) stands for

In (12) &p'p'i V JKVipp) is, of course,

& p'p'
i V AfVi pp, ) =

& 0
i
a, , a, , a, , V Jltf. Va

(13)

St = g y i
p'p') & p'p'i vtAt vi pp) & pp i

.
pp pp

(14)

The expression (12) for the magnetic moment can be
rewritten

= X & &WBiPP ~&PP i~iPP)&p~i4'B ~

pp pp

since it is

& PP I NB ~ = & P I+L =0(rlrzr3) ~

X &pi WB(1,2, 3)S,(1,2, 3))—:y(p)y (16)

It is evident that the effective three-body magnetic-
moment operator JK must transform as JK, that is, as an
axial vector, under space rotations. In the next section
we will parametrize the operator Jkf(14). ,

To calculate explicitly &p'p'i V JRVipp) from (13) one
has to contract the creation and destruction operators
present in V JK V with those acting on the vacuum on the
right and on the left, and among themselves (the discon-
nected graphs disappear in the usual way). Once this
contraction of the a, a is accomplished, the operator
whose matrix elements are defined by (13) becomes an
operator acting on the space of the three-quark states in
ordinary nonrelativistic quantum mechanics. This opera-
tor, that we will name the "effective three-body magnetic
moment operator" and indicate. with Al, is thus

Here i0) is the vacuum of the noninteracting but mass-
renormalized quark fields (with equal masses); a zPkPk
(k=1,2,3) is a creation operator of the kth quark with
momentum pk and with spin-flavor-color specified cumu-
latively by the index pk,' y(pi, pz, p3), which includes a
factor 6(p, +pz+p3) (baryon at rest), is the transform in

IV. THE PARAMKTRIZATION OF A: ELIMINATION
OF THE COLOR AND MOMENTUM DEPENDENCE

We now determine the most general form of the three-
body axial vector (14). We are interested only in the ex-
pectation value of JR in the states ipB ), chosen to have
L=0. Decomposing,
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V. THE SPIN DEPENDENCE OF THE MOST
GENERAL AXIAL VECTOR

we call St', the part of W invariant under space rota-
tions; JN" includes all those three-body axial vectors that
vanish after evaluating their expectation value on Ipii &:

(XL =OIJK IXL —o&
= g g G (of)' (20)

We thus restrict to the parametrization of St' Th. ere is
no need to pay attention to the color dependence of St'
because the singlet factor S,(1,2,3) in Qadi always factor-
izes; because of this, the average of Af' over the color
variables can be performed independently from the aver-
age over the momentum, spin, and flavor. Because the
color-singlet factor S,(1,2,3) is the same for all the
baryons, the average over the color gives merely a com-
mon multiplicative factor that does not increase the num-
ber of final independent parameters. Therefore, from
now on we forget the color and determine the most gen-
eral dependence of Sf, ' on the momentum, spin, and
flavor variables; we start with the momentum.

The expectation value in the state lpii & (with L=o) of
any axial vector constructed with p or p' (any "orbital
angular momentum") vanishes. Therefore, the axial-
vector property of W' has to be carried by the spin opera-
tors cr only; we thus write Sf'as,

St'= g g R (p, p')G, (o,f) .
PrP

In (19) the notation is as follows: G (o,f) is the set
(numbered by the index v) of all the independent Hermi-
tian axial-vector operators that can be formed as prod-
ucts of the spin operators o.

,
- of the three quarks with the

flavor operators f. Each G (o,f) is multiplied by a Her-
mitian R (p, p') (operating in the space of the vectors

p, p'), a scalar under space rotations for the reasons just
stated. We now exploit once more the fact that the wave
function Qadi is a product of a momentum and a spin-
Aavor factor. On evaluating first the expectation value of
Sf'over th,e space part of the wave function we get

The most general Hermitian axial vector formed with
the spins o.

&, az, a3 of three spin- —,
' particles and depend-

ing on the flavor operators f is given by the following ex-
pression (22) plus all the terms (possibly with different
coefficients) obtained performing any permutation on
123:
o, [a (f)+b (f)(o 2.o 3)]+c (f)(o, Xcr2)

+d(f)(cr, Xo.3) . (22)

(Rl(cri Xo2),c (f)IR & =0 . (23)

The most general form of a real function of the 1,2,3
spin-flavor variables is

In (22) a (f), i2(f), c(f),d(f) are Hermitian operators
acting on the flavor variables and having real matrix ele-
ments between real functions (we call such operators
"real" ).

We will show that when calculating the expectation
value of the operator (22) on a spin-Savor state with a
real wave function and a given value of the total angular
momentum J, (a) the cross-product terms in (22) give no
contribution, and (b) the term o'i(cr2-o 3) can be rewritten
purely in terms of cr& and of the c number J. It follows
that the most general Hermitian axial-vector operator
G(o,f) constructed in terms of the cr s of the three par-
ticles (and of the flavor operators f) is, when used for
evaluating an expectation value as specified above, a com-
bination of o iI i(f), o2I 2(f), cr3I 3(f) where I;(f) are
three operators depending (for a given J) only on f.

Pvoof: Consider first the term c(f)(o'i Xo'2) in (22);
the same argument obviously holds for d(f)(cri Xo'3).
We may restrict the attention to any component of
c(f)(o, Xo2), for instance, the z component; it is
sufhcient to prove the above statement for
c(f)(o i Xcr2), . Consider any spin-flavor state of 1,2,3

represented by a real function R(1,2,3) of the spin-liavor
variables; we will show that

where g are numerical real coefficients [recall that y(p)
is the Fourier transform of XL o] given by

R (1,2, 3)=a,p2R, +a p2, Rc+,aaR2, +p, p2Rd, (24)

g =
& g (p) IR (p, p') y(p) & . (21)

We must determine, therefore, the set of spin-Aavor
operators G (cr,f) Before doing th. is we shall show that
the most general axial vector formed with three spins is
much simpler than one would think, if we are only in-
terested in its expectation value on a state described by a
real spin-Aavor function.

where R„Rb,R„Rd are four real functions expressed in
terms of a3, p3 (the spin basis for the third particle) and of
the complete Aavor basis for 1,2,3. Because it is
( o, X o 2), =2i (o,+o

2
—o, o 2+ ) the operator (o., X cr 2),

gives zero when operating on the a,a2 and on the p, p2
terms of R (24). When applied to aip2 and to a2pi it is
(o'i Xcr2) alP2 —2iPia2 and (o, Xo'2) a2P] +2iP2al

It, therefore, follows that

&Rl(crixo ),c(2f)IR &= 2i &aip2R, +pia2R—blc(f)lpia2R, aip2Rb &= 2i [(Rblc(—f)IR, &
—(R, Ic(f)IRb &]=O .

(25)
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The vanishing of (25) is due to the assumed reality of c (f)
and to the fact that R, and Rb are real functions:

(30) below, where we have restricted to the z components
(the x and y behave similarly)

&Ri, ~c(f)~R, &
= &R, ~c(f)IRb &* = &R. Ic(f)IRb & . o.„(o, o ~)= cr2, + i(o, X o 2), , (29)

It must be stressed that the above property (25) holds for
the expectation value of (cr, Xoz)c(f) over a real func-
tion, but not necessarily for a nondiagonal matrix ele-
ment.

Note, incidentally (we will use this in Sec. XI), that
also the scalar

(o, Xcr~) o3 (26)

o„(o~
.cr3) = ,'o„[(—o2.+o3.) 6. ] .—

On writing

2J—0 ) + CT p + (7 3

we obtain

o i, (o 2-o'3) =
4 cr &, [(2J—o i )

—6]+ '[(2J —cr i ) ——6]cr i,

and, with some algebra,

o'i, (o'2 a'3) =—'[(4~ J~ —7)cr i, +o i, (4~ J~ —7)]—2J, .

(times any Hermitian real flavor-dependent operator) has
a vanishing expectation value on any real spin-flavor state
of three particles.

Proof:

(o'i Xo~) o 3 (cri X a2)» c3r»+( criXcr2)» cr3»

+(o, Xa2) cr3

1 X a~)i a3»+( aX3&1)z'a2»

+(cr2Xcr~), o.„.
The expectation value of (o; Xo k ), col, (iWkWj) van-
ishes as it is seen using (25) in which c(f) is replaced by
o. ,c (f), a real operator.

Consider next the operator o,(o2 a3) [multiplied in
(22) with a real operator b (f) ] and take its z component.
It is

cr„[o., (cr2Xcr3)]=(o zXo 3), +i [a i X(o & Xo 3)],
=(o 2Xa 3), +i (cr, o z)cr3,

—i(o, a3)o2, . (30)

On recalling that the expectation value of (cr, X o k ) gives
zero, as shown above, Eqs. (29) and (30) [in conjunction
with (27)] exemplify how the multiplication of o; by sca-
lar products of o's does not create new axial vectors with
a nonzero expectation value in addition to (28).

VI. THK PARAMKTRIZATION OF Sl:
THE SPIN-FLAVOR DEPENDENCE

P =
—,'(2+3A3+As), P =

—,'(2 —3k3+As),

P =
—,'(1 —A8) .

(31)

In terms of the above projection operators and calling itt

the column symbol uz, dz, sz the current density (4)
takes the form

j„(x)=eP(x)y P~g(x), (32)

where P~ stands for the combination of projection opera-
tors:

P~= —'PP ——'Pw ——'P
3 3 3 (33)

The mass Hamiltonian (5), breaking the flavor, is rewrit-
ten

We now list the independent G,(o,f) that appear in
(20); having clarified the spin dependence, we must deter-
mine the most general flavor operator I (f) in (28).

Call P,P,P the projection operators for the P, JV, A,

quarks; in terms of the Gell-Mann matrices A, 3, A, 8 with
A3=Diag[l, —1,0] and A8=Diag[1, 1,—2] the projection
operators are, of course,

(27) m f d r i'(r)g(r)+Am f d r g(r)P P(r) . (34)

In calculating the expectation value of o i, (o2 cr3) on a
state with a given J we can write

~
J

~

=J (J+ 1), a c num-
ber.

In conclusion the most general axial-vector operator
(as far as its expectation value on a real spin flavor state-
with a given Jis concerned) is

G(o. ,f)=cr,I,(f) or =o2I 2(f) or =o3I 3(f), (28)

where the I, (f) are real flavor operators. What we have
proven, essentially, is that the most general axial vector
formed with three spin- —, particles (under the italicized
condition written above) is a combination of o'i, o2, o'3
and nothing else. It might appear strange that the only
axial vectors are those listed in (28) since we can, for in-
stance, multiply o. , by (o, o2) or by other scalar prod-
ucts of the spin matrices, and remain with an axial vec-
tor. The answer appears from Eq. (27), and Eqs. (29) and

Consider now the operator St given by (14). No matter
how complicated is the calculation leading, after the el-
imination of the creation and destruction operators of the
fields, to the expression of Jk in terms of the variables of
the three quarks, the result of this calculation must be
linear in P,~ [where Pq is the combination (33) of the pro-
jection operator and i is a quark index, i = 1,2,3].

Indeed, if in the course of the calculation of A, , we
keep all the P 's without simplifying PP with P; [com-
pare Eq. (35) below], the P~ appearing in the current (32)
remain in the final result for &; this is due to the fact
that the only operators in flavor space present in the
Hamiltonian H are the P 's [appearing in the mass-
breaking part of (34)] and the P; commute with the Pg
for any choice of the indices i, k. Of course, in simplify-
ing the end result one will note that the product of P,q
and P, with the same index i is
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Pq PA, ]PA,
I I 3

(35)

due to the fact that P, P; =P; P, =0 and P, P, =P, ;
then, because of Eq. (35), P~ can disappear if multiplied
by a P with the same quark index. But below we will list
the possible flavor factors in the final expression of Jk
(more precisely of Sf, ') before the use of (35).

Thus for all the baryons of the octet and decuplet, ex-
cept the fl, the operator I (f) appearing in (28) must
have necessarily one of the following forms (the indices
i, k,j have the values 1,2,3):

Pq Pg Pk Pg PA, PA, (36)

To inclUde the 0 one must add P P ] P2 P3.
It follows that the most general operator G„(o,f) in

(28) for the octet [to be then inserted in (20)] is the prod-
uct of an operator chosen from the basis u&, o.2, o.

3 in the
spin space and an operator from the basis (36) (with all
the choices of i, k,j ) in the flavor space.

An additional property of the G (a,f)'s is due to the
spin-flavor functions Wz(1,2,3) being symmetric in 1,2,3
for the lowest baryon octet and decuplet. Hence, each
G„(a,f) in (20) must be symmetric in 1,2,3. Thus all the
G,(o,f) are obtained by taking one of the operators (36)
(with the index i chosen to be, say, 1 and the other indices
k,j different or equal among them and from 1 in all the
possible ways), multiplying this operator by o, or cr2 or
cT 3 in all the possible ways and symmetrizing. By doing
so the following 11 different G (o,f) are obtained [we list
them before the simplification (35)] (we have included
also Gi i that is nonzero only for the Q ):

terms carrying the indices of two different quarks.
The structure of (37)—(39) simplifies by introducing the

abbreviations

Xq:—QP~o, , X —= —,
' gP; o, (40)

The first seven 6 's (v= 1, . . . , 7) in terms of the quanti-
ties (40) and (41) are reported below; we have used the
simplification (35):

G, =X~, 6 = —X, 6 =Q (2J)—X~,

64= —,'S (2J)+X, 65=3Q X +X

G6= —S Xq+X

6 = —Q S (2J)——,'S (2J)—3Q.X +S.X~—2X

68 to 6» can be expressed similarly; they contain ad-
ditional powers of S, up to third power.

Each of the seven 6 's linear in the flavor perturbation
is a linear combination of products of the quantities (40)
and (41) containing at most the first power of S or of X .
Therefore, the most general form for the magnetic mo-
ment M to first order in Aavor perturbation is

7
M= gg G, =@X~+AX +FQ (2J)+HS (2J)

1v

as well as the charge Q, the strangeness S, and the total
spin 2J:

Q—= QPP, S:——gP, , 2J—= g cr, .

Gi g PP(r;, G2= g P;~P; (y, ; (37) +I.Q X +ES X~+GQ S.(2J), (42)

G = y PP~„, G = y PPP; ~„, G = y P,V' ~„,
iWk iWk iWk

(38)
G = y PP~;P„, G = y PPP„~

iXk iWkWj

G, = g P'PkP o;, G = g P~ol PkP
iWkWj iAkXj

G, = g P~PoPG =. g P~PoPP
i +-kWj i AkWj

Nothing can be done, without additional assumptions,
with 11 parameters; below we restrict ourselves to consid-
ering the flavor violation to first order. In this case only
the 6 's from G, to 67 (the vector symbol on the G 's is
often suppressed from now on) intervene: from the exper-
imental values of the seven magnetic moments of the oc-
tet baryons we then determine their coe%cients and com-
pare the result with that given by the NRQM description.
Moreover, from the knowledge of the above coefficients,
it will be possible to predict (only to first order in flavor
breaking) the X ~Ay rate.

First order in fiavor breaking means that among the
above 11 terms we keep only those linear, at most, in the
P 's. However, (P, )"=P; for any (integer positive) n, so
that, in fact, we keep to all orders n the Aavor-breaking
contributions additive in the quarks; we exclude Aavor-
breaking effects of second order or more coming from

where g &,g2, g3, . . . , g7 or, equivalently, p, A, I', H, L,
IC, G are seven parameters. Equation (42) is Eq. (2), writ-
ten with different symbols.

We make a final remark. The effective magnetic mo-
ment operators 6& to G„can be grouped in various ways:
one is to form a class with only the "additive" operators,
those that consist of sum of terms over one quark at a
time, and another class with all the others; in this way 6,
and Gz belong to a class and 63,64, 6~, 66, G7 to anoth-
er one. [In the NRQM (in its simplest form) only the ad-
ditive Gi and Gz intervene. ] Another way is to group to-
gether those 6 's where the same quark carries the spin
and the charge producing the magnetic moment and as-
sign to another class the 6 's related to the spins of two
different quarks; this division puts together G „G2,66
and in another class G3, G4, 65, G7 that imply the inter-
vention of the spins of two different quarks. Once the
coefficients of the various 6 's have been determined
from the data, one can check if their magnitude reAects
somehow the above groupings.

VII. DETERMINATION OF THE SEVEN
PARAMETERS

The expectation values of X~, X, for the seven baryons
P, X,A, X+', :" ' are given in Table I. The last line
gives the matrix elements of X~ and X, for the transition



3004 G. MORPURGO 40

X —+Ay (to be used in the next section).
Equation (42) and the values of Xq, X, of Table I lead

to the following expressions for the seven magnetic mo-
ments (we indicate by the baryon symbol the magnetic
moment of the baryon in proton magnetons):

we obtain

A =+1.005, K =+0.289, H =+0.086,

G = —0. 155, L = —0. 175 .

P =p+F, N= —,A= — + —H+-2p
3

'
3 3 3

L=p — +F—H ———K —G,
9 9

L K
X = — — —F —H+ —+—+G,

3 9 9 3

p 2p 4A 4K
3 9 3

(43)

We stress that these are, to first order in flavor breaking,
the exact values of the parameters A, K, H, G, L; the
values that the exact relativistic theory, if it satisfies the
two conditions stated in the Introduction, must produce.
Alternatively, in terms of the g 's used in the first expres-
sion of M in Eq. (42) one has

g, = . 9& gz= —.9, g3= —o.o 6,
(47)

g4=0. 41, g5 =0.097, g6= —0. 134, g7 =0.155 .

3

4 A 4L 2K
9 9 3

p=2. 869, F = —0.076 . (44)

The A, X+', :- ' determine the remaining five parame-
ters; they are

3 = ——'(= +N)+ —'A ——'(X++X )

E =+:- ,'N —
—,'A ——

—,'—(X++X ),
H = —-'(='+N) —-'(r++ X- ) (45)

G =—'A+ —'X ——'X+ ——':- +—':- + '(P+N)—
4 12 4 2 6 6

L = —-'(=--+ =-')+ -'P +-'r- —-'X++ -'A .
2 2 4 4 2

Inserting in (45) the values P=2.793, N = —1.913, and

X+ =2.48, X = —1.16, A= —0.61,
= —1.25, :- = —0.65,

The I' and X magnetic moments depend only on the two
parameters p and F. Note that this remains true also if
all flavor-breaking terms are included. It follows (in pro-
ton magnetons) that

We have listed the values of the g 's because the G 's,
of which they are the coefficients, are normalized, by
construction, more homogeneously than Xq, X,
Q. (2J) . Q S.(2J) that multiply p, A, I', H, K, G, L in
the second form of (42); however, below we will continue
to refer mainly to p, A, F. . .6,L. On writing

A =p(1 —a), (48)

where a is the usual parameter a =I&/I& appearing in
the NRQM, we get

a =0.649 . (49)

Thus the value of a (=0.65) used to fit the NRQM
description remains valid in the complete description, in
spite of the many additional degrees of freedom. The
next largest parameter in (42) is K; this is not introduced
usually in the NRQM description; it represents a correc-
tion to the magnetic moment of the individual quark
linear in the strangeness, that is, essentially linear in the
mass of the hadron in which the quarks are.

Each of the other parameters is rather smaller than A:
G/A

I
=0.15, L/3

I
=0.17, H/A

I
=0.085. In some

cases, however, G, L,H have an appreciable effect; for in-
stance, the value of the combination

A+2K +X =G —4H + —,'L —F = —0.44 (50)

P
N —2

3

1

3

(~'t Ir!IAt)= —l/&3

1

1

9
1

9

+ 9

+ 4

(rot Ir,'IA1) =0

TABLE I. The expectation values of X~= g, P o;, and.
X,"—:—,

' g, P; o;, for the baryon-o. ctet states; in the last line the

transition matrix elements of the same quantities between X
and A.

depends essentially on the small value of H=0.086.
In conclusion it remains true that, though affected by

many corrections, the NRQM parametrization is verified
in an exact description, in the following sense: p and A,
the only parameters that the NRQM description intro-
duces, are indeed the largest ones; all the other parame-
ters turn out to be at most 15% of p. Were it not for the
fact that it is not easy to define normalized invariants, we
might even be tempted to generalize the above conclusion
into a criterion assessing the reliability of the NRQM:
that in the parametrization of a process the coefficients of
terms different from those introduced in the NRQM are
at most 15%; and that in cases in which the NRQM im-
plies that the "same" values of a coefficient should be
used in calculating two different processes; the word
"same" is correct to 15%%uo.

But, of course, the real question is not this, it is to un-
derstand why the correct relativistic theory (say, QCD)
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leads to predictions confirming the assumption of addi-
tivity, the main assumption of the NRQM. Take, for in-
stance, the P and N magnetic moments; in this case, in-
dependently of any Aavor-breaking approximation, only
the terms p and F in (42) intervene, as we have stated.
Why does the correct theory predict a value of F as small
as it is?

Finally it does not seem possible, at least if the experi-
mental values of the magnetic moments will stabilize near
to those used above, to classify the parameters additional
to p and A (or to g, and g2) in a hierarchy of decreasing
importance, in particular the distinction between
different types of 6 's corresponding to the second subdi-
vision given at the end of Sec. VII is not reAected in the
dominance of E over the remaining parameters F,HG, L.

VIII. THE X ~Ay TRANSITION RATE

&X'$~(o, xo, ),c(f)~A'1& . (51)

This is purely imaginary: in fact, (o, X o 2 ),
=2i (cr,+o2 —cr2 o. ,+) and c(f) is real; because (o,
X o 2),c (f ) is Hermitian, its coefficient (call it D) must be
real if it has to be a Hermitian operator. Therefore, the

I

The parametrization of Sec. V for an axial vector holds
only for an expectation value, as stated. For a nondiago-
nal matrix element additional terms can intervene. In
fact (o, Xo.2)c(f), where c(f) is a real operator acting
on the Aavor variables only, can have a nonzero nondiag-
onal matrix element. In calculating the X —+Ay rate
operators of this form can thus give a contribution and
thus the number of parameters can increase. We want to
show, however, that in calculating the X ~Ay Ml rate,
correct to first order in Aavor breaking, no new parame-
ter, in addition to those present in (42) appears. This is
seen as follows: by the Wigner-Eckart theorem we can
consider only the transition matrix element between the
At' and X 1 states, that is the matrix element

where M, is the operator (42). In the rate there are no in-
terference terms between the M, matrix element and
D & X 1 ~ (o, X o z),c (f ) ~

A 1 &. Now consider the terms of
order zero in flavor breaking; this means to select c (f) in
(51) simply as P~. Then the transition operator is either

(o; Xok), Pg (iWkWj ),
or (53)

(o, Xol, },(P~ Pf) (—iWk) .

But it is

&X'1 ~(o, Xo, ),P[ ~Ay& =0

&X't (o., xo ),(P f P2i)~Af—&=0

(54)

as can be checked directly.
It must be added that there exist Aavor-breaking ma-

trix elements with the factor (o
&
Xo'2), that do not van-

ish, as those obtained, for instance, choosing
c(f)=Pf.P, (= —P~/3); however, in view of (52) they
contribute to the rate at second order in Aavor breaking.
We conclude that in a calculation of the rate X —+Ay
correct to first order in Aavor breaking, only the part
with the operator M, in (42) contributes; moreover the
coefticients p, A, K, . . . , L appearing in M, have the
same values deduced in Sec. VII from the (diagonal) mag-
netic moments, because X and A have the same J =

—,
' [if

we had to calculate a matrix element between an octet
state (J =

—,
'

) and a decuplet state (J =
—,
'

) the coefficients,
in view of (27), would not be expected to be the same].
Therefore, it is

rate X —+Ay turns out to be proportional to

1&X 11M, IA 1&l +D I&X ll(o, Xo ),c(f)IA'1 &I',

(52}

& X'1 IM, IA'1' & =(p+&~}&X'&IX,'IA'1 &+ ~ & X'1IX,'IA'1 &
= —(p —&} —= — — = —1.49

(~expt~ =1.61+0.09), (55)

where use has been made of the values in the last line of
Table I.

Before ending this section we consider the following
point. Both for the magnetic moments and for the
X ~Ay matrix element we have written the most gen-
eral expression (correct to first order in ffavor breaking)
of an axial-vector (and ffavor) operator and parametrized
the appropriate expectation value or transition matrix
element. In some presentation of the adiabatic procedure
the operator V (transforming the model state into the ex-
act state) is not unitary. Then one might object that one
has to parametrize not the matrix element of an axial vec-
tor but rather the product of the matrix element of an ax-
ial vector and of a scalar —the normalization factor of
V~/~ &

—depending on the baryon. If this were true, the

resulting pararnetrization would be more complicated; to
first order in Aavor breaking, this would introduce an ad-
ditional type of term (and thus an additional parameter):
namely,

& A~X .J~B&.& A~ /XB&, (56)

where 2 and B are the baryons involved ( A =B for the
magnetic moments, 2 =X,B =A for the transition ma-
trix element); the connection between the X ~Ay matrix
element and the magnetic moments would fail, even to
first order in Aavor breaking.

However, there is no problem here. Clearly our pro-
cedure is more general than the adiabatic method; but
even if we stick to it, V can be written as a unitary opera-
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tor multiplied by a singular baryon-dependent phase fac-
tor (compare the Appendix). Thus the quantity to be cal-
culated is purely the expectation value (or transition ma-
trix element) of an axial vector.

b. pg— ;,Pq+~ g(iT, Xo„),(P,~ P—f) Ph
~

1~2 r
~

2 ~

7

~

~

k z l~

~ ~
2

1 1

=—', (P +9i? ) . (61)

IX. THE E~Py Mj. TRANSITION

The parametrization of Secs. VI and VII cannot be
used to calculate the A~Py M1 matrix element. A dis-
cussion of this and the related question of the quasifor-
biddenness of the E2 A~Py' transition illustrates, how-
ever, the relationship between the exact results and those
of the NRQM; in particular we may ask if the presence of
nonadditive contributions to the M1 transition operator
with coefficients not larger than =15%%uo of those of the
additive contributions can account for the deviation of
the experimental Ml transition matrix element from that
predicted by the NRQM. The deviation in this case is
rather large: the matrix element of the NRQM is a fac-
tor of =1.45 below the truth; the rate a factor of =2.1

[this includes in the calculated matrix element a factor of
1 —

—,'k (r ) =0.82 obtained with ((r ) )' =0.8 F; a
smaller effective ((r ) )' of the three quarks would im-
ply a smaller deviation].

The first question is why we cannot expect to calculate
exactly the M1 transition matrix element for A~Py us-
ing the magnetic moment operator of Eq. (42) (or better
the part of it relevant to strangeness zero, the terms p
and F); we recall that, indeed, in the NRQM the Ml ma-
trix element for the transition is calculated using just the
term p in (42). There are two reasons.

(1) The calculation of the A~Py transition is not that
of a diagonal matrix element; therefore, terms of the form
(with i) real)

M"= ~ g (o, Xo k )(P~ Pg)—
i, k

As stated above, the rate calculated with g=O and with
p=2.79 (the value suggested by the NRQM) is =2.1

times smaller than the experimental value. The term 9q
on the right-hand side of (61) acts in the right direction to
correct this difference, but is largely insufficient if g is,
say, = 15%%uo of p. We, therefore, turn to p in (58).

Why, in spite of the fact that the operator V JR Vis the
same operator both for the octet (J=

—,
'

) and the decuplet
(J =

—,'), are p and p different? To answer this note that
(for how it has been derived) the expression (42) of the
effective magnetic moment can only be used for the ex-
pectation value of M in a state of given J [compare the
remark before (28)]. To get an expression for V Jttt, V that
applies also to the transition matrix element for J =

—,
' to

J =
—,', it is convenient to start again from (22), that gives

the most general spin-flavor operator before the
simplifications brought by (27). We now omit from (22)
the (o, X o.2) and (o, X cr3) terms because they have been
just discussed, and write for a (f) and b (f ) the most gen-
eral expression appropriate to deal, as we do here, with
the sector of strangeness zero; because this expression
must be linear in Pq and taking into account obvious
symmetry requirements we write

a (f)=aP [+5(P)+Pf ), b (f)=PP'f +y(P)+Pf ),
where a, p, y, 5 are real coefficients. The most general
effective magnetic moment operator to be used (in the
zero strangeness sector) for calculating both the diagonal
and the transition matrix elements is then

can contribute, in addition to the terms of the form

Pgo, PP . . (58)

M= g [aP[+5(P)+P))]o,
perm

+ [PP[+y(P~~+Pf )]o,(cr2 o 3), (62)

(2) It is not true that P to be used in (58) for calculating
the transition matrix element is precisely equal to p in
(42).

Note that (57) and (58) are the only terms that can con-
tribute; a term Q (2J) [present in (42) with coefficient F]
does not intervene in A~Py because J has no matrix ele-
ments between different eigenstates.

The rate can, therefore, be expressed in terms of the
following matrix elements:

(59)

M=(a —5)X't

+(p—y )[-,'(4IJI' —»X'+-,'X'(41 Jl' —7)]

+ [5—p+ —,
' y(4l Jl —7)]Q (2J) . (63)

In calculating the expectation value over an octet state
with J=

—,', (63) reduces to

M(J =
—,
'

) =[a—5—2(P—y)]Xq+(5 —P+2y)Q(2J) .

where the sum over the perm(utations) means that one
has to add to the term (123) indicated in (62) the terms
(312) and (231). With some algebra, using in particular
Eq. (27), the expression (62) can be rewritten

(
1 1~ g (cr; Xo„),(PP Pg) P =i2&2i) . — —

iik
(60)

Because of the imaginary unit in the right-hand side of
(60) the two matrix elements add in quadrature in the
rate; it is

For a J =
—,
' —+J =

—,
' transition (63) becomes

M( —', ~—,
'

) =(a —5+P—y )X~ .

Comparing (64) with (42) we have

(64)

(65)
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p=a 5—2—(P y—), F =5—P+2y
and comparing with (58) it is

p=a —5+P—y .

Therefore,

9=V+3(& y—) .

(66)

(67)

(68)

X. THE E~Py E2 MATRIX ELEMENT

Unfortunately we have no way to determine P—y; never-
theless, (68) is of some interest; with the factor 3 in front
of (P—y), it is sufficient in (68) to take (P—y)=0. 35
( =0.12@)and to assume the same order of magnitude for
g in front of (57), to have (p +9g )/p =2.1; once more
the parameters not included in the NRQM are smaller
than 15% of those included.

effective operator (70) might have led to a large E2 transi-
tion, it turns out again that its contribution is depressed,
as suggested by the NRQM.

I will not make this more quantitative here, but add
the following remark: in this description the space part
of the wave functions of the 6 and P continue to be taken
as perfectly spherical symmetric; all the asphericity, due,
in the NRQM language, to configuration mixing, is
transferred into the effective operator (70). At the same
time the operator (70) also includes other effects, for in-
stance, exchange of qq pairs and relativistic eff'ects.

As already stated we are dealing here with a correspon-
dence between exact and model states characterized by
the operator V; depending on the case at hand V can be
thought to be applied to the model states, thus producing
configuration mixing and all that; or it can leave unal-
tered the simple model states and transform an operator
0 into V OV; both choices are equally good, but, of

The usual E2 operator in the NRQM has the structure course, one should avoid doing both things together.

QM= QP~QM(r;)+ QP~[o, eV(r;)]M, (69) XI. PARAMETRIZATION OF THK MASSES

where the index M specifies the component of the spheri-
cal tensor of order 2. The terms on the right-hand side of
(69), characterized by an additive structure in the quark
indices, originate in the NRQM as follows: the first is
due to the "conduction" current; it consists of the charge
Pq times a quadrupole operator AM(r;) of the quirk
space coordinates. The second (due to the "magnetic"
current) is the product of a spin o; and an axial-vector
operator of the space-momentum coordinates V(r; ). Be-
cause of the above structure of the E2 operator and of the
property (10) of the baryon wave function, the matrix ele-
ment of Q~ (69) between the 5 and P states vanishes:
the first [second] term of (69) vanishes because the matrix
element of QM(r;) [V(r;)] between two L=O states is
zero. The experiment essentially confirms this selection
rule; a recent analysis shows that the ratio of the ampli-
tudes quadrupole/M1 is not exactly zero but is small
(different estimates range from 0.009 to 0.024); that is
5 —13% of the value (=0.18) expected if the transition
were not inhibited.

It is natural to ask which possible structures, in addi-
tion the additive ones that we have written, can be added
to the right-hand side of (69) if the operator in (69) has in
general to be interpreted as the quadrupole effective
operator, the quadrupole part of Vtj„(x)V. Because the
model functions have both L, =O, the effective quadrupole
operator has to be a tensor formed with the spins of the
intervening quarks. We do not discuss the most general
structure but limit to write a possible form for such an
effective quadrupole operator:

X g (P; +Pg)[o,,ok, —(o; ok)/3]S(r„r. 2, r3)
i&k

1, (cr; trk) . (71)

(2) As to the structures in the flavor space, the charge
operator Pq will now be absent, of course (we will not
consider the electromagnetic mass diff'erences); because
the only Aavor operator intervening in the theory is P,
only products of P 's can intervene, containing, of
course, a maximum of three P 's.

Because each spin-flavor operator has to be symmetri-
cal in the coordinates of the three quarks (again because
the spin-Aavor structure of our model states is symmetri-
cal) the following nine independent operators can inter-
vene in the expression of the masses:

1, QP;, g (o; ok), g (cr; ok)(P; +Pk),
i&k

If we replace in Eq. (6) the magnetic moment operator
At by the exact Hamiltonian H of the system, the same
argument used to parametrize the magnetic moments
leads to a parametrization of the masses of the baryons
for the octet and decuplet. The difference is that instead
of an axial vector we must now parametrize a scalar (un-
der space rotations). Again the factorization property
(10) of the model state reduces the expectation value of
the Hamiltonian to a combination of spin-flavor opera-
tors multiplied by some coefficients, the same for all the
states of the octet and decuplet. As to the spin-flavor in-
variants that can intervene, we recall the following.

(1) As shown in Sec. V the expectation value of
o'i (cr2 X o 3) on a real spin-flavor wave function vanishes;
the same is true for oi.(ozXo3)I (f) where I (f) is any
real Aavor operator. The only spin invariants that inter-
vene in parametrizing a scalar are thus

where S(r„r2,r3) is a scalar function of the coordinates
(and momenta) and the zz component only has been writ-
ten. This term has a nonzero matrix element between 5
and P and the small value of the amplitude mentioned
above corresponds to a small value (compared to P} of
y(XL O~S~Xz 0) in (70). Thus although in principle the

(o; o'k)Pq, g P; Pk, g (o; crk)P, Pk
iWkWj i&k i&k
(i &k)

( )pi(pi. +pi. } pipipi
iWkXj
(i &k)

(72)
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Again, as for the magnetic moments, we will limit our-
selves to consider terms of first order in flavor breaking
[with the meaning of this clarified in Sec. VI, the state-
ment before Eq. (40)]. Excluding all the above terms with
two or more I' 's, the most general expression for the
mass, to first order in flavor breaking is

M=MO+B gP, +C g (o;.ok)
i&k

+D g (o;.ok)(P; +Pk)+E g (o; o'k. )PJ
i&k iXkAj

(.i & k)

(73)

XII. THE MASS FORMULAS AND THEIR
RELATIONSHIP WITH THOSE OBTAINED

WITH THE NRQM

g (o ok)= —'[4J(J+1)—9],
i &k

(74)

(o,. oi, )P =(o, .o )P +(o, o )P +(o o )P,
iXkAj
(i )k)

= —
—,
' [4J(J + 1)—9]S

We now write the masses of the octet and decuplet
baryons in terms of the coefficients Mo, . . . , E of the pa-
rametrization (73). Writing again S=strangeness
= —g,. P, and noting that

—g (o; ok)(P, +PI, ), (75)
Expression (73) contains five parameters; because we
must fit four octet masses and four decuplet ones, we will
get three (well-known) mass relations.

Before this a remark is appropriate: the argument just
given applies to the expectation value of any quantity in-
dependent of the charge I'~, scalar under rotations; it
uses, in fact, only the factorizability of the states and the
list (72) of invariants in the spin-liavor space. Thus it ap-
plies not only to the Hamiltonian H, but also to its square
H, or to H or more generally to any function F(H) of
H. This has two consequences.

(1) It shows in general (not only for the case of the
masses) that the number of independent invariants [for
the masses those in the list (72)] has to be always larger
than or equal to the number of the states; if it were not so
we would have rigorous relations between the masses of
the states which would be true simultaneously for the
masses, for their squares or for any function F (M) of the
masses; this is clearly impossible except for the unin-
teresting case of complete mass degeneracy.

(2) If we introduce an approximation, that of neglect-
ing in variants that correspond to flavor breaking of
second order or more, then one can obtain relations be-
tween the masses (the Gell-Mann —Okubo mass formula
will be seen to be one of them); but these relations can
equally be derived for any power or function of the
masses. Of course, these relations do not have all the
same accuracy: if it is, say, a fair approximation to treat
flavor breaking to first order when one is dealing with H,
it is certainly a less fair approximation to do the same in
dealing with H' =(Ho+Hi )' . What is in this sense the
best function of H, such that the efI'ect of the neglected
flavor-breaking terms is minimum is hard to say, a priori
(but it is hard to see a reason why the quadratic mass for-
mulas should be better than the linear ones, a long-
debated question; this is some justification for the linear
mass formulas). Of course, all the above remarks apply
also to the conventional group theoretical derivation of,
say, the Gell-Mann —Okubo mass formula.

Similar considerations hold also for the magnetic mo-
ments; we might have parametrized HAtH instead of At,
for instance, in a way formally identical to that used for
W. We did not raise this point for the magnetic moments
only because the situation for the masses is much more
familiar.

g (o; ok)(P; +P„)=g(o, P, 2J)+3S
i)k

(76)

we get

M =(Mo —
—,'C)+S(3D+ 3F. B)+———[4J(J+1)]C

+ ( D F. ) g ( o—;P, 2J )
—.—S[4J(J + 1 ) ] .

I

(77)

Defining

Mo—=Mo ——,'C, /3=3D+ ,'F. B, ——

6=a —E e= ——
2

expression (77) can be rewritten

M =Mo+PS+y[4J(J+1)]+5g (o;P; 2J).

(78)

+eS[4J(J+I)] .

Note now that

O I'; .2J J &y2= ~iz~I
I

(79)

(80)

and

g 'I 2J J —3/2
I I

(81)

where
~
1) means a state with J„respectively, —,

' and —', .
The values of ( 1~ g; o;,P; ~

l') are listed below for the 8
and 10 baryons:

X
0 1

3
4
3 0

From (79), we get, therefore (baryon symbols stand for
baryon masses),

X =Mo+3y, A=MO —P+3y+35 —3e,
(82)

X=MO —P+3y —5 —3e, ==Mo —2P+3y+45 6e—
and
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b =MD+ 15y, X*=MD —I3+15y+55—15m,

:-*=MD —2P+ 15y+ 105—30',
A=MD —3/3+ 15y+ 15|i 45—e .

(83)

With five parameters and eight masses we get three mass
relations: the Gell-Mann —Okubo formula for the octet

N +:- 3A+X
2 4

(1j29) (1135)

and the equal-spacing formula for the decuplet:

Q ~ il' ~ )fc

139 149 152

(84)

(85)

M0 = 1086 8 = 188~ 4 C =49.2

D = —15.4, E =3.0 .
(87)

One can check [as already seen from the mass formulas
(84) and (85)] that formula (79) [or (77)] represents the
data to a few percent, in spite of the fact that flavor
breaking has been taken into account only to first order.
Note, incidentally, that the values of the parameters list-
ed in (86) are not a best fit; for instance, to mention only
the parameters that will play a role in the following dis-
cussion, 6 comes simply from X—A= —46; y is obtained
from 6—N=12y; e= —1.5 is taken as the average of
two determinations; (a) X*—X —(:-*—:-)=12m,giving
e = —2 and (b) X"—X—65 —12y = —12@, giving e = —1.

We can compare these results with those obtained in a
nonrelativistic quark model; we will do this for the ver-
sion of the NRQM due to De Rujula, Georgi, and
Glashow where the interactions between the quarks
(and, in particular the spin-dependent interactions) are
given by the Fermi-Breit approximation to the QCD
one-gluon-exchange potential. The mass formula for the
baryons, to first order in flavor breaking, is given by Eq.
(6) of Ref. 9. Comparing that formula with our mass for-
mula in its first form (77), we see that it becomes equal to
ours [to order (b, m /mi„) ] if we suppress in (77) the pa-
rameter E,

E=0, (88)

and if D and C are related by

D m& —m&
(89)

C m& m&

where the m's are the quark masses. [In particular, using
(78), the value (89) of D/C and (88) one can verify that
our formulas for the masses (82) and (83) satisfy Eqs. (5)
and (11) of Ref. 9.]

In preparation for the comparison with the results of the
NRQM we give below the values (in MeV) of the parame-
ters MD, I3, y, 5, e in (79) obtained from expressions (82)
and (83); we also display MD, B,C, D, E, the parameters of
(77). They are

MD=865. 2, I3= —228. 6, y =24.5,
6= —19.4, e= —1.5,

or, alternatively,

We see from (87) that the value of the parameter E, the
only one outside of the NRQM description (with two-
body potentials), is indeed small, with respect to the other
parameters; moreover the ratio ( D /—C) is
(15.4/49. 2)=0.31 from (87); and this number is in good
agreement with the value (1—a)=0.35 obtained [Eq.
(49)] from the analysis of the magnetic moments, which
value, in a NRQM description, can also be interpreted as
Am /m&.

XIII. CONCLUSION

We summarize below the main points.
(1) We have given general parametrizations of the

baryon magnetic moments and masses. By "general" we
mean that they can be deduced from the exact field
theory, whatever it is, provided that the only flavor
breaking in the theory is due to the quark mass difterence
and that the electromagnetic current is carried only by
the quarks (in the future we hope to examine how neces-
sary these restrictions are). The general parametrizations
contain more parameters than data; this is always true, as
has been remarked in Sec. XI. However, if we keep only
those terms that break the Aavor to first order, then the
number of parameters reduces and several consequences
emerge. One is that the resulting parametrizations are
approximated well by a NRQM; this is true both for the
magnetic moments and for the masses. Suppose, for in-
stance, that from the data on the magnetic moments we
had found that the parameters F,K,H, G, L in (42) were as
important as p and A. Clearly the NRQM description
could not have been maintained. Similarly suppose that
comparing the parametrization of the masses with reality
we had found that the parameter E in (73) were as impor-
tant as MD, B,C, D; or we found that ( —C/D) in (73) was
very diff'erent from 3 /p( = 1 —a ) in (42). Again the
NRQM description could not have been maintained; the
success of the model would then have been a chance.

Another comment on the same theme is appropriate:
by the transformation V that relates the model states with
the true states, we have established a connection between
the description in a relativistic field theory and the "nu-
clear physics" language of the NRQM. This connection
is general, but to find that the values of the parameters in
nature are near to those suggested by the NRQM is an
additional fact, in a sense it is the really interesting fact.
To add another example take, for instance, the cir-
cumstance, stressed in Ref. 9, that the X is heavier than
the A; it depends on the sign of ( —C/D) being equal to
that of hm/m&, again this can be deduced in a NRQM,
with the potential used in Ref. 9; of course, one would
like to know how it depends on the underlying field
theory, but this then becomes equivalent to asking which
features of a field theory are capable of producing a
description which is well approximated by the NRQM—
an old question and a question for the future.

(2) Always in the approximation of disregarding liavor
breaking to orders higher than the first, the X —+Ay rate
has been related to the magnetic moments of
P, X,A, X , :- ' . This relation [Eq. (—55)]is a general one,
independent of any model, depending only on the above
approximation. It is in a way the equivalent for the mag-
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netic moments of the Gell-Mann —Okubo relation for the
masses.

(3) The Ml transition b +P—y has always been a case
with a discrepancy larger than usual (by a factor of 1.45
in the matrix element) from the NRQM. We have shown
that a comparatively small percentage (=0.12p) of a
term not coming from the simple NRQM is multiplied (in
this case) by a factor of 3 and can explain the discrepan-
cy. We hope to reexamine in the future along the same
line the vector-meson-pseudoscalar-meson+@ M1 transi-
tions and establish how near is the p intervening in the
quark spin-Rip transitions of these mesons to the p of a
quark inside the proton.

(4) In the usual description the small violation of the
E2 E~Py selection rule arises from a mixing of D states
in the S states of the intervening baryons. Here we have
parametrized the same effect in terms of a two-quark
spin-tensor operator. This is nothing new, simply a
different way of representing the same effect; in this way
the same term includes not only the configuration mixing
but also the relativistic and qq-exchange effects. The im-
portant point is that we know this new term to be small:
the E2 amplitude is from 0.9% to 2.5% the M1 ampli-
tude.

(5) Coming to the masses, we have already summarized
part of the results at point (1) above. The Gell-
Mann —Okubo formula for the octet and the equal-
spacing rule for the decuplet are given from our parame-
trization, after keeping only first-order flavor breaking.
We recall that first-order flavor breaking means neglect-
ing all the terms with products of two or more P; coming
from different quarks; Aavor-breaking effects that depend
additively on each quark are kept to all orders; it is possi-
ble for this to be a reason why the Gell-Mann —Okubo
formula is so unexpectedly accurate.

(6) A final point to be mentioned very briefly is this:
the correspondence between model states and exact states
produced by the operator V allows to clarify, qualitative-
ly, the question of the existence or nonexistence of had-
rons with exotic quantum numbers. The exact exotic
hadron states are obtained from the model states with ex-
otic quantum numbers by application of the "adiabatic"
operator V. We may assume that exotic meson states
arising as, say, V~qqq q ) or glueballs V~ GG ) are not seen
often because they are high in mass and decay very rapid-
ly into nonexotic states V~ qq ) . In fact two situations can
occur: (a) it is possible that a few of these states are not
so high in mass, while the majority are; (b) all those states
are high in mass and therefore, in practice, nonexistent.
This indicates that, besides the obvious interest in looking
experimentally for states that are unambiguously of exot-
ic nature, it might help to examine on theoretical models
if a situation of type (a) (a few states relatively low in
mass, the majority high) cari occur without too artificial
assumptions. In this frame the finding of exotic states ap-
pears to be rather natural and not in contrast with the
NRQM; it would simply indicate that a situation of type
(a) occurs.

We hope to discuss in the future along the same lines
other cases of quantitative predictions of the NRQM, in-
cluding the V—+Py decays, the semileptonic decays, and

other weak processes.
Note added in proof. On expressing p and K in terms

of the baryon magnetic moments, one can check that Eq.
(55) [(X I~M, ~& T) = —(p —K)/&3] coincides, as it
must, with Eq. (8b) of S. Okubo [Phys. Lett. 4, 14 (1963)]
derived using only first-order T3 breaking of flavor. Note
that, because of Eq. (28), the number of parameters in our
full spin-flavor parametrization of the magnetic moments
is not higher than that of Okubo's analysis, that refers
only to the fiavor space [compare Okubo's Eqs. (7) and (8)
and the footnote (f) on p. 15 of his paper].

APPENDIX

Let H be the exact Hamiltonian of the quarks and
gluons; to be specific we may have in mind the H of
QCD. We will indicate by qadi(x) a mass renormalized
quark field, with (renormalized) mass m; as stated in the
text m is taken to be the mass that appears in the quark
propagator (k' —im) ' for low values of the momentum
transfer k (~k~ =R ', with R the size of the hadron;
here it is unnecessary to specify ~k~ more precisely); we
assume to identify m with the mass of a constituent
quark. We introduce the Fock states of the independent
quarks and gluons with renormalized mass and, suppress-
ing the index R, call ~qqq ) a state of three quarks and no
gluon. Call q=g~qqq)(qqq the projection operator
into the states of three quarks and no gluons:

nl qqq &
= Iqqq &,

q~&qqq &=0.
We rewrite H identically as

(Al)

(A2)

H =Ko+K)
with

Ko = rt&rt+ (1 rt)H (1—g), —

K, =AH ( 1 —g ) + ( I rt) H r)+ rtH rt rt&r—t—(A4)

having added (to Ko) and subtracted (from Ki ) the model
Hamiltonian r)&g. Referring to the baryons we assume
that q&i) has degenerate eigenvalues Mo for all the octet
and decuplet baryon states:

rj&gpti =Mopii (8 =N, A, X, :-,h, X*,:-*,0), (A5)

where ~Pii ) ~0 gluons) are the 1.=0 model states, called
simply

~ P ) in the text. Because in the three-quark sector
Ko and & coincide, ~Pii ) are the degenerate eigenstates
of Ko.-

Kolga&=Molka& . (A6)

In the part i)&7) of Ko the masses of the P, A; and A.

quarks are taken as equal [as implied by (A5)]; the
fiavor-breaking mass term [Eq. (5) of the text] appears in
the term (1—rt)H(1 —i)) of Ko and in the term rtHrt of

H =qHq+(I q)H(1 q—)+qH(—I —g)+(I g)Hq . —
(A3)

Introduce now the model Hamiltonian & which is a typi-
cal nonrelativistic quark-model Hamiltonian acting only
on the Fock space of the states of three quarks and no
gluons. We decompose H as
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K&. The term (1—g)H(1 —ri) of Ko includes, in particu-
lar, the Hamiltonian of the noninteracting gluons; K,
contains the interaction terms qH(1 —ri) and (1—g)Hri
of the quark-gluon Hamiltonian.

We now regard Ko as the unperturbed Hamiltonian,
K, as the perturbation; imagine inserting E, adiabatical-
ly, and construct the true states

~ f) with the procedure
of Gell-Mann and Low (this procedure of construction is
of course, not compulsory, but we imagine using it to
show that at least one method of construction exists).
Writing K

&
(t) =exp( + iKot)K i exp( iK—ot) the adiabatic

U(t, to) satisfies iU (t, to)=exp( —a~t~) K&(t)U (t, to)
[with a)0, U(to, to)=l] and the ~g)'s for the exact
bound states corresponding to the lowest

~ P ) 's are

~pe ) = lim exp( —wz/a). U (0, —ac )~P~ ),a~0 (A7)

V = lim exp( —w~ /ct ).U (0, —Oc ) .
a~O

(A8)

The formula for the magnetic moment has the form used
in the text: namely,

where tc~ is purely imaginary (w~+w~ =0) [so that the
factor of exp( —wti/a) in front of (A7) is a pure phase
factor that eliminates the singularity coming from the
lim o U (0, —Oc ); tU& in (A7) is related to the
S = U(+ ac, —ac ) matrix element of the Pit ~P~ transi-
tion by lim o (Ptt~S~P& ) =exp(2wz/a)]. The operator
V introduced in the text can be, therefore, written explic-
itly as

(A10)

where the index C means "connected. " However, formu-
la (A8) for Vis not that written most frequently:

U. (0, —.-0 (/AU. (0, — )ly)
(A 1 1)

Although the final formulas for the physical quantities
are always the same, in (A 1 1) the denominator is not a
pure phase factor.

We have insisted a little on this to make it clear that
the magnetic moment can be written, in the adiabatic
procedure, simply as the expectation value of an axial
vector, not as the expectation value of an axial vector di-
vided by a baryon-dependent scalar as one might think at
first sight having in mind a V defined on the basis of
(All) [compare the remarks at the end of Sec. VIII]; for
the mass formulas we have to parametrize just a scalar,
the expectation value of the Hamiltonian, not the quo-
tient (or product) of two scalars. A similar conclusion
holds for the X ~Ay rate; there one has to parametrize
the square modulus of the matrix element
( Px ~

V At V~ PA ); in forming the square modulus the
singular phase factors disappear.

(A9)

As can be seen in a few passages, this is the same as the
formula used frequently for practical calculations:

'(a) G. Morpurgo, Physics {N.Y.) 2, 95 (1965) [also reproduced
in J. J. Kokkedee, The Quark Model (Benjamin, New York,
1969), p. 132]; (b) G. Morpurgo, in XIV International Confer
ence on High Energy Physics, Vienna, 1968, edited by J.
Prentki and J. Steinberger (CERN, Germany, 1968), p. 225.
In Sec. 5.1 of (b) the idea of the V correspondence between
model and exact states was introduced and a parametrization
of the magnetic moments was discussed [Eq. (28)]; however,
at that time we did not realize the simplifications described
here in Sec. V nor those coming from flavor breaking being
due only to the mass terms.

For the status of the magnetic moments compare the surveys of
J. Franklin: (A) experimental and theoretical status of baryon
magnetic moments, (B) theoretical status of baryon magnetic
moments in High Energy Spin Physics, proceedings of the
Eighth International Symposium, Minneapolis, Minnesota,
1988, edited by K. Heller (AIP Conf. Proc. No. 187) (AIP,
New York, 1988). They contain a wide set of references;
however, Refs. 4 and 5 of (A) do not give a correct account of
the historical evolution: that the static quark model implies
automatically the SU(6) wave functions was first underlined
strongly in Ref. 1(a) (p. 101); that a measurement of the A
magnetic moment might determine the magnetic moment of
the strange quark was noted already in C. Becchi and G.
Morpurgo, Phys. Rev. 140, B687 (1965). I thank Professor J.
Franklin for a copy of his papers prior to publication.

M. Gell-Mann and F. Low, Phys. Rev. 84, 181 (1951); for de-

tailed presentations of the adiabatic procedure see, also, (a) S.
Schweber, Introduction to Relatiuistic Quantum Field Theory
(Row and Peterson, New York, 1961); (b) P. Nozieres, Le
Probleme a Xcorps (Dunod, Paris, 1963), p. 147.

4For X+ =2.38 (and the other magnetic moments as above) one
obtains A=1.08, K=0.31, H=0. 12, 6 = —0.13, L = —0.10.
The most recent values of the magnetic moments are given in
Ref. 2(A).

5R. H. Dalitz and D. G. Sutherland, Phys. Rev. 154, 1608 (1967)
(in estimating the rate we used a 6 width of 110 MeV).

C. Becchi and G. Morpurgo, Phys. Lett. 17, 352 (1965).
7R. Davidson, N. C. Mukhopadhyay, and R. Wittman, Phys.
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(11)of this paper quoted in the text: Eq. (6),

Am;M= & +I3+ +C g s; s, [1—(bm;+5m, )/mt ]m t)j
(here A, B,C are the coefBcients of De Rujula, Georgi,
and 6lashow different from ours); Eq. (5),
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