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The heavy-quark potential at finite temperature is calculated from a string picture, where the
string is regulated on the lattice. While the potential agrees exactly with those found previously in

special cases such as the zero-temperature limit, the oscillational modes do add several interesting
new terms at finite temperature.

The intention of this paper is to compute the heavy-
quark potential at finite temperature predicted by the
simple free-string model. The knowledge of the potential
is important in understanding the dynamics of QCD and
useful to experiments such as heavy-ion collisions. The
potential can be used to guide the accurate measurement
of the nonperturbative string tension by Monte Carlo
simulation of lattice QCD.

The free energy of an infinitely heavy-quark —antiquark
pair system can be calculated from the correlation func-
tion of two Polyakov loops on the lattice. Consider the
case when a quark pair is introduced into the lattice at 0
and R,

1(R,T)=f gd[U ]L(0)L (R)e

is the correlation function, where U is the gauge field
variable, I. is the ordered product of links along the loop
in the T direction which represents a quark in the funda-
mental representation, and S is the plaquette action.
I (R, T)=e ' ' ' =e ' ' ' determines the free en-
ergy and the free energy is the interaction potential in the
static case. Inspired by the strong-coupling expansion of
Eq. (1), a string model

e
—K(area of the surface)

surfaces
T

—f d [X,p] exp — —f fdr dp VXVX
K

(2)
will be used as an approximation, where K determines the
string tension and X will be defined on a two-dimensional
lattice to regulate the operator V . This is the starting
point for this paper and we will derive the free-string po-
tential from it. The underlying physics is the belief that
the strong self-interaction among gluons contracts the
force field between quarks into an essentially one-
dimensional Aux tube and a large part of the dynamics of
the QCD system is characterized by the motion of the
Aux tube. This is the basis for the string picture.

In the following, we will calculate Eq. (2) on the lattice
in the continuum limit. This gives us the potential and it
is the main result of this paper. For convenience, we will
consider Polyakov loops of length N, =1/Ta with separa-
tion N„=R/a (both N, and N„are dimensionless in-

tegers), where R, T are the physical distance and tempera-
ture and a is the lattice unit. Then the size of the two-
dimensional lattice is given by N, and N, and the contin-
uum limit at finite temperature should be given by
N„N„~ oo, a ~0 with N„/N, fixed so that R and T are
finite while the product R 7is fixed.

By making a definite choice of parameters X4 =~ and
X, =p, I becomes

N„
I'(R, T)-f g d X (r,p)exp KN, N„,'K f—

deaf

—dp—VXVX,
1,P

0 0

Calculating the eigenvalues of —V on the lattice
(d /dx ~6„+„+5„„„—25„,x =r,p) with periodic
and fixed boundaries for N, and N„, respectively, we get'

—Ka2N NI (R, T)=e ' "[det( —
—,'KV )]

„=4—2 cos(2mm /N, ) —2 cos(en IN„ ),
with —N, /2 &I ~ N, /2, 0 & n & N„. Let

N/2 —1N —1I'

F(N„N„)= g g 2fz(m ~/(N, /2), n m/N„).
-exp Ka N, N„—g ( ,'K—a ink, „)—

N —1

n=1

where

rn, n + g f, (nor/N„),
n=1
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where

f2(x,y) =ln(4 —2 cosx —2 cosy),

f, (y) =ln(2 —2 cosy)+ln(6 —2 cosy)

[x =me/(N, /2), y =n~/N„, and r =N„/N, =RT
throughout this paper], then

=exp[ Ka —N, N„ln(K—a l2)N, (N„—1)—F] .

(8)

Once we have calculated F(N„N„), we get I (R, T) and
hence V(R, T). Since we are interested in the result near
the continuum limit, we need only to find the asymptotic
behavior of F. The function F is expected to have asymp-
totic leading terms involving X, XX„,N„X„and these
terms will carry all the regularization-scheme-dependent
divergences (of the form of 1/a after changing back to
physical T and R) in the continuum limit. Then there
should be terms which are independent of the lattice
cutoff. Besides a constant term, others can only depend
on the ratio of N„/N, (no asymptotic terms with N, /N„'
or N„"/N, ' for k )1+1 can exist since they would blow

up quicker than the leading terms). We will call these
terms (excluding the constant) the subleading asymptotic
terms and they will not be inAuenced by the regulariza-
tion scheme. The other terms in I' will be the constant
term and terms with at least one extra factor of
1/N, —Ta or 1/N„-a/R, which will be of the order
O(a) near the continuum limit. These terms are not in-
teresting and will be dropped in the continuum limit. All
the physics is carried by the leading (after the renormal-
ization of the string tension) and subleading asymptotic
terms in the continuum limit. Finding these asymptotic
terms in the right limit is the objective of following.

Before we go to the general case, let us discuss the re-
sults for two special cases. For the first case where
N, ~ oo and N„(finite) ))1, by using Euler's sum formu-
la which must be applied first to sum over m and second
to sum over n and

I —1

g in[2 —2 cos(mi/I)] =lnI,

we get the asymptotic terms of the two series summations

g g 2f2 ( m n l(N, /2 ), n mIN„}.
n m

= —Q fi(n~/N„)+C, N, N„
n

—C2N, (m /12)N, /N„, —
(10)

g f, (n~/N„) =InN„+N„ in(3+&8) —In&32,

where

C, = I I dx dy ln(4 —2cosx —2cosy)

=1.166243 7,
C~ =

—,
' ln(3+2'/2) =0.881 373 6 .

F =Ci R /Ta —C2/Ta —(m/12)/R T +0 (a), (12)

F =C,R /Ta C2/Ta ——(~/3)R T+ ln(2RT),

V (R, T)= crR —( ~/3 )R T + T ln(2R T)+const .

(14)

(15}

This is the result given by Ref. 1. It is the case of a very
long string where the length is much longer than thermo-
dynamic scale. This is because the requirement
X, /N, =AT~~ means 8 &&1/T, but T is bounded by
T, (hence 1/T is always larger than 1/T, ) for the QCD
string to be valid.

It is easy to see that the difference for the two results is
due to the fact they represent the asymptotic behavior in
two different extreme cases when the order of the summa-
tion is done differently. The problem comes from the
Euler sum formula since both f i (y) and f2(x,y) are not
continuously differentiable at x =y =0. For example,
(Bf2/Bx)(0, 0)=0/0 and (Bf2/By)(0, 0)=0/0, both are
indefinite depending on how fast x ~0 and y ~0. In the
first case, X,~~ while N, is held finite, i.e., x ~0 is tak-
en first while y is held finite. In the second case, it is just
the opposite. Because of this, J dx [lim o(Bf2/By)(x,
y)]=0 or m/2 for the two cases depending on the order
of the limiting process (y —+0) and the integrating process
(x~0). This causes the difference in the two results.
Note, in both cases, only the first summation has the
difhculty, the second is well behaved.

However, it is perhaps more interesting to find the gen-
eral solution and get the complete asymptotic behavior in
the continuum limit. The proper continuum limit at
finite temperature should be given by %,~ oo, and
%„~oo with 1V„/N, fixed so that RT =finite. Since the
actual value for x is limited to [1, . . . , (N, /2 —1)]m/
(N, /2) and y to [1, . . . , (N„—1)]m/N„, the speed that
x,y go to zero are exactly given by the relative size of
2/N, and 1/N, . The above two cases of x —+0 first (y
held finite so that N„/N, ~0) and y —+0 first (x held finite
so that N, /N„~O) refiect the ratio of r =N„/N, and cor-
respond to r~0 or ~, respectively. What we need for
the right asymptotic behavior is to keep r =X„/N,

near the continuum limit and Vis of the form (a ~0)
V(R, T)=oR (rr—/12)/R +const, (13)

where the renormalized string tension is given by
cr=K+ln(Ka /2)/a +Ci/a . This is exactly the
zero-temperature potential derived in Ref. 2. The m/12
factor can also be found from many other ways. This is
not surprising since the limit (N, ~Do, N, a =1/T finite
and N„/N, =RT~0) gives exactly R (& 1/T, i.e., T +0-
or the separation is much smaller than the thermodynam-
ic scale.

For the other case where N„~ oo and N, (finite) ))1,
the order of the double summation must be reversed (the
Euler sum formula cannot be used otherwise). However,
the result for the double summation can be gotten by us-
ing the symmetry between N„and (N, /2) and simply ex-
changing N„~N, /2. The asymptotic behavior for the
new limit is
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is whether or not the result fits finite-temperature QCD.
Since 1(R,T) for all the possible R on large lattices
(24 XN, ) has been measured by Monte Carlo simulation
of lattice QCD (Ref. 4) on supercomputers such as the
Columbia parallel processor, the new potential can be
easily tested. It is important to notice that most simula-
tions of lattice QCD are done for r =RT finite (r —1) so
that a guidance for QCD at this range of R is very useful.

Now, we come to the conclusion. The heavy-quark po-
tential is found based on a simple string model. It is the
free-string potential at finite temperature. Just as the po-
tential given by Ref. 3 has been used for guiding the
zero-temperature physics, the potential here is expected

to be useful for finite-temperature physics. To improve
the simple model, for phenomenological purposes, we can
add T dependence to the model by letting K =K( T), or
more directly by letting cr =cr(T) for the potential which
can be determined by lattice-gauge-theory simulation, for
example (as is motivated by the simulation result ). This
may provide a more suitable heavy-quark potential to
compare with the dynamics of QCD.
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