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Quark-nIImber susceptibility in quenched quantum chromodynamics
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Using staggered fermions, we measure the quark-number susceptibility of quenched quantum
chromodynamics in a Monte Carlo simulation on an 8 &4 lattice. At low temperatures it is con-
sistent with zero and it rises suddenly to nonzero values across the known deconfinement phase
transition. Implications for the interpretation of this susceptibility as an indicator of the presence
of light baryonic modes in the plasma are discussed.

Numerical simulations of lattice quantum chromo-
dynamics (QCD) have led us to an exciting prediction of a
new and hitherto unseen state of matter called the quark-
gluon plasma (QGP). While the QGP could have existed
a few microseconds after the big bang, the heavy-ion-
collision experiments at CERN and BNL may provide us
with a glimpse of it under laboratory conditions. At
present, it seems that the best way to gain more theoreti-
cal insight into the nature of the QGP is through numeri-
cal simulations, especially since there are strong indica-
tions' that close to the critical temperature T, the QGP is
definitely not an ideal gas of quarks and gluons. Of
course, at sufficiently large temperatures, it should be-
come an ideal gas due to the asymptotic nature of QCD.
However, such large temperatures may not be accessible
in the proposed heavy-ion experiments.

A particularly interesting probe to study the dominant
modes of QGP was suggested recently by Gottlieb et al.
and McLerran. On an 83x4 lattice Gottlieb et al. simu-
lated QCD with two light flavors and measured the
quark-number susceptibility at zero chemical potential as
a function of temperature. They found it to be vanishing-
ly small in the low-T phase. At T„ it rose suddenly to a
nonzero value and behaved like T thereafter. They inter-
preted this to be due to the presence of dominant low-
mass dynamical modes of the QGP which are baryonic in
nature.

The quark-number susceptibility is analogous to the fa-
miliar magnetic susceptibility. If p denotes the chemical
potential for baryons then the baryon- or quark-number
density and the. corresponding susceptibility are, respec-
tively, given by

( ) T 81nZ(p, T)
V 8p

and

( ) Bn(p, T)
X p~T

p

Here V is the spatial volume and T is the temperature
of the system. For suf5ciently large V, the susceptibility
at zero chemical potential g(O, T) is clearly proportional
to T on dimensional grounds and the information about
the dynamics of the system is contained in a dimensionless
function of T, f(T), multiplying it. In a simplistic picture
of a noninteracting gas of particles of mass m, f(T)
-exp( m/T)-0, —if m»T and f(T) =1, if m«T.
This is very similar to the behavior observed in Ref. 2. If
there is more than one quark flavor (Ny & 1), then p be-
comes a linear combination of the corresponding chemical
potentials and gjNy replaces g.

It might be emphasized, however, that the above pic-
ture is too simple minded, especially close to T,. As men-
tioned earlier, QGP is far from being an ideal gas near T,
and may, in fact, be nonperturbative in nature. Of course,
one could argue that the susceptibility is expected to be
sensitive only to low-mass dynamical modes which are
baryonic; heavy or nonbaryonic modes are not counted by
it and the former may exhibit an ideal-gas behavior. It
seems interesting to test this simplistic picture by taking
the limit Nf ~ 0, which suppresses the dynamical creation
and annihilation of light-quark pairs (an obvious source of
light plasma modes). One can then calculate Eq. (2)
again and compare with the results of full QCD. Naively,
if the light quarks are the direct source of the baryon
number in the plasma, one might expect the two computa-
tions to produce susceptibilities which behave quite
differently with respect to temperature (for example,
suppressed pair creation could lead to a susceptibility
which is flatter across the transition). Assuming that the
limit Nf 0 leads smoothly to the quenched approxima-
tion Nf 0, we have measured the susceptibility in
quenched QCD as a function of temperature and found
qualitatively the same behavior as in full QCD. Thus, our
work necessitates a deeper look into the interpretation of
Ref. 2.

For staggered fermions the partition function Z, ob-
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tained by integrating out the fermionic degrees of freedom, is given by

Z
&

QdU„'exp[ —S,s(/U'], P,m;a, p;a)],
Z, t

where the effective action is

N)

S,s Ss+ —,
' g TrlnM'.
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The gluonic action Sg and the inverse quark propagator M' are given by
3

P g (1 ——,
' Re trU„'U„"~+ ZJ„'+ „-U„"t)

Z, t& v~o

and

m;ab„,~+ —,
' g ( —1) ' " '(U„"b „+„-—UYtb „„-)+i lf(p;a)Uob „+0—g(p;a)U~~tb „0]. (3)

v 1,2, 3

Our notation is fairly standard. The above formulas are
written for Nf flavors of quarks of mass m;a and the cor-
responding chemical potentials are p;a on the lattice. The
functions f and g have to satisfy certain constraints to
ensure that the energy density obtained from Z above
remains finite in the continuum limit of a~0. They
sufFice to obtain a finite number density and susceptibility
as well. 2 Two different choices for them have been pro-
posed in the literature, which do satisfy these constraints.
However, as we shall now show, we do not need to worry
about the details of the prescription.

In the general case above, one can obtain Nf different
conserved densities and Nf(Nf+1)/2 susceptibilities, in-
cluding those corresponding to the variations of number
densities n; with the chemical potential pj. It is obvious
from Eqs. (1) and (2) that they will, in general, involve
6rst and second derivatives of the functions f and g. Us-
ing the constraints on these functions, it can be easily
shown that f'(0) —g'(0) 1 and f"(0) g"(0) l.
Thus the number densities and the susceptibilities are in-
dependent of the prescription to introduce the chemical

I

x3(),T)- 1
(ni n2) .

Nf 8p) 8pi

(4)

If all m; (and the corresponding )(t;) are equal, then these
equations simplify to

I

potentials on the lattice, given by the functions f and g, if
one evaluates them either at zero chemical potential or in
the continuum limit where pa ~ 0. While we will be con-
cerned with zero chemical potentials here, we note that
corrections due to nonzero a, being prescription depen-
dent, can potentially cause non-negligible changes in the
critical parameters, particularly if they are obtained in the
strong-coupling region.

A physically meaningful way of constructing suscepti-
bilities for the baryon number or the third component of
the isospin is to define appropriate linear combinations of
8n;/8pj, as done in Ref 2:.

)'

1VyT 1 - 1 - 1 4T 1 1 1
Oo(T') ) o(T)+ Tr Mo Tr Mo Tr Mo, Zo(T)

&
Tr Mo Tr ~~o ~~o)4y ~ 3f M

(5)

where all p; have been set to zero and the matrix Mo
(Mo) is the time component of the inverse quark propaga-
tor in Eq. (3) (with opposite sign).

We have computed these susceptibilities along with

&pity) and the average Polyakov loop (L) in a simulation of
QCD in the quenched approximation. In this approxima-
tion, S,tt Sg and the dynamics of the theory is complete-
ly governed by gluons. Fermionic operators measured in
such a background field of gluons can be seen as repre-
senting the properties of static quarks interacting via
gluonic forces. To define such operators consistently by
means of the same formulas as are used in full QCD, one
must assume that the quenched approximation can be
reached smoothly as the Nf ~ 0 limit of full QCD. This
assumption underlies all calculations performed in the
quenched approximation; its validity can be checked by
comparing quenched calculations to full QCD calcula-

I

tions performed with very small Nf (see Ref. 6). In par-
ticular, we have used Eq. (5) to compute g3(T) [which be-
comes equal to go(T) in the quenched approximation] in
the sense of the limit Nf 0. A direct comparison of the
results of Gottlieb etal. ' with those of quenched QCD
should be very helpful in understanding the origin of the
baryonic excitations these authors have seen in the QGP.

We employed an 8 x4 lattice to simulate the theory at
several values of the couplings which included the
deconlnement transition: 5.50» P ~ 5.75. g was com-
puted with the method of random vectors using a
conjugate-gradient algorithm to calculate M '. Up to 3
(5) such vectors were used in the hadron (plasma) phase
for bare-quark masses ma 0.1, 0.05, and 0.025 (and
0.01). The inverse was obtained by demanding that an
average element of the residue vector be less than —10
At each P 10000 interactions have been typically per-
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TABLE I. The susceptibility for quenched QCD on an 8 &4 lattice as a function of the bare-quark
mass ma and the coupling P. The last column has been obtained by a linear extrapolation of all the data
at each coupling.

0.10 0.05 0.025 0.01 0.00

5.75
5.73
5.70
5.68
5.67
5.65
5.60
5.50

0.0760(10)
0.0765(40)
o.o64o(ls)
0.0625(30)
o.o4oo(so)
0.0185(25)
0.0080(20)

—0.0010(20)

0.0880(10)
0.0905(25)
o.ogos(ls)
0.0745(30)
0.0440(60)
0.0235(30)
0.0095(30)
0.0045(25)

0.0925(10)
0.0995(35)
0.0850(15)
0.0780(35)
0.0520(70)
0.0295(30)
0.0130(30)

-o.oo6s(4o)

o.o94s(lo)
0.0975(35)
0.0915(20)
0.0885(30)
0.0575(80)

0.0974(8)
0.1007(29)
0.0938(14)
0.0885(26)
0.0565(59)
0.0319(36)
0.0136(35)
0.0008(39)

formed and (yy) and g were calculated every 100 itera-
tions.

Table I contains our results for the susceptibility at all
quark masses that we studied. One sees that g increases
monotonically as the quark mass is decreased, which is
consistent with its expected behavior. The results for
ma 0 are obtained by linear extrapolations from the
data at all the masses (extrapolating from the data at
ma ~ 0.05 gives very similar results). Figure 1 plots these
extrapolated values for g along with similarly extrapolated
values for (yy) and with the deconfinement order parame-
ter (L). We see that g jumps abruptly at the critical point
of the previously known phase transition where (yy) and
(L) also jump. The qualitative similarity of these results
with those of Ref. 2 is remarkable.

Figure 2 compares our results for g/Nf T for m/T 0.2
as a function of T/T„ to the corresponding results for g3
in the full theory. This direct comparison assumes asymp-
totic scaling for both data sets. We expect that its viola-
tions should not be very significant since we are using di-
mensionless ratios for which a weaker assumption of scal-
ing may be valid, and since the known scaling violations in

both the theories are similar in magnitude. ' While
remaining aware of these caveats about scaling, one sees
that our results are indeed similar to those of Ref. 2. For
both Nf 0 and 2, the jump coincides with the onset of
the plasma phase, with the difference that for Nf 0 the
phase transition is expected to have more to do with
deconfinement, while for Nf 2 it has to do with chiral
symmetry. One further notices that the susceptibility for
the quenched theory is lo~er than that for the full theory
at a given T/T, .

According to the simple picture described in the Intro-
duction, the quark-number susceptibility should act as a
counter of light baryonic modes. Might one then interpret
the similarity of our results to those of Ref. 2 as indicating
the presence of light baryonic modes in the plasma even in
the quenched approximation? Such modes are not expect-
ed from a classical point of view, governed by the purely
gluonic action. Unlike in full QCD, the relation between
the partition function and any fermionic observable is not
fully clear in the quenched approximation. Nevertheless,

m/T=O. 2
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FIG. 1. The deconfinement order parameter (Ll (circles), the
m 0 chiral condensate (Icily) (dashed curve), and the m 0 sus-
ceptibility g (solid curve) in lattice units as functions of the cou-
pling P on an 83&4 lattice.

FIG. 2. Susceptibility in units of NyT as a function of T/T,
for quark mass m/T 0.2 on an 83&4 lattice. Daggers are for
the quenched theory and circles are for full QCD (after Ref. 2).
The horizontal line indicates the value of the susceptibility for a
massless ideal gas on the same size lattice.
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if we accept that observables measured in the quenched
approximation are equal to the Nf ~ 0 limits of the corre-
sponding observables of the full theory, Fig. 2 tends to
suggest that the light dynamical quarks do not contribute
substantially to the observables in Eq. (5). These would
thus be insensitive to the intrinsic nature of the plasma
with respect to its light baryonic or quark modes. In the
limiting sense of Nf 0, our results seem to point to al-
ternate sources of baryon number in the plasma which
could include heavy (constituent?) quarks or bound states
in su%ciently large numbers.

Another way to understand our results is to recognize
that what one sees in Fig. 2, for both the full theory and
the quenched theory, is a reflection of the response of the
operator M ' to a sudden change of dynamics of the
gauge fields, which appears to be qualitatively similar in
the two theories. Indeed, using the usual renormaliza-
tion-group arguments which are employed to explain the
similarity of the hadron spectrum in these two theories,
one can conclude from Fig. 2 that the physical coupling of
the external field to the medium is similar in the two
cases, if the necessary change of scale A is properly taken
care of. In such a picture, it is not meaningful to speak of
the quark modes as separate from the gluonic ones in a

baryonless plasma due to the intrinsic renormalization
scale dependence of these modes. One can also argue in
this picture that the essential physics behind the phase
transitions seen in the two theories is the same, again
apart from a scale change. Furthermore, one can under-
stand in the same way why the energy density" or the
hadronic screening lengths" in the full theory and the
quenched theory are also similar in nature. Of course, one
does expect physical diff'erences in the two theories which
cannot be scaled away. In our case, the difference of the
susceptibilities above the phase transition may be such a
quantity. However, to establish its physical significance
one would need to show that it survives the continuum
limit.
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