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The operator-product expansion is used to evaluate the lowest-order, quark-condensate com-
ponent of the quark self-energy in the light-cone gauge. The on-shell value of the self-energy is
found to agree with that obtained in covariant gauges.

A portion of the nonperturbative content of QCD may
be probed by augmenting the perturbative theory with
the operator-product expansion (OPE) of those nonper-
turbative vacuum expectation values (NPVEV’s) already
known to contribute to QCD sum-rule phenomenolo-
gy."? These NPVEV’s incorporate gauge-invariant con-
densates into the Green’s functions of QCD, leading to
power-law dependencies that differ from those anticipat-
ed by purely perturbative methods. In covariant gauges,
such OPE methods have already been employed to deter-
mine the O(ea,) contribution of the chiral-symmetry-
violating quark condensate ({gg)) to the quark self-
energy, and the pole position of the (gg)-corrected
quark propagator has been demonstrated to be gauge-
parameter independent.>* Such insensitivity to the
choice of gauge is a property well known to characterize
purely perturbative QCD self-energies when evaluated on
shell.”> Moreover, an effective mass of ~300 MeV for u
and d quarks is obtained from the pole position of the
(gq )-corrected propagator, a scale suggestive of a con-
stituent mass.>® An important test of these results is to
evaluate the (gq ) component of the quark self-energy in
a noncovariant gauge, since an effective mass devolving
from a (gauge-dependent) self-energy must be gauge in-
dependent in order to be of physical interest.

In covariant gauges, only the leading-order and next-
to-leading-order terms in the NPVEV (0|:9(x)¥(y):|0)
contribute to the quark self-energy.””® This fortuitous
decoupling of higher-order OPE contributions from the
quark self-energy is a direct consequence of the g /p?
and p*p*/p* dependence characterizing the gluon propa-
gator in covariant gauges. The differing behavior of the
gluon propagator in noncovariant gauges [e.g., the
(n*p+p*n*)/(n-p)?* structure in the light-cone gauge]
necessarily couples all orders of the OPE into the quark
self-energy. The sum of all such OPE terms (involving
progressively steep power-law dependencies) must even-
tually lead to the same effective mass obtained in covari-
ant gauges from leading-order and next-to-leading order
OPE terms, if that mass is to have any physical
significance. We therefore test the covariant-gauge re-
sults of Refs. 3 and 4 (as well as the methodological con-
sistency of augmenting perturbative QCD in any gauge
with NPVEV’s) by evaluating the quark-condensate com-
ponent of the quark self-energy in a noncovariant gauge,
the light-cone gauge.’
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The OPE for the quark propagator is
iSp(p)= [ d*x e?*(0|T[4(x)$(0)]|0)
=C,(p)+C, (p){Tg ) +Cgs (P G*'GH)
+higher-dimension condensates . (1)

The first term in (1) is purely perturbative, whereas the
second term is the nonperturbative contribution of in-
terest. The coefficient qu(p) in this term can be evalu-
ated perturbatively, as the OPE factors the long-distance
behavior of QCD into the condensates, provided such
condensates are of mass dimension less than 10 (Ref. 1).
To evaluate this coefficient, we permit {gg ) to enter the
perturbation series directly via the nonlocal NPVEV
{:(z)¥(p):), a residual normal-ordered contribution to
the Wick expansion of?

<o|T|¢(x)fd4y J d* Lo 0)Lbco (250 | lo) .

The lowest-order contribution to Caq(l’)’ as represented
by Fig. 1, is thus given by*
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FIG. 1. Configuration-space Feynman-diagrammatic repre-
sentation of the O(a;) contribution of the quark condensate to
the quark self-energy. The box encloses a nonperturbative vac-
uum expectation value of quark fields.
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In the light-cone gauge, the gluon propagator D, (k) in —gh + nkp¥+n*p*

= 2:
(2) is given by D, (p) P’ (np)p? n“=0. (3b)
The nonperturbative content of (2) resides in the
(T[A%(x) A5()]) =5 D,(p), (3a) NPVEV (0[:¢(z)¢(y):/0). The quark-condensate projec-
L ) f Qr )“ w P tion of this NPVEYV is given by!°
-
_ (qq) ® (—im )ZN(y _Z)2N (—-q © (___im)2N+1,y'(y ___z)(y __Z)ZN
(O|:(2)y(y):|0) =
|9y 3 N2=0 NUN+1)4N*1 3 ~2= 2(N+2)INYN+!
+contributions from higher-dimension condensates , 4)

where (gg ) ={0]:9(0)1(0):|0) with color and Dirac indices contracted. This expression is obtained by performing a
two-variable Taylor expansion about y =z =0 and then extracting the gauge-invariant components through use of the
fixed-point gauge.!! One then obtains (4) from the covariantized Taylor series by eliminating covariant derivatives
through use of the Py = —im 1 equation of motion.>!2

By substituting the quark-condensate component of (4) into the self-energy of (2) and then performing the integration
over (y —z), one obtains the following expression for Z(p):

N
2N aZ _g;w pynv+nyp
>( )____.&__( ) __m- |9 HayV
p qq NEO NN+ 1V 1 | 3p? iy 2 2np)
2N +1 ) 2 _guv punv+nvpu
< ) = = | rriy + 5)
7 NZO NN+ T gpr [3p2 | VT |7 p2 Pnp)

Equatlon (5) is simplified by performmg the Dirac algebra and explicitly performing the differentiation with respect to
p’ in the second term:

2N aZ -2
h) ( ) . m- @ |9 <
= “ Nzozvuv+1)'4"'+1 »? | | P
N
2N +1 82 —4 4'{
( ) S ( CR— - ., ST, (6)
7 EON'(N+2)'4N+‘ ap? 2t pinp)

The n-independent terms in (6) have previously been evaluated in the covariant-gauge calculation, and are found to
truncate for N > 1 (Refs. 7 and 12). Thus the quark-condensate component of the quark self-energy becomes

2 2
2(p)= g (gq) —————E +*L(qq) 2 —a—z
2p* p
We thus see from (7) that all orders of the OPE contribute to the self-energy in the light-cone gauge, in contrast with
covariant gauges where no terms in = are more than linear in m. The derivatives appearing in (7) are evaluated by ob-

serving that since n is a null vector, the inverse power of n-p cannot be increased by differentiation without introducing
factors of #%(=0) into the numerator:

2N+l'{

o NUN+2)14N 1

1

— (7)
pHn-p)

N
d? 1 _ 4N )
p? | pUn-p) pPtn-p)
Substitution of (8) into (7) leads to the following series representation for Z(p):
N+1
282 ,_ 1 mp " & 1 m?
S(p)=—"=— —— + — 9
P== @) | = T i) 2, NI DIV | 52 ©)
This series converges for | pzl >m?2, and can be evaluated through utilization of the series!?
xk
_ 1—x _
2 k(k+1) =1+ . In(1—x) (10)

(Ix] =1) in order to obtain the following expression for the {gg ) component of the quark self-energy for m? < |p|2:

2
S(p)="— 2 (qq)[p———"li+—'{*—ll+ ] (11)

l’_z_l 1— =~
m

In 3

2p*  m(n-p)
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To evaluate the on-shell value of 2(p) it is useful to re-
call that

ﬁy"u=£ﬁu , (12)
m
where #,u are the external, on-shell fermion wave func-
tions. Using (12) and taking the mass-shell limit in (11),
we obtain the following on-shell value for =(p) in the
light-cone gauge:

2/ =
S(m)=889) (13)
3m

This value is identical to the on-shell covariant-gauge
value, which is derived from the covariant gauge self-
energies:* 12
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2(1))2‘&——2(7‘1>
9p?

(3+a)—5";”;é] , (14)

on the ¥ =m mass shell.

In summary, the lowest-order quark-condensate com-
ponent of the quark self-energy has been evaluated in the
light-cone gauge to all orders in the mass parameter m.
The value of this self-energy on the quark mass shell is
identical with that obtained in covariant gauges. This re-
sult provides further field-theoretical support for the
gauge independence of the dynamical quark mass gen-
erated by the quark condensate.

We are particularly grateful for discussions with H. C.
Lee.
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