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This paper considers the Heisenberg equations of motion q i[q, H—I,P —ilp, HI, for the
quantum-mechanical Hamiltonian H(p, q) having one degree of freedom. It is a commonly held

belief that such operator diA'erential equations are intractable. However, a technique is presented
here that allows one to obtain exact, closed-form solutions for huge classes of Hamiltonians. This
technique, which is a generalization of the classical action-angle-variable methods, allows us to
solve, albeit formally and implicitly, the operator diN'erential equations of the anharmonic oscilla-
tor whose Hamiltonian is H p 2/2+q ~/4.

The classical Hamiltonian H (p,q) describes a dynami-
cal system that evolves according to the time-evolution
equations

tion is

q(t) qpcost+ppsint,

p(t) ppcost —qpsint . (7)

We propose to solve operator equations that are non-
linear by constructing a quantum analogy to Eq. (3).
Specifically, we will attempt to obtain a function of
F(p, q) of the operators p(t) and q(t) that satisfies

(8)—i[F(p,q),H(p, q)] F(p,q) 1.

[Note that F is not unique: F F+p(H), where p is an
arbitrary function of the Hamiltonian, satisfies (8).] If
such a function F can be found then of course the solution
to (8),

p
aH . aH (1)
8p

'
Sq

'

and satisfies the initial conditions p(0) pp, q(0) qp.
Although (1) is equivalent to a single second-order
differential equation, it is often possible to find a closed-
form solution because the Hamiltonian H is a constant of
the motion. Thus, in principle we can use the algebraic
equation H(p, q) E to solve for and eliminate one of the
variables p(t) or q(t) in (1) and then to solve the result-
ing f'trst-order differential equation for q(t) or p(t) For.
example, consider the Hamiltonian H p /2+ V(q), for
which Eq. (1) takes the form

q -p, p -—v'(q) . (2) F(p(t), q(t)) -t+F(pp, qp),

Now, solving H(p, q) ~E for p(t) and using the first
equation of (2) gives q [2[E—V(q)]]'I . This is a
first-order separable equation whose implicit solution
satisfying q(0) qp is

F[q(t)] -t+F(qp),
where

Qq XF(q)-
42[E —V(x)]

(3)

(4)

The quantum equations of motion for the Hamiltonian
H(p, q) are

together with

H(p(t), q(t)) H(pp, qp), (10)

constitutes an exact implicit solution to the operator equa-
tions of motion (5). If we can then solve (9) and (10)
simultaneously for p(t) and q(t) as functions of pp, qp,
and t, we have an explicit solution to the equations of
motion. Here are some simple examples.

Example I. H (pcs+esp)/2 The operato. r equation
of motion for q, q es, immediately suggests that F(p,q)
in (8) is actually a function of q only: F(p,q) —e
The explicit solution to the operator equations of motion
1s

q- —i[q,H], P- i[p,H], — (5) q(t) —ln(e ' —t), p(t) pp —t(ppee'+es'pp)/2.

where the operators q(t) and p(t) satisfy the equal-time
commutation relation [q(t),p(t)] i It is the nonc. om-
mutivity of q(t) and p(t) that makes (5) di%cult to solve
if it is a nonlinear system. Only the special case of the
harmonic oscillator H p /2+q /2 gives rise to the easily
solvable linear equations q p, p —q, whose exact solu-

Example 2. H pe'ep, where a is a constant. For this
Hamiltonian, a function F satisfying (5) is

F-—— p(t)1 1 1HH'
The explicit solution to the operator equations of motion
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ls

p (t ) —aH (p p, q p) t +p p,

q(t) ——ln[e ' 2—ppt+a H(pp, qp)t ].
a

or q has the effect of a lowering operator:

[Tmnl, p] I'nTm, n —I i

[Tm, n iq ] tnt Tm —In ~,

(i2)

Example 3. H p'q ~p'. For this Hamiltonian it is
easy to see that a function F satisfying (5) is

Anticommuting with p or q is analogous to applying a
raising operator:

F(p.q) - 4 4
(pq+qp)

1 1 + 1
[Tm, niP]+ 2Tm+ I,n i

[Tm,niq]+ 2Tm, n+ I .
(13)

Note that (11) ceases to exist when a P. However, the
special case a P gives what we call an Euler Hamiltoni-
an. [By an Euler Hamiltonian, we mean one in which the
operator p(t) is always accompanied by a multiple of
q(t); that is, H H(pq). ] In general, the operator equa-
tions for Euler Hamiltonians can always be solved explic-
itly and in closed form. ' Solving F(p, q) t+F(pp, qp)
simultaneously with H(p, q) H(pp, qp) can be compli-
cated. However, a relatively simple case arises when a 1

and P N/2. Now the explicit solution is

q (t) [[ppqp+ (2 N )ppq 0ppt ] 'ppqp

Xpp[qppp+ (2 —N)ppqo ppt 1

p(t) -[[q(t)] Nj'ppqp)pp[q(t)l

——.
' N(N —2) [q(t) 1

Example 4.
' H ap "+Pq ". Here, the form of

F(p, q) is similar to that in example 3:

F(p,q) - (pq+qp)1 1 + 1

H H

Our objective is now to describe a general procedure for
obtaining an operator F(p,q) that satisfies (8). To do so
we introduce an operator basis. Our basis elements T
are defined as the sum of all possible terms containing nt
factors of p and n factors of q multiplied by m!n!/(nt
+n) T„ is..thus a totally symmetric Hermitian object
containing (m+n)!/(m!n!) individual terms. For exam-
ple,

To,o-1,
To,3

T1,1-(pq+qp)/2,

».I -(p'q+pqp+qp')/3 ~

».2-(p'q'+ q 'p'+pqpq+qpqp+ pq'p+qp'q)/6.

For two reasons, this seems to be a natural basis with
which to express operators. First, T „contains positive
powers of p and q, so it should be useful for constructing
Taylor-type expansions of operators. Note that we can
expand operators, regardless of whether they are sym-
metric. For example,

p q T2 3 3iTI 2
—3T0,1/2.

Second, T „satis6es an extremely useful set of commu-
tation and anticommutation relations. Commuting with p

The operators T „have many more remarkable prop-
erties and have played a central role in previous studies in-
volving finite-element lattice approximations, operator
ordering, and Hahn polynomials.

Now we return to the problem of obtaining a solution to
(8). We represent F(p, q) as an arbitrary sum of operator
basis elements:

F(p,q) -g a
m, n

(is)

where a,„are constants to be determined from the re-
quirement in (8) that i [F(p,q)—,H(p, q)] 1. To illus-
trate, we begin by finding F(p,q) for the harmonic-
oscillator Hamiltonian H(p, q) p /2+q /2. Equations
(12) and (13) make the computation very easy:

—.[T, , 2 p ] . (p[T,„p]+[T,„,p]p)

n
[Pi Tmn —I 1+ , nTm+ In —I ~,

Similarly,

1
. [Tm, ni 2 q ] rnTm —In+ I ~,
l

(i7)

Combining (15)-(17),we see that the commutation rela-
tion in (8) takes the form

g am, n (nTm+ In —I rnT, m —In+ I ) T,p, p ~

m, n
(i8)

Hence, assuming completeness, we determine that the
coefficients a „satisfy the linear partial difference equa-
tion

(n+1)a I „+I—(m+1)a +1„1 b pb„p.

As we pointed out earlier, F is not uniquely determined.
We are free to take the simplest particular solution a
that satisfies (19). We choose the solution

a —2m —I,2m+I ( —1) /(2m+ I), rn 0, 1,2, 3, . . . ,

and a „0for other values of m, n. Thus, the formula

Shortly, we will make use of the property that the total-
ly symmetric operator T „can be completely reorganized
using the commutation relation [q,p] i and recast in
Weyl-ordered form

1 m . . 1 n
p jqnpm

—j~ g qkpmqn k

2 g-o .~, 2" k-o k
(14)
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for F(p, q) in (15) becomes

( 1)m
F(p.q) - Z T-2m-1, 2m+1.

m-p 2~+ l
(20)

Since Z(t) is a function of Zp, Z(t) must commute with
Zp. Thus, we can treat (21) as a c-number algebraic
equation and solve for tant: tant [Z(t ) —Zpl/ [1
+Z(t)Zp]. Finally, taking the inverse tangent of this
equation, we obtain

Zp+ tant

l —Zptant
(21)

Observe that we are forced to generalize our initial as-
sumption that, by analogy with Taylor series, our basis
T „has m, n ~ 0. Apparently, a more accurate analogy
is with Laurent series in which powers may be positive or
negative. Fortunately, the formulas in (14) allows us to
define T „when m ~ 0 and n & 0 and when n ~ 0 and
m & 0. Moreover, the commutation and anticommutation
relations in (12) and (13) continue to hold in this extend-
ed and singular basis.

In order to understand the formal series in (20) we re-
turn to the exact solution to the harmonic oscillator in (6)
and (7). We divide (6) by (7) and let Z(t) q(t)
X [p(t)]

Z(t) -(qllcost+pllsint)(pllcost —qllsint)

-(qpcost+ppsint)pp 'pp(ppcost —qpsint)

(Zpcost+sint) [(ppcost —qpsint)pp ']

arctanZ(t) t+ arctanZp.

This equation is an instance of (9), so we identify

F(p,q) arctan[q(t) [p(t)l

(22)

(23)

Compare (20) and (23). Note that the coefficients a in
(20) correspond exactly with the Taylor expansion of

( 1)n
arctanx X

g-p 2n+1
Even more important, the physical meaning of F(p, q) is
now more evident: Classically, the harmonic oscillator de-
scribes an orbit in phase space which is a circle of radius
pp+qll. The singular quantity arctan[q(t)/p(t) l is the
angle 8 of a point on this circle. Apparently, (20) is the
generalization of the angle coordinate from a classical
(c-number) theory to a quantum (operator) theory.

Finally, we consider the anharmonic oscillator whose
Hamiltonian is given by H p /2+q /4. To find F(p, q)
we 6rst evaluate the commutator

i [Tmnt q ] , m (q Tm —l, n +q Tm —l,nq +qTm —lnq +, Tm —l,nq-—2m(q Tm —in+1+ ,Tm —ln+lq ,)2 2

m(q [q, Tm —1 n+1)+ + [Tm —1 n+ 1,q] ~q+q [q Tm —in+1] +, [Tm —l,n+1 q]q)
—m (2 [q, T —1,„+2]++ (rn —1 )i [q, Tm 2,„+1 l)—
—4mT 1 „+3+m(m —1)(rn —2)T 3 n+1. (24)

Combining the result in (16) with that in (24), and assuming that the operators T „ form a complete basis gives a recur-
sion relation for a „ in (15):

(n+1)a 1„+1—(m+1)a i1„3+(m+3)(m+2)(m+1)a +3n —1/4 Bm ply, p. (25)

Note that the solution to this recursion relation has
nonzero coefficients for positive and negative values of
both m and n. Thus, we must further generalize the
operator basis T „ to negative values of both m and n.
We do this by expressing the binomial coefficients in (14)
in terms of gamma functions. The representation for T
now becomes an infinite series when n, m & 0. For exam-
ple, OO

T-1,-1-2 Z ( —»'p'q 'p
j~ —oo

The singular operators T „continue to obey formally the
algebraic relations in (12) and (13) even when both rn

and n are negative.
To solve (25) we let m 2k, n 21, and a2k+12l+1
yk, lI ( 2 )/I (k+ 2 ). Then yk, l satisfies

(2l+1)yk —l, l 2yk, l —2+ (2k+2) yk+ l, l —1 bk, p~l, p,

which we solve by introducing the generating function

g(x,y) -gxky'yk, l .
k, l

2xygr+2yg„+ (x —2y')g -1. (26)

We solve (26) by making the change of variables r y
+x /2, s y —x /2, g(x,y) h(r, s). Now, h satisfies
the ordinary differential equation

1 r+s
h

1

2("+s) 4&r —s 2(r+s) Jr —s

whose integrating factor is (r+s) 'r exp[ —s(r —s) 'r
—(r —s) l /6]. Thus, we can express the solution to (26)
in quadrature form in terms of the integral

exp[ —s4'x —s —(x —s) 'i2/6)
dx 2'' —s'

which simplifies to fdz e '1'+' r 1/(z 2+ I ) 'r, where a is
a constant. This is the solution, albeit extremely singular,
formal, and implicit, to the anharmonic oscillator.

The function g(x,y) satisfies the first-order linear partial
differential equation
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The progress we have reported here is formal because
the operator F(p,q) can be extremely singular as it con-
tains in many cases arbitrary powers of I/p(t) and/or
I/q(t). If F(p, q) did exist as an operator in a Hilbert
space, then by virtue of (8), U= exp[iAF(p, q)] would be
an energy raising operator. That is, if H)E) E)E),
then H(U ) E)) (E+X)(U

~
E)). Clearly, for Hamil-

tonians with discrete spectra, U must map states out of the
Hilbert space except for special discrete values of A, . A
natural direction for future research is to Snd a way to
identify these special values of X and thereby to use the
operator solution to a quantum theory to compute such
quantities as eigenvalues and also unequal-time commuta-

tion relations. One should also consider applying the ideas
presented here to systems having more than one degree of
freedom and especially to models that exhibit quantum
chaos. It was our sole intention here to point out that
operator differential equations are not inaccessible to ex-
act analytic methods and that in many cases they can ac-
tually be solved in closed form.
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