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Next-to-leading-logarithm calculation of jet photoproduction

1 NOVEMBER 1989

H. Baer, J. Ohnemus, and J. F. Owens
Department of Physics, Florida State University, Tallahassee, Florida 32306

(Received 26 May 1989)

A Monte Carlo program containing both leading-logarithm and next-to-leading-logarithm contri-
butions has been developed and used to study the photoproduction of large-transverse-momentum
hadronic jets. Predictions are presented and discussed for a variety of observables including single-

jet invariant cross sections, dijet cross sections, and angular distributions. For some observables the
inclusion of the next-to-leading-logarithm terms dramatically lessens the dependency on the choice
of the renormalization and factorization scales entering the calculation, thereby increasing the pre-
cision of the calculation. The flexibility of the Monte Carlo technique allows predictions for addi-
tional observables to be generated easily.

I. INTRODUCTION

Much of our knowledge concerning parton distribu-
tions and the dynamics of the underlying parton-parton
interactions has been obtained via the use of processes in-
volving photons in the initial or final states or both. The
advantages of an electromagnetic probe for studying ha-
dronic constituents are numerous and well known.
Briefly, one is using a well-understood interaction in or-
der to obtain information on unknown constituent distri-
butions or interactions. The pointlike nature of the cou-
pling between photons and charged particles allows one
to have a greater degree of control over the kinematics of
the process under study than if purely hadronic processes
were to be used. The event structure of processes con-
taining photons is often cleaner since the photon is re-
placing a hadronic jet in the final state or an incoming
hadron in the initial state.

The results presented in this paper are for processes in-
volving the photoproduction of jets. As discussed in Ref.
1, this reaction possesses a number of distinct advantages
for studying parton-parton interactions. The use of a
photon beam leads to a cleaner event structure than for
the hadron case because, in a large fraction of the high-

pT events, there is no beam jet; the photon interacts in a
pointlike manner depositing its full energy into the sub-
process. The absence of the beam jet leads to a cleaner
final state while the larger fraction of beam energy avail-
able for hard scattering means there is an increased
efticiency for jet production at large values of momentum
transfer. In addition, the detection of jets in the final
state allows one to reconstruct the kinematics of the pro-
cess at the parton level. In the usual leading-logarithm
formulation of two-body scattering this process only in-
volves one parton distribution function corresponding to
the target. The photon and the two final-state jets allow
three of the four participating four-vectors to be mea-
sured. Such control over the interacting particles makes
this process extremely useful for observing hard scatter-
ing at the parton level. The leading-logarithm calcula-
tion of the pointlike component involves only two sub-
processes: yq —+gq and yg~qq, which shall be referred

to as the Compton and annihilation subprocesses, respec-
tively. These subprocesses have an angular distribution
which is distinctly difFerent from the t-channel processes
which dominate jet production with hadronic beams.

In addition to this class of events, there are events
which involve the structure function of the photon. '

That is, some fraction of the time the photon interacts as
a hadron, with appropriate quark and gluon distribu-
tions. These can be calculated to leading-logarithmic
accuracy using, for example, the appropriate Altarelli-
Parisi equations. ' The quark distributions in a photon
can be measured in two-photon events at an e+e collid-
er, in complete analogy with measuring structure func-
tions in deep-inelastic lepton scattering from a nucleon
target. A recent review of the experimental measure-
ments of the photon structure function and a comparison
with the theoretical predictions can be found in Ref. 5.
By comparing the pointlike and structure-function events
in high-pT jet photoproduction, it will be possible to
ascertain the role of the photon quark and gluon distribu-
tions. Notice that by performing this separation, one ob-
tains the same type of information as from a hadron
beam experiment (qq, qg, and gg scattering subprocesses)
in addition to the new information provided by the point-
like terms (Compton and annihilation subprocesses). The
utility of this separation has recently been emphasized for
forthcoming DESY HERA experiments. ' In addition,
an experiment currently under construction at Fermilab,
E-683, should have the capability of measuring observ-
ables similar to those discussed herein.

The leading-logarithm approximation lies at the heart
of most hard-scattering calculations. By now, it is widely
recognized that one of the weak points in such a calcula-
tion is that one has only an order-of-magnitude estimate
for the renormalization and factorization scales. Typical-
ly, these are expected to be of the order of the square of
the hard-scattering momentum transfer, e.g. , pT of the
observed jet in a single-jet inclusive calculation. Varia-
tions in these quantities can lead to significant changes in
the normalization and to a lesser extent shapes of the re-
sulting predictions. Thus, predictions of absolute nor-
malizations are subject to large theoretical uncertainties
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when the leading-logarithm approximation is used. Rela-
tive normalizations, however, are less subject to these un-
certainties. Representative examples of such calculations
are reviewed in Ref. 8.

In order to achieve a higher level of theoretical pre-
cision, it is necessary to go beyond the leading-logarithm
approximation; at least one must include the next-to-
leadi. ng logarithms. In many instances such calculations
show a less dramatic dependence on the renormalization
and factorization scale choices than is the case when the
leading logarithms alone are used. However, retaining
subleading logarithms leads, in general, to more complex
calculations. Furthermore, it is often difficult to calculate
the quantities which are observable in a given experi-
ment, taking into account the acceptances of the detec-
tor, different jet definitions, etc. In addition, each new
observable requires a new calculation. For this reason,
we have utilized a different technique for performing
next-to-leading-logarithm calculations which is based on
a Monte Carlo approach. ' This technique is straight-
forward to implement and does not require an inordinate
amount of computer time. Furthermore, new observables
can be calculated by simply modifying the quantities to
be histogrammed. The additional theoretical expressions
are neither long nor complicated.

Utilizing such a scheme has allowed us to study the
modifications of a variety of observables in jet photopro-
duction. Interestingly enough, different types of cross
sections have significantly different corrections when go-
ing from the leading-logarithm to the next-to-leading-
logarithm approximation. There is not, for example, a
simple multiplicative "K factor" which corrects a single
subprocess —there is a dependence on the type of observ-
able being calculated. Several examples of this
phenomenon are discussed. In particular, it is possible to
find cross sections, e.g. , a semi-inclusive two-jet cross sec-
tion, which shows very little variation as the renormaliza-
tion and factorization scales are changed. This is the first
time that such a detailed comparison of different observ-
ables has been possible in the framework of a next-to-
leading-logarithm calculation.

The remainder of the paper is as follows. In Sec. II we
review the leading-logarithm calculations and establish
some basic notation. Section III contains a review of the
basic techniques used in the Monte Carlo next-to--
leading-logarithm calculation and a thorough discussion
of the results obtained using the techniques presented.
Section IV is reserved for a summary of our conclusions.
An appendix is provided which contains expressions used
in the construction of the Monte Carlo program.

II. LEADING-LOGARITHM FORMALISM

One of the advantages of jet photoproduction is that
the pointlike component involves only one hadronic dis-
tribution function: namely, that of the target. The
remaining four-vectors of the beam and the two final-
state jets are, in principle, subject to direct experimental
determination. Of course, this ignores subtleties associat-
ed with the identification algorithm used for the jets and

problems of subtracting the photon structure-function
contribution. However, these problems diminish in mag-
nitude as the hard-scattering transverse momentum is in-
creased.

Another interesting feature of jet photoproduction is
the possibility of observing the interplay between the
pointlike and structure-function components. ' They are
each characterized by distinctly different angular distri-
butions, a feature which can aid in their separation. For
the purpose of this analysis we shall use a set of simple
parametrizations of the parton distributions in a photon
which were obtained by solving the relevant inhomogene-
ous Altarelli-Parisi equations using moments and then
fitting simple parametrizations to the results. The pa-
rametrizations are

xGz &z(x, Q ) =F e; ( 1.81 —1.67x +2. 16x )

0.70
X

1 —0.4 ln(1 —x)

+0.0038(1—x)' x

and

xG qy(x, Q )=0.194F(1—x)' x (lb)

where F =(a/2n)ln(Q /A ) and e, is the fractional
charge on the quark q,-. Throughout this paper we shall
use A=200 MeV.

An alternative set of parametrizations is contained in
Ref. 11. In this reference, in addition to the leading QCD
piece, the authors have included a vector-dominance-
motivated component which is required in order to de-
scribe the photon structure function for Q values in the
few GeV range. Such a component does not play a
significant role in the kinematic region which we shall be
considering since it gives rise to parton x distributions
which are peaked at smaller values of x than are the lead-
ing QCD contributions. Thus, the vector-dominance
contribution gives rise to a steeper jet pz spectrum than
the other sources we are considering. ' Indeed, a direct
comparison of the results from Eq. (1) and the distribu-
tions of Ref. 11 shows that they are very similar in the Q
region we shall be investigating.

For the target nucleon, the parton distributions of Ref.
12 will be utilized. All of the predictions shown here cor-
respond to the set 1 distributions with A=200 MeV. In
addition, the leading-logarithm predictions have been ob-
tained using the one-loop expression for a, with four
Aavors.

For the convenience of the reader, the expressions for
selected observables are given below. A more detailed re-
view of the relevant kinematics and formalism can be
found in the Appendix of Ref. 8. An additional discus-
sion of the theoretical formalism specific to leading-
logarithm calculations for jet photoproduction can be
found in Sec. II of Ref. 1. In the following, collinear ki-
nematics for the incoming partons is assumed. It is possi-
ble to include effects of nonzero transverse moments for
the colliding partons in a model-dependent way, as re-
viewed in Ref. 8. However, in this case we are dealing
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with only one incoming hadron so such effects are re-
duced as compared to the hadron-hadron case. Further-
more, the next-to-leading-logarithm calculations to be
discussed in the next section contain a portion of such
effects due to initial-state bremsstrahlung.

The single-jet invariant cross section can be written as

10

10

y p jet + X

CTE
3 (yB ~jet+X)

dp

= y f dx. dxbG ly(x. )Gb!B(xb)
abed

10

10

X — (ab ~cd )5(9'+ t + u ) . (2)

Here, and in the following, the expression has been writ-
ten for the case of the photon-structure-function corn-
ponent. For the pointlike component the sum over
G, & (rx) should be replaced by 5(x, —1). The caret sym-
bol has been used to designate the Mandelstam variables
which pertain to the parton-parton system. They may be
written in terms of x„xb, and the observed jet transverse
momentum and rapidity pT and y as

s=x,xbs, t = x,pT&s—e «, u = —xbpT&se« .

10

dashes = pointlike
10

dots = photon structure function

The xb integration may be performed using the delta
function, with the result that

l I

7 8
l. («v)

9 10 11 12

d o.
, (yB ~jet+X) = g dx, G, ~ (x, )Gbzz(xb )

dp abed

XaXb

FIG. 1. The inclusive single-jet invariant cross section in the
leading-logarithm approximation vs pT at y =0 with a photon
beam energy of 400 GeV. The total, pointlike, and structure-
function components are shown by the solid, dashed, and dotted
lines, respectively.

X (ab ~cd),d(7

x, '"=xTe«/(2

0 (yB~j, +j2+X)
dM d cos(8')

1 +b dO
dx, G, lr(x )Gbra(xb) (ah~cd) .

abed dt

(4)

In this case, M =x,xbs and t = —(M /2)[I —cos(8')].
The preceding expressions can be used to obtain an es-

timate of the behavior of the various components of the
leading-logarithm calculation. For example, in Fig. 1 the
single-jet invariant cross section is shown versus pT. Un-
less otherwise stated, Q =pT has been used. Both the
pointlike and structure-function components are shown,
together with the sum. The structure-function com-
ponent has a steeper falloff; due to the additional convo-
lution associated with the parton distributions in the pho-

where xb =x,xTe «/(2x, —xTe«),—xTe «), and xT=2pT/v's.
At this level of approximation, all of the events con-

sidered will have two wide-angle jets. Let M be the dijet
invariant mass and cos(0') be the cosine of the angle of
the dijet axis with respect to the beam direction in the di-
jet rest frame. Then, one can write

ton. The flatter pointlike component dominates for
pT & 6 GeV, illustrating the effect of depositing all of the
photon's energy into the subprocess. This latter point
can be seen again in Fig. 2 where the single-jet invariant
cross section is shown versus the y-proton center-of-mass
rapidity at pT=6 GeV. The pointlike contribution is
more sharply peaked in the forward direction (positive y)
than is the structure-function contribution. This suggests
that if one wants to suppress the structure-function com-
ponent in order to better study the pointlike part, then
the detector should be optimized for forward values of y.

It is of interest to also examine the dijet angular distri-
bution as a function of mass. The structure-function
component consists of the usual QCD qq, qg, and gg
two-body subprocesses which contribute to hadron-
hadron jet production. The resulting angular distribution
will thus be sharply peaked in the forward direction,
rejecting the dominance of the t-channel-exchange pro-
cesses. However, for the pointlike component the t-
channel component plays a lesser role, due to the pres-
ence of a significant s-channel term in the Compton sub-
process. Thus, the pointlike term is expected to be less
steep. As the mass of the dijet system is increased, the
relative amount of the pointlike contribution will in-
crease. Therefore, there should be a Aattening of the an-
gular distribution. This effect should be very pronounced
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separately, as well as for their sum. In each instance the
angular distributions have been normalized to unity at
cos(8*)=0. The different shapes of the two contributions
are readily apparent. Neither distribution by itself shows
a significant variation with increasing dijet mass. Howev-
er, the varying admixture of the two components yields a
change in shape for the sum as the dijet mass is increased.
It may be possible to separate the two components by
vetoing events with a clear beam jet. In this instance a
sample dominated by the pointlike component should be
obtained with a characteristically Hatter angular distribu-
tion.

As discussed in the Introduction, the predictions
shown thus far depend on the choices made for the renor-
malization and factorization scales, thus far taken to both
be pT. In order to reduce this sensitivity, we need to go
beyond the leading-logarithm approximation. This is the
topic of the next section.

III. NEXT-TO-LEADING-LOGARITHM FORMALISM

10
i dots = photon structure function

I I I I I I—Q. B Q. 0.8

FIG. 2. The inclusive single-jet irivariant cross section in the
leading-logarithm approximation vs y at pT =6 GeV with a pho-
ton beam energy of 400 GeV. The total, pointlike, and
structure-function components are shown by the solid, dashed,
and dotted lines, respectively.

in the kinematic range available at HERA (Ref. 7). The
eftect should also be present for fixed-target photoproduc-
tion, as can be seen in Fig. 3 where the results are shown
for two values of the dijet mass. The distributions are
shown for pointlike and structure-function contributions

In the previous section we have discussed a typical
leading-logarithm calculation for jet photoproduction. In
that case, the hard-scattering subprocesses for the point-
like part were calculated to 0 (aa, ) and higher-order
contributions were included via the scaling violations in
the target hadron's parton distribution functions. For
the structure-function component the hard-scattering
subprocesses are O(a, ) while the photon structure func-
tion is O(a/a, ) so that the results are of the same order
as for the pointlike case. Both of these constitute all-
orders calculations, but only the leading logarithm from
each of the terms beyond O(aa, ) is retained. Such a
treatment has been shown to successfully describe a wide
variety of high-pz data once the renormalization and fac-
torization scales have been chosen appropriately. The
purpose of this section is to describe a calculation in
which the hard-scattering contributions to the pointlike
component are calculated to O(aa, ); this process will
also pick up some subleading contributions to the
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FIG. 3. The normalized two-jet angular distribution in the leading-logarithm approximation for dijet masses of 10 and 18 GeV vs
icos(e ) i for E~ =400 GeV. The total, pointlike, and structure-function contributions are shown separately.
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structure-function component, as well.
As an introduction to the technique, it will be useful to

first review the problems associated with using Monte
Carlo techniques for a next-to-leading-logarithm calcula-
tion and our particular methods for solving them. '
After that, the details of the calculation will be presented.
Some of the longer expressions have been collected in an
appendix B. y including terms up to O(aa, ) in the hard-
scattering cross section, a number of new contributions
arise. These are the one-loop contributions to yq —+gq
and yg —+qq and the three-body subprocesses yq —+gqg,
yq~qqq, yq~qq'q ', and yg~qqg. As is usual with
calculations of this type, there will be a number of singu-
larities associated with the new contributions. The ultra-
violet singularities associated with the one-loop contribu-
tions have been regulated using the method of dimension-
al regularization' and subtracted using the modified
minimal-subtraction (MS) scheme. ' Similarly, dimen-
sional regularization has been used in treating the in-
frared, soft, and collinear divergences.

The basic idea rests upon the fact that for a suitably
defined inclusive observable, the infrared singularities as-
sociated with the one-loop contributions will cancel
against the soft singularities associated with the three-
body tree graphs. Furthermore, the collinear singulari-
ties from initial-state radiation and pair creation can be
factorized and included in the parton distribution func-
tions. The hard collinear singularities from final-state ra-
diation and pair creation will cancel against correspond-
ing singularities from the one-loop graphs. The basic
challenge, then, is to find a way of ensuring that all of the
required cancellations can take place within the context
of a Monte Carlo calculation.

For the purpose of this section, the four-vectors of the
two-body and three-body subprocesses will be labeled by
p ] +p2 p3 +p4 and p & +p2 p3 +p4 +p ~, respectively.
Lorentz scalars sj=(p;+p~) and t j=(p; —pj) will be
used.

The method chosen for this calculation is to introduce
two cutoff parameters, 5, and 5„whose purpose is to al-
low the separation of the regions of phase space which
contain the singularities. For the three-body sub-
processes, the soft singularities are associated with the
phase-space region where one final-state gluon becomes
soft. We define the soft region to be that where the
relevant parton energy in the subprocess rest frame be-
comes less than 5,Qs, 2 /2. If 5, is chosen to be
sufficiently small, then the relevant three-body sub-
processes can be evaluated using the soft-gluon approxi-
mation wherein the gluon energy is set to zero in the
numerator of the expression. The resulting expression is
then easily integrated over the soft region of phase space.
At this stage, this integrated soft piece contributes to the
two-body part which contains the one-loop terms. The
soft and infrared singularities can then be canceled ex-
plicitly. Next, the collinear regions of phase space are
defined to be those where any invariant (s," or t, )be-"
comes smaller in magnitude than 5,s&2. If 5, is chosen
sufficiently small, then in each collinear region the
relevant subprocess can be evaluated using the leading-
pole approximation. The result is easily integrated in n

dimensions, thereby explicitly displaying the collinear
singularities. These are then factorized and included in
the relevant structure functions or canceled with corre-
sponding singularities in the two-body expressions. At
this point, the remainder of the three-body phase space
contains no singularities and the subprocesses can be
evaluated in four dimensions. -

The calculation now consists of two pieces —a set of
two-body contributions and a set of three-body contribu-
tions. Each set consist of finite parts, all singularities
having been canceled, subtracted, or factorized. Howev-
er, each part depends separately on the two theoretical
cutoffs 5, and 5, . Each by itself has no intrinsic meaning.
In fact, for very small values of 5, we shall see that loga-
rithms of the cutoff will force the two-body contribution
to become negative. However, when the two- and three-
body contributions are combined to form a suitably in-
clusive observable, e.g., an inclusive single-jet invariant
cross section, all dependence on the cutoffs will cancel. It
will turn out that the answers are stable against varia-
tions of these cutoffs over quite a wide range. Physically,
this is as it should be. The cutoffs merely serve to distin-
guish the regions where the phase-space integrations are
done by hand from those where they are done by Monte
Carlo simulations. When the results are added together,
the precise location of the boundary between the two re-
gions is not relevant. Thus, the answer becomes indepen-
dent of the cutoffs. Of course, this is valid only over a
certain range of cutoff values. The cutoffs must be
sufficiently small that the soft-gluon and leading-pole ap-
proximations are valid in the regions near the edge of
phase space where they are used. Furthermore, when
these regions are integrated over, terms which vanish in
the limit of zero cutoff are discarded. This provides an
additional reason for requiring small cutoffs. Finally, the
cutoffs must be chosen so that the experimental cuts
placed on an observable do not interfere with the cancel-
lation referred to above. In general, this also requires
small values of the cutoffs. The results reported below
are stable to variations in the cutoffs, thus providing a
check on the calculation. Calculating a different observ-
able simply requires forming the appropriate histogram.
This flexibility is the major advantage of the technique.
The price paid for this ease of use is that two sets of
Monte Carlo "events" must be generated and added to-
gether. In practice, this is not a major imposition.

At this point, a survey of some typical results will serve
to outline the versatility and convenience of this ap-
proach. The detailed expressions utilized in the calcula-
tional scheme outlined above are given in the Appendix.
For the first example, consider the single-jet invariant
cross section with a cut requiring that there be no jet
with rapidity greater than 2. This cut eliminates the
beam jet from the photon-structure-function contribution
so that the result is just the pointlike part, calculated to
O(aa, ). In addition, a jet definition must be chosen
which will coalesce two partons which are nearly parallel,
since one cannot resolve such collinear jets. We have
chosen to combine the four-vectors of any pair of partons
for which bR =+(hy) +(b$2) ( I where by and bP are
the differences in rapidity and azimuthal angle of the jets.
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FIG. 4. The inclusive single-jet invariant cross section calculated with a forward rapidity cut so as to eliminate the structure-
function contribution. The cross section is shown for the point y =0, pT =6 GeV, and E~ =400 GeV. The two-body and three-body
contributions together with their sum are shown vs the soft cuto6'5, at 5, =0.002.

In Fig. 4 the results at y =0, pT=6 GeV, and Ez =400
G-eV are shown versus the soft cutoff 5, for a fixed value
of the collinear cutoff 5, . The two-body and three-body
contributions are shown separately, together with the
sum. Note that as 5, is decreased the two-body contribu-
tion becomes negative. This is a result of the explicit log-
arithmic dependence of the two-body part on 5, and does
not correspond to the behavior of a physical cross sec-
tion. On the other hand, the three-body part shows an
increase as 5, decreases. The net result for the sum of the
two terms is constant, within the Monte Carlo statistics,
over the range of 5, shown. Figure 5 is a similar set of
plots, this time as a function of 5, with 5, =0.05. Again,
the cancellation takes place, leaving a result independent
of the cutoffs. This cutoff independence is a necessary,
though not sufhcient, check on the calculation.

Next, in Fig. 6 results are shown for the inclusive

single-jet invariant cross section at y =0 for two values of
pT. The forward rapidity cut has again been used to re-
move the structure-function contribution. The results are
shown versus the parameter n where both the renormal-
ization and factorization scales have been parame-
trized as Q =npI For .three-body fma1 states, the larg-
est pT in the event has been used. Both the leading-
logarithm and next-to-leading-logarithm results are
shown. Note that the two-loop running coupling has
been used for both the leading- and next-to-leading-
logarithm results, thereby providing a consistent expan-
sion parameter so that one can judge the degree of con-
vergence represented by the results. Over the range of
scales shown, the results at pT=6 GeV show an increase
of between a factor of 1.5 and 2 when the next-to-leading
contributions are retained. For this pT value the depen-
dence on n is approximately the same for the leading- and
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FIG. . 5. The same as Fig. 4 except the results are shown vs 6, for 5, =0.05.
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FIG. 6. The inclusive single-jet invariant cross section is
shown at y =0 and E~ =400 GeV for pT=6 and 9 GeV vs n

where Q =npzhas been-used for both the factorization and re-
normalization scales. Both the leading-logarithm and next-to-
leading-logarithm results are shown.

next-to-leading results. On the contrary, at pT=9 GeV
the next-to-leading result is much flatter than the
leading-logarithm result. This decreased sensitivity to
variations of the scales is one of the hoped for features of
the next-to-leading-logarithm calculation. However, one
may well ask why the corrections become large at low
values of pT and why the sensitivity to the change of
scales is larger. To investigate this point we have decom-
posed the answer into its component parts —the leading-
logarithm, soft, and collinear parts of the two-body con-
tribution and the positive-definite three-body part. Re-
call that these separations depend on the cutoA's 5, and
5, . Therefore, the relative size of the contributions is not
what is important, but rather one must look at the sys-
tematic behavior versus pT of the various components. It
was observed that as the pT is increased, the three-body
part falls off more rapidly than the net two-body contri-
bution. This can be understood by realizing that the typi-
cal configuration for generating at least one high-pT par-
ton is to have one parton balanced by two in the opposite
hemisphere sharing the recoil and, therefore, having
smaller pT values. It is relatively rare to have roughly
equal values for all three transverse momenta, as opposed
to the two-body events where the transverse momenta are
equal. This means that the ratio of high-pT to low-pT jets
is smaller for three-body events than for two-body events.
Next, notice that the dependences on Q of the leading-
logarithm and three-body parts are similar, with both
having a monotonic decrease with increasing Q . At the
lower values of pT the enhanced importance of the three-
body contribution leads to a large positive-definite addi-
tion to the leading-logarithm result which has the same
type of Q dependence. At the higher values of pT the
three-body contribution decreases in importance and the
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FIG. 7. The leading-logarithm and next-to-leading-logarithm results for the inclusive single-jet invariant cross section shown for
Q =0.5pr (dashed curves) and Q'=2pr (solid curves) at y =0 and E» =400 CieV.
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FIG. 8. Same as Fig. 6 except for the dijet mass distribution
at M = 10 and 18 GeV.

compensating logarithms in the 0 (au, ) part become rel-
atively more important, yielding the fIatter dependence
shown in Fig. 6.

Figure 7 contains predictions for the inclusive single-
jet invariant cross section at y =0 vs pT in both the

leading- and next-to-leading-logarithm approximations.
The results are given for both Q =2pT (solid curves) and
0.5pz. (dashed curves). In the leading-logarithm case, the
dashed curve lies approximately 50% above the solid
curve over the entire pz- range shown. In the next-to-
leading-logarithm case the two curves actually cross near
pz-=10 GeV resulting in a much smaller variation with

Q than in the leading-logarithm case over a substantial
portion of the pz. range shown.

The preceding discussion indicates that the sensitivity
of the next-to-leading-logarithm predictions to variations
in Q depends on the value of pT and that this pT depen-
dence can be traced, in part, to the fact that for the
three-body part there are three entries per event in the in-
clusive cross section. This suggests that the situation
might be different for an observable involving two, and
only two, jets. As an example, consider the dijet mass
distribution do /dM where M is the invariant mass of the
dijet system. Again, a forward rapidity cut requiring that
each jet have y & 2 has been used to remove the
structure-function contribution. In addition, we must ex-
amine how the three-body part will contribute to a dijet
cross section. As for the single-jet calculation, any pair
of partons with b,R & 1 is combined to form a single jet.
Next, if the three jets were sufficiently isolated so that
there was no coalescence, they are ordered in terms of de-
creasing pz with pT &pT &pT . IfpT & 2 GeV, then the

1 2 3 3

three-body event is included in the dijet cross section.
The idea is that with this small value of pT, the jet would
escape detection and the event would appear as a dijet
event. This definition is certainly not unique, and other
definitions are equally suitable. All that is required is
that the definitions be constructed in such a way that one
avoids resolving nearly collinear jets and that sufFiciently
soft jets are not counted. This is similar in spirit to the
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FIG. 9. Same as Fig. 7 except for the dijet mass distribution.
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usual Sterman-Weinberg jet definition familiar from
e+e studies. '

In addition to the cuts mentioned above, we have also
required that ~cos(0)'~ (0.4 where, for two-body events,
0* is the scattering angle in the dijet rest frame. For
three-body events, cos(8)* is determined by first boosting
to the frame in which the dijet system has no net momen-
tum along the beam direction. The value of ~cos(8*)~ is
determined for each of the two jets in this frame and the
average of the two values is used.

In Fig. 8 the results for do. /dM are shown for two
values of the dijet mass versus n, as was shown for the
single-jet case in Fig. 6. In this instance we see that the
next-to-leading-logarithm results are significantly less
sensitive than the leading-logarithm results to variations
of the Q definition. This is shown again in Fig. 9 where
the dijet mass distributions are displayed for two values
of Q . The lack of dependence on the Q definition for
the next-to-leading-logarithm calculation is striking. The
reduction in sensitivity is due largely to the reduced role
played by the three-body contribution. Those events
passing all the cuts make only one entry in the histogram
rather than two or three as was the case in the inclusive
single-jet calculation.

The contrasting degree of sensitivity to Q definitions
shown by the single and dijet calculations is an important
result. If the dominant effect of the next-to-leading-
logarithm terms was to enhance the two-body contribu-
tion via the so-called ~ terms, then the ratio of the
leading- and next-to-leading-logarithm results would be
similar in the two calculations, as would the sensitivity to
the Q choice. That this is not the case clearly under-
scores the importance of performing complete calcula-
tions which can be precisely tailored to the appropriate
definition of the experimental observable in question.

IV. SUMMARY AND CONCLUSIONS

The example of jet photoproduction presented here has
many interesting features which soon will be studied in at
least one experiment. The interplay between the point-
like and structure-function contributions should show up
to some extent in the rapidity and transverse-momentum
dependence of the single-jet yield. A more sensitive effect
may be observed in the dijet angular distribution which is
significantly flatter for the pointlike part than for the
structure-function contribution.

As experiments continue to collect high-statistics sam-
ples of hard-scattering events for processes in new energy
regions and for new types of observables, the focus of
these studies will shift from testing QCD to new areas
where the hard scattering can be used to learn new phys-
ics. Examples include improved determinations of parton
distributions, limits on quark substructure, and new par-
ticle searches. These topics will require improved levels
of precision for the theoretical calculations which, in
turn, means performing next-to-leading-logarithm calcu-
lations for a wide variety of observables. With conven-
tional analytic techniques each observable requires a new
calculation and it becomes difficult to match different jet
definitions, experimental cuts, etc. In this paper we have

shown how a Monte Carlo —based technique can be used
to develop a flexible and easy-to-use program for calculat-
ing observables with next-to-leading-logarithm accuracy
in jet photoproduction. The methods can easily be ex-
tended to other reactions, as well.

In order to demonstrate the flexibility of this tech-
nique, results for various one- and two-jet observables
were presented, some of which included cuts to eliminate
the photon-structure-function contribution in favor of
the pointlike term. The observables are insensitive to the
values chosen for the theoretical soft and collinear cutoffs
used in intermediate stages of the calculation, a necessary
though not sufficient constraint on the validity of the re-
sults. It was demonstrated that the nature of the correc-
tions to the leading-logarithm results depends very much
on the observable in question. Furthermore, the sensitivi-
ty to the factorization and renormalization scales de-
pends on the observable and on the kinematic region in
question. The net O(aa, ) corrections to the single-jet in-
clusive cross section were positive definite and of the
same order as the leading-logarithm results for a wide
range of scale choices, when the renormalization and fac-
torization scales were chosen to be equal. On the other
hand, the corresponding corrections to a particular two-
jet cross section were much smaller and the resulting pre-
dictions were very stable with respect to choices of the
scales. This result was easily explained after examining
the various contributions to each cross section. The les-
son appears to be that some observables can be calculated
with a higher degree of precision than others. This is an
interesting result which should be borne in mind when
analyzing data and comparing to theoretical predictions.
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APPENDIX

In this appendix the input expressions used in the
next-to-leading-logarithm Monte Carlo calculation are
summarized. The techniques used here are discussed in
more detail in Refs. 9 and 10.

The basic structure of the calculation depends on
whether or not events with beam jets are included. If
beam-jet events are vetoed, for example by rejecting
events with a jet near the beam direction (as was done for
some of the calculations presented in this paper), then the
calculation involves two-body and three-body contribu-
tions, but no photon-structure-function contribution. On
the other hand, if beam jet events are included, then the
contribution from the photon structure function must
also be included. The expressions for these three types of
contributions are summarized in the following sections.

1. Two-body contributions

In this section the Mandelstam variables s, t, and u are
the same as s&2, t&3, and tz3. In addition, it is convenient
to scale t in order to obtain a variable v =1+t/s which
ranges from 0 to 1. In terms of these variables the full
contribution has the form
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o2b«(yN~jets+I)= g G»(xb, M ) (yq~gq)+ (yq~gq)NLL d 0' d CT

o y dU dU
q

NLL do+G»(xb, M ) (yg~qq)+ (yg~qq) dv dx~ .
dU dU

(A 1)

The two contributions labeled do /dv include both the two-body subprocesses calculated to O(aa, ) (Ref. 16), the
soft contributions from the 0 (aa, ) three-body processes, and the contributions from the hard collinear singularities in
the 6nal state. The singularities associated with the initial-state parton distributions have been factorized and absorbed
into the initial parton distributions. The terms denoted by der/dv are the remnants of the hard collinear singularities
after the factorization process has been performed.

The individual terms in Eq. (Al) are displayed below:

dO NLL a,'(p')
(yq gq)=a, (p )CT$~+ C(T$ A +8 ), (A2)

with

Ao= —6(11N'c 2NF )ln— + (ln5, ——,') —Nc(21n5, + —", )ln5,
s

p 3

+ (2CF Nc ) —,
' —ln —+ —,

' ln +2 ln5, 1n +Li2
s s

+N& —,'ln +2 ln5, 1n +Li2
S S

t 2~ 67
18

m2

2

2 7 2

+CF ——+31n 5, —ln5, (21n5, +—', )+(—', +21n5, )ln +A, + ——ln 5, +—', ln5,

s
&o = —3CF—ln ——'(2C~ Nc )—2

2+ — m +ln —+ 2+ —ln
S 2

—t
s Q Q s

TP= — —+—,and C= e~CF .S Q 2'7T(X

Q $ s

Here 5, and 5, are the soft and collinear cutoff parameters introduced in Sec. HI, L12(x) is the dilogarithm function, M
is the factorization scale, and p is the renormalization point. In addition, e is the quark fractional charge, CF= —, is

the quark-gluon vertex color factor, Nz is the number of colors, and XF is the number of active quark flavors. The pa-
rameter A, depends on the factorization convention chosen. For this calculation, A, =1 has been used, as is discussed
below. The terms for yg —+qq are similar:

where

NLL 3 as(p )
(yg ~qq ) = ', a, (p )CT( +——C(TPAO+80),

dU 8 2a
(A3)

2

Ao= —,'(11NC —2N~)ln +CF ln +ln +2ln 5, —41n5, 1n5, —3 ln5,M2 s

+X& —
—,'ln +2 ln 5, +2 ln5, 1n +2 ln5, 1n + —,'ln-

s M s

Bo =3CF ln
t —u u —t+—ln + —,

' (2CF Nc ) 2 ln + 2—+—ln2 + 2+ —ln~tu Q 2 9 2

s t s ' F t s Q s

and

TP= —+-t u

u t

The remnants of the factorization of the hard collinear singularities are given by
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2 2do. ~(P) ' s dz 2 1 —z s(yq~gq)= CTP f G, (x„lz,M') P„(z)ln 5,
dU 2' xb z 'M P'—(z) A,F—qq(z)

+ f Gs(xl, lz, M ) Pqs(z)ln
xb z g b & M2

—P' (z) —AF (z) (A4)

dO 3 ~,'(p'), '-', dz, 1-z s
(yg qq)= — ' CTP. G (x /z, M ) P (z)ln

dU 8 2a xb z M
P' (z) —

A,Fss(z—)

T

+ f G ( x&/z, M ) Psq(z)ln 5, zq b z 'M' Psq (z)—A,F (z—) (A5)

The Altarelli-Parisi splitting functions in 4 —2e dimen-
sions are, for z ( 1,

P (z, e) = CF —e(1 —z)
1 +z

qq o F

P (z e)= 1

2(1 —e)
[z +(1—z) —e],

Pss(z, e) =2N& + +z (1—z)
z 1 —z

1 —z z

Ps (z, e)=CF 1+(1—z)
Ez

and can be written

1+zF (z) =C~ ln
1 —z

3 1 +2z +3
2 1 —z

P,, (z, e)=P; (z)+ePJ(z),

which defines the P functions. The functions F and
F depend on the choice of factorization convention.
The choice A, =O is the universal convention while A, = 1 is
the physical convention. We adopt the physical conven-
tion and use

3 b dy(yN jets+X) = g f Gaze(xb, M )
abed

Xd&(yb —+cde)dxt, .

The squared matrix elements for the 2~3 photoproduc-
tion subprocesses can be found in Refs. 16 and 17. The
integration over three-body phase space and dxb is done
numerically by standard Monte Carlo techniques. The
kinematic invariants s; and t;. are first tested for soft and
collinear singularities. If an invariant for a subprocess
falls in a soft or collinear region of phase space, the con-
tribution from that subprocess is not included in the
cross section. Furthermore, if two final-state partons are
separated in rapidity y and azimuthal angle P by less than

hR =+(by) +(AP) (1,
the partons are coalesced and the event is classified as a
two-jet event.

3. Photon-structure-function contributions

If events with beam jets are not vetoed, then contribu-
tions from the photon structure function must be includ-
ed in the jet photoproduction calculation. This contribu-
tion is calculated by convoluting the 2~2 QCD sub-
processes with the photon structure function and the pro-
ton structure function:

Fqs(z) = [z +(1—z) ]ln
1 —z +8z(1 —z) —1 .

z
a psF= g f G, qr(x„M )Gqq~(xq, M )

abed

The functions F and F are not unambiguously deter-
mined in deep-inelastic scattering; we set them to zero,
although other choices are possible. '

2. Three-body contributions

Since the three-body contribution to jet photoproduc-
tion is already of order ae, there are no corrections to
consider. The cross section for this contribution is

X (ab ~cd)dx, dx&dv .d&

The squared matrix elements for the 2~2 QCD sub-
processes can be found in Ref. 8.

The photon-structure-function contribution also has
collinear corrections that are analogous to the collinear
corrections for yq —+gq and yg —+qq. These corrections
have the form
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do (ab ~cd) = d&
(ab —+cd )Gsi~(xb, M )

dU 2m

Pqr(z), and F~r(z) are 6e times the respective functions
P (z), P' (z), and F (z). The photon-structure-function
contribution to jet photoproduction is then

oN„.(yN jets+X)
X P r(z)ln

1 —z s
5,

M = g I G, ~ r( x„M )Gb)~(xl„M ) (ah~cd)2 2 . d&

abed dU

P' (—z) AFqr—(z)

where a is q or q and b is q, q, or g. The functions Pqr(z),
+ (ab~cd) du dx, dxb .dc'

J. F. Owens, Phys. Rev. D 21, 54 (1980).
This nomenclature is borrowed from direct photon production

where the time-reversed process qq~yg is referred to as the
arinihilation process.

E. Witten, Nucl. Phys. 8120, 189 (1977).
4R. J. DeWitt et al. , Phys. Rev. D 19, 2046 (1979); 20, 1751(E)

(1979).
5Ch. Berger and W. Wagner, Phys. Rep. j.46, 1 (1987).
M. Drees and R. M. Godbole, Phys. Rev. D 39, 169 (1989);

Phys. Rev. Lett. 61, 682 (1988).
7H. Baer, J. Ohnemus, and J. F. Owens, Z. Phys. C 42, 657

(1989).
sJ. F. Owens, Rev. Mod. Phys. S9, 465 (1987).
L. Bergmann, Ph.D. dissertation, Report No. FSU-HEP-

890215.

L. Bergmann and J. F. Owens, Report No. FSU-HEP-890601
(unpublished).

~M. Drees and K. Grassie, Z. Phys. C 28, 451 (1985).
12D. %r Duke and J. F. Owens, Phys. Rev. D 30, 49 (1984).

G. 't Hooft and M. Veltman, Nucl. Phys. 844, 189 (1972).
~4%. A. Bardeen, A. J. Buras, D. W. Duke, and T. Muta, Phys.

Rev. D 18, 3998 (1978).
~~G. Sterman and S. Weinberg, Phys. Rev. Lett. 39, 1436 (1977).

P. Aurenche, R. Baier, A. Douiri, M. Fontannaz, and D.
Schift; Nucl. Phys. B286, 553 (1987).
The expressions in Ref. 16 for the qq~qqy and qq' —+qq'y
subprocesses contain a number of typographical errors where
the variable a3 appears in place of az. The original, Report
No. LPTHE Orsay 86/24, contains the correct expressions.
R. K. Ellis and J. C. Sexton, Nucl. Phys. B269, 445 (1986).


