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(qq ) component of the quark self-energy in the light-cone gauge
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The operator-product expansion is used to evaluate the lowest-order, quark-condensate com-

ponent of the quark self-energy in the light-cone gauge. The on-shell value of the self-energy is

found to agree with that obtained in covariant gauges.

A portion of the nonperturbative content of QCD may
be probed by augmenting the perturbative theory with
the operator-product expansion (OPE) of those nonper-
turbative vacuum expectation values (NPVEV's) already
known to contribute to QCD sum-rule phenomenolo-
gy. ' These NPVEV's incorporate gauge-invariant con-
densates into the Green's functions of QCD, leading to
power-law dependencies that differ from those anticipat-
ed by purely perturbative methods. In covariant gauges,
such OPE methods have already been employed to deter-
mine the O(a, ) contribution of the chiral-symmetry-
violating quark condensate ((qq) ) to the quark self-
energy, and the pole position of the (qq)-corrected
quark propagator has been demonstrated to be gauge-
parameter independent. ' Such insensitivity to the
choice of gauge is a property well known to characterize
purely perturbative QCD self-energies when evaluated on
shell. Moreover, an effective mass of —300 MeV for u

and d quarks is obtained from the pole position of the
(qq )-corrected propagator, a scale suggestive of a con-
stituent mass. An important test of these results is to
evaluate the (qq ) component of the quark self-energy in
a noncoUariant gauge, since an effective mass devolving
from a (gauge-dependent) self-energy must be gauge in-
dependent in order to be of physical interest.

In covariant gauges, only the leading-order and next-
to-leading-order terms in the NPVEV (0~:tj)'(x)g(y):~0)
contribute to the quark self-energy. ' This fortuitous
decoupling of higher-order OPE contributions from the
quark self-energy is a direct consequence of the g""/p
and p "p /p dependence characterizing the gluon propa-
gator in covariant gauges. The differing behavior of the
gluon propagator in noncovariant gauges [e.g. , the
(n "p "+p"n )/(n. p) structure in the light-cone gauge]
necessarily couples aII orders of the OPE into the quark
self-energy. The sum of all such OPE terms (involving
progressively steep power-law dependencies) must even-
tually lead to the same effective mass obtained in covari-
ant gauges from leading-order and next-to-leading order
OPE terms, if that mass is to have any physical
significance. Vfe therefore test the covariant-gauge re-
sults of Refs. 3 and 4 (as well as the methodological con-
sistency of augmenting perturbative QCD in any gauge
with NPVEV's) by evaluating the quark-condensate com-
ponent of the quark self-energy in a noncovariant gauge,
the light-cone gauge.

The OPE for the quark propagator is

iSF(p)= f d x e'~'"(0~T[g(x)(ti(0) j~0)

=C (p)+C,—(p)(qq )+C (p)(G 'G"')

+higher-dimension condensates .

The lowest-order contribution to C (p), as represented

by Fig. 1, is thus given by

Xyt" (0~:y(z)tt(y) ~0))

d kx e "'& 'D„(k).
(2m. )
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FIG. 1. Configuration-space Feynman-diagrammatic repre-
sentation of the 0(a, ) contribution of the quark condensate to
the quark self-energy. The box encloses a nonperturbative vac-
uum expectation value of quark fields.

The first term in (1) is purely perturbative, whereas the
second term is the nonperturbative contribution of in-
terest. The coefficient C (p) in this term can be evalu-

qq
ated perturbatively, as the OPE factors the long-distance
behavior of QCD into the condensates, provided such
condensates are of mass dimension less than 10 (Ref. 1).
To evaluate this coefficient, we permit (qq ) to enter the
perturbation series directly via the nonlocal NPVEV
(:tt)(z)g(y):), a residual normal-ordered contribution to
the Wick expansion of

(
r

0 T p(~) fd y fd *I.gc (y)L Dc (z)t())(D0) OI .
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In the light-cone gauge, the gluon propagator D„,(k) in
(2) is given by

n" +n+, n =0.
p' (n.p)p'

(3b)

d4
( T[ A '(x) A ~(y)] ) =i 5' f 4 D„„(p),

(2m. )
(3a)

The nonperturbative content of (2) resides in the
NPVEV (OI:lt(z)t)'fly):IO). The quark-condensate projec-
tion of this NPVEV is given by'

(qq ) + ( im ) (y —z) (qq ) + ( i—m ) +'y (y —z)(y —z)2N

N=o N!(N+1)!4 +' 3 N=o 2(N+2)!N!4

+contributions from higher-dimension condensates, (4)

where (qq )—:(OI:g(0)g(0):IO) with color and Dirac indices contracted. This expression is obtained by performing a
two-variable Taylor expansion about y =z =0 and then extracting the gauge-invariant components through use of the
fixed-point gauge. " One then obtains (4) from the covariantized Taylor series by eliminating covariant derivatives
through use of the BP= im—P equation of motion. '

By substituting the quark-condensate component of (4) into the self-energy of (2) and then performing the integration
over (y —z), one obtains the following expression for X(p):

&qq &
4g 2 00

ping
2+ Q2 —g Pv p Pn v+ n Pp v

p v +
N —0 N!(N+1)!4 +'

Bp p p (n p)
T N

2 00 m2N+1 g g2+ g
&qq& „=,N!(N+2)t4N+' a ' a '

—g" p"n +n p"
2

+ (5)

4 2 oo 2N 8
x(p) = (qq ) &P 9 qq „-,Ni(N+I)!4 +

Bp
I

9 „,N!(N+2)!4"+ ' ap' p' p'(n p)

The n-independent terms in (6) have previously been evaluated in the covariant-gauge calculation, and ar«ound «
truncate for N & 1 (Refs. 7 and 12). Thus the quark-condensate component of the quark self-energy becomes

Nm«8g2 co m 2N+1g Q2+ &qq& %
2p 9 = Ni(N+2)i4

x(p)= g
&qq &

2 ]
9 p2 p (n.p)

~e thus see from (7) that all orders of the OPE contribute to the self-energy in the light-cone gauge, in contrast with
covariant gauges where no terms in X are more than linear in m. The derivatives appearing in (7) are evaluated by ob-
serving that since n is a null vector, the inverse power of n -p cannot be increased by di8'erentiation without introducing
factors of n ( =0) into the numerator:

l 4 XtN1

,
Bp' p'(n. p ) p +'(n.p )

(8)

Equation (5) is simplified by performing the Dirac algebra and explicitly performing the differentiation with respect to
p in the second term:

Substitution of (8) into (7) leads to the following series representation for X(p):
' N+1

2g
& &

1 «+
9 p2 2p~ m(n. p) N o (N+1)(N+2) p

This series converges for Ip~I & m, and can be evaluated through utilization of the series'

k = I X

r(p)= g &qq&.
2g 1

9 p2 p

( Ix I

~ 1) in order to obtain the following expression for the (qq ) component of the quark self-energy for m —Ip I:
2 2«+ 1+ —1 ln 1—

2p4 m(n. p) m

(10)
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To evaluate the on-shell value of X(p) it is useful to re-
call that

g'(qq ) amP
9p'

' p' (14)

PPuy"u = uu,
m

(12)

where u, u are the external, on-shell fermion wave func-
tions. Using (12) and taking the mass-shell limit in (11),
we obtain the following on-shell value for X(p) in the
light-cone gauge:

z( )
g qq'(

3 fly
(13)

This value is identical to the on-shell covariant-gauge
value, which is derived from the covariant gauge self-
energies: '

on the P =m mass shell.
In summary, the lowest-order quark-condensate com-

ponent of the quark self-energy has been evaluated in the
light-cone gauge to all orders in the mass parameter m.
The value of this self-energy on the quark mass shell is
identical with that obtained in covariant gauges. This re-
sult provides further field-theoretical support for the
gauge independence of the dynamical quark mass gen-
erated by the quark condensate.

We are particularly grateful for discussions with H. C.
Lee.
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