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Derivation of the three-body bound-state equation from the effective action
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Using a recently developed method, a formal novel derivation of the three-body bound-state
equation is presented. It is based on the second derivative of the effective action. The baryonic
equation in the case of quantum chromodynamics is also derived.

I. INTRODUCTION

Recently a systematic method for deriving a bound-
state equation has been proposed by one of the authors. '

It starts from the effective action I which is obtained by
the generating functional 8 of the connected Green's
function through the Legendre transformation. The
two-body bound-state equation in the field-theoretical
case, i.e. , the Nambu-Bethe-Salpeter (NBS) equation,
has been derived using this method. ' By systematic we
mean that the functional I is indeed a generating func-
tional in the following sense. It determines the ground-
state solution by the stationary requirement and the value
of I at this stationary solution is related to the total ener-

gy of the ground state if the solution is time independent.
Moreover, if we expand I around the stationary solution,
the lowest term determines the particle spectra' and the
higher orders determine the scattering of these particles;
we get the on-shell expansion of I where the expansion
coefficients are the connected S-matrix elements.

The purpose of the present paper is to apply the same
method for deriving the three-body bound-state equa-
tions. We do not claim that our method sheds new light
on the way to solve the three-body bound-state equation
but, since the method is forxnal and straightforward, it
can be a firm basis of further systematic studies.

The three-body bound-state problem has a long history
starting from the original work by Faddeev. ' The same
problem has been discussed in the framework of quan-
tum chromodynamics (@CD)—a bound-state equation
corresponding to the baryon which is composed of three
quarks.

Our approach has the following advantages.
(1) As is explained above, since it is a systematic ap-

proach, we can calculate various quantities related to the
bound state. All the observable information comes from
r.

(2) It can be applied to any quantum theory: quantum
mechanics of few particles, field-theoretical system or the
system with finite temperature. ' The formalism does not
change according to the system considered.

(3) There is a case where the ground state realizes the
nonperturbative condensation. For example, we know
the electron-pair condensation in superconductivity and
the quark-antiquark condensation in massless QCD. We
have to discuss the bound-state spectrum based on the
above condensed ground state. Since we use the second

5W[J]
5JJ

The stationary condition

[0] =0
J

(1.2)

(1.3)

determines the ground-state expectation value
(0~0 ~0) =P . Let us denote one of the solutions to (1.3)
by P =P' ' and look for another solution in the form

P =P' '+b, P . Assuming b,P is small we find the eigen-
value equation for hP. which determines the particle
spectrum:

(1.4)

where ( )o denotes the value of ( ) evaluated at P~. =P'. '.
Here we notice an identity

derivative of I evaluated at the solution which satisfies
the stationary condition of I, these condensation phe-
nomena are automatically included in our formalism. It
will be difficult to study the problem by a usual intuitive
graphical approach. Our method is particularly useful in
these situations.

We now summarize the results of Ref. 1 which are
necessary for the following discussions. Let the dynami-
cal coordinate be 4, where j includes all the attributes of
the coordinate: it includes the internal degrees of free-
dom and the indices specifying the particle species in the
case of quantum mechanics or the component of the field
variables as well as the space-time coordinates for the
field-theoretical case. Consider the Lagrangian L (&0)
=L (4i, @z, . . . ) and its action I[4]=f dt L(@)of the
system and define W [J] by

exp(iW[J])= f [d@ ]expti(I[@]+J0 )I, (1.1)

where 0 's are the arbitrary operators constructed out of
N~ and f [d4l] denotes the path integral (or the func-

tional integral in the field theory). The summation or the
integration over the repeated indices is implied. The
effective action I [P] is defined by the Legendre transfor-
mation as
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where

(1.5)
sions. Our arguments below rely heavily on the results of
De Dominicis and Martin. i Although the derivations of
their formulas are rather involved, their final expressions
are simple and elegant.

=&oiTo, o„io),
I k J=o

is the connected Green's function. Comparing (1.5) with
(1.4), it is seen that we are looking for the pole of the
Green's function. This is the reason why Eq. (1.4} deter-
mines the particle spectrum or the mode. Indeed for the
time-independent solution Pji ', we have shown how Eq.
(1.4) looks and we demonstrated in particular that Eq.
(1.4) coincides with the NBS equation if we choose a bilo-
cal product of the field @z as OJ; OJ ~ 4k @& (Ref. 1).

With these results at hand the three-body bound-state
equation for the bosonic case is studied in Sec. II where

theory is used as an illustration. We derive the
baryonic equation as a three-quark bound state in Sec.
III. The underlying dynainics is QCD. We confirm the
equivalence of our equation with the one derived by pre-
vious authors. ' Section IV is devoted to several discus-

II. BOSON FIELD CASK

Following our formalism explained in the Introduc-
tion, the three-body NBS equations are derived if we take
0 in (1.1) as the nonlocal products of three fields. In this
case, the efrective action I can be calculated by the use of
the general Legendre transformation rule given by De
Dominicis and Martin. Originally this rule was derived
in the framework of the nonrelativistic quantum-
statistical mechanics, but it can also be applied to our
case with a small modification. %"e first summarize about
this (modified) rule to derive the expression of I, which
then allows us to get the three-body bound-state equation
in the form of (1.4).

Let us examine the boson field case. We follow De
Dominicis and Martin and start with the generating func-
tional 8'defined in the form

exp(iW[u ])= [dC&, ]exp i u, (j)N, + u, (j,k)N—,C„+ , u, (j,k, l)—C,C„C,+ u4(j, k, l,—m)4, 4„4,4~1 1 1
(2.1)

where each u, (v= 1, . . . , 4) is completely symmetrized with respect to its arguments. We have written (1.1) in the
form (2.1) so that the external sources may be included in u„s. (Incidentally this starting point is different from the
original one in Ref. 7, where Wis defined through the grand partition function e =Tre . ) Using W, G, is then in-
troduced,

5W[u ]
G (j,k, . . . )=v!

5v, J)k). . .

and its connected part is denoted as 6 . For example,

G, (j)=G, (j), G, (j,k)=G, (j,k)+G, (j)G,(k),
G3(j, k, l) =G3(j,k, l)+Gi(j)62(k, l)+Gi(k)62(l j)+Gi(l)G2(j, k)+Gi(j)Gi(k)Gi(l) .

In the following, instead of 63, we use the amputated part C3 defined as

G, (j,k, l)=Ci(j', k', 1')Gz(j', j)Gz(k', k)G2(l', 1) .

Now we can write down the De Dominicis —Martin Legendre transformation formula in the form

F[G„G2,C3]—:W[u ]—u, (j)G, (j)——v2( j,k)G2(j, k) — v3(j, k, l)G3(j, k—, 1)
1 . . 1

(2.2)

(2.3)

(2.4)

(2.5a)

= ——Tr lnG2+ C&(j,k, l)G2(j—,j—')G2(k, k') G2(1, 1')C3(j', k', 1') i ii . — (2.5b)

Here i~ consists of one-, two-, and three-particle-irreducible vacuum graphs constructed out of Gz (propagator), C3
(three-point vertex), iu4 (four-point vertex), and G, (vacuum expectation value of the field). Some of them are shown in
Fig. 1 (graphically G, is written by the wavy line which directly connects to the vertices). The term "three-particle irre-
ducible (3PI)" usually means the graphs which cannot be disconnected by cutting any three internal lines. But even
when the graph is disconnected by this process, if one (and only one) of the disconnected parts is the Ci vertex itself, we
also call it the 3PI graph. Further we note that ~ does not include the contribution of the vacuum graphs shown in Fig.
2. These are the conventions adopted in Ref. 7.

From (2.5), we can get the effective action I . For this purpose, let us take v =—v +J where J„is the external source
and u denotes the bare vertex. We notice u, =0 and we set J4=0. (J4 is needed for the study of the four-body NBS
equations. } Then, from (2.5a), (2.2) and (1.2), the relation between F and I is obtained:
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58'
5Ji 5(uz+ Jz) 5(u3+ J&)

=8' —J —J —J ——v G ——vG =I ——v6 ——v68 58' 58' 1 o 1 o 1 o 1 o
15J 25J 3 5J 2) 2 2 3t 3 3 2) 2 2 3t 3 3 (2.6)

By using this relation, we next discuss an example and present the formal derivation of the three-body bound-state
equation.

As the simplest model, let us examine the single-component A,4 theory. Corresponding to (2.1), the generating func-
tional 8'is defined as

exp(i8') =—f [d4&]exp i J,(x)@„+—[uz(x, y)+ Jz(x,y)]N„C&~+ —J3(x,y, z)C&, @ 4&,

+—u~(x, y, z, w)N, 4& 4', 4
4t 4 (2.7)

where uz(x, y)=iDo '(x,y) (the inverse of the bare propagator), u3(x, y, z)=0, and u4(x, y, z, w)= A,5(x —y)5(y —z)5(z —w). If x, y, etc., are repeated, the integration is understood. The eff'ective action I is obtained
from (2.5), (2.6), arid (2.3) as

I =F+ iD0 '(x—,y)[Gz(x,y)+6, (x)6&(y)]

= ——Tr lnGz+ ——C3(x,x', x")Gz(x,y)Gz(x', y')Gz(x", y")C3(y,y', y")

i~+ —Do '(x,y—)Gz(y, x)+ Do '(x,y—)6&(x)6|(y) . (2.8)

Then Eq. (1.3) becomes

5I . i , , 5~=iDO (x,x')G, (x') i — =0,56(x) ' ' 56, x

= ——G z '(y, x)+ Do '(y, x)+ —C—3(x,x', x")Gz(x', y')Gz(x", y")C3(y,y', y") i — =0,
56z(x,y) 2 2 4 5Gz(x, y)

5r = —,Gz(x, x')Gz(y, y')Gz(z, z')C3(x', y', z') —i — =0 .
5C3(x,y, z) 3( 5C3 x,y, z

(2.9)

These are the Schwinger-Dyson (SD) equations for 6&, Gz, and C3. By using the solutions of the SD equations, (6& )0,
(Gz)o, and (C3)o, we can write the coupled NBS equations in the form of (1.4) as

I 11 112 I 13 661
g6 2

p3 1 +32 +33

0
0 (2.10)

where we have abbreviated

=r» ' ~ =r» ' ~ =r»
561561 '

561562
' 5615C3

etc. They are given explicitly as

5 K

56, (x')56, (x)

I ~, =—[6 z '(y, x')G z '(y', x)+6 z '(x,x')6 z '(y', y)]

52+—[C3(x,x', x")Gz(x",y")C3(y,y', y")+C3(y, x', x")Gz(x",y")C3(x,y', y")1—i
5Gz(x', y')56z(x, y)

KI,„,= [Gz(x, x')Gz(y, y')Gz(z, z')+(permutations of x', y', and z')] —ix J z xjpz (3i)z 2 ~ 2 ~ 2

(2.11)
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I-'2 =r 5 a.

5G l (x')562(x,y)

I 13 I 31 5 sc

'5G, (x )5C, (x,y,.)
'

I „, , „,=I „„..=——[C3(x',y",z")G2(y",y)G2(z", z)5(x —y')

2

+(other five terms with cyclic permutations of x, y, z, and x'~y')] —i
562(x',y')5C3(x, y, z)

Equation (2.10) is our three-body bound-state equation
and is represented graphically in Fig. 3. Although it
looks complicated, the interpretation of the graph is
straightforward. Our equation has 3 X 3 form, because
one-body and two-body channels couple to the three-
body channel since they all have the same quantum num-
ber.

We can see the relation of our (2.10) with the conven-
tional equation by eliminating the one-body and two-
body channels from (2.10). Through the elimination of
one-body channel, we get

~22 ~23 ~G2 0
(2.12)f'„ f„, ac,

where

(2.14) is expected to coincide with the conventional NBS
which is obtained without the source J& and J2. But we
stress again that if we do not introduce J& and J2, we
cannot include the nonperturbative aspects of (Gl )p and

(G2)p systematically; we have advertised this fact in (3) of
the Introduction.

In the above example we have taken the A,N theory,
but the same argument can be applied to any type of bo-
sonic interactions. For the systems which consists of
only fermion fields, the rule of the Legendre transforma-
tion has also been given by De Dominicis and Martin
and its applications to the derivation of the bound-state
equations are straightforward. In the next section, we
will see that these De Dominicis —Martin rules can be
generalized to the case where both boson and fermion
fields exist. This is necessary for the discussion of QCD.

f —I'Jk I jl(1 1 l
)
—11 lk (j k 2 3) (2.13)

III. FERMION FIELD CASE—QCD THEORY
The second term of (2.13) represents the one-particle-
reducible contributions. In the same way, if the two-
body channel is further eliminated from (2.12), we obtain

( ~33 )p~C3

where

(2.14)

~33 ~33 ~32( ~22 ~23 (2.15)

As we ex]3ect, the two-particle-reducible contributions

appear in f'33.
Equations (2.12) and (2.14) can also be regarded as the

three-body NBS equation. Here we notice that if the
solutions (Gl )p and (G2)p are the perturbative ones, Eq.

Now let us consider QCD as a realistic inodel and try
to get the exact three-body bound-state equations for
baryons. Equation (3.12) below is our result. In order to
arrive at this final form, we have to go through several
points.

Here we consider the boson and the fermion fields
simultaneously. Let us take the quark field q(x), the
gluon field A&(x), and the ghost field c(x). In order to
treat these fields at the same time, we introduce
@ =(q, q, c,c, A ) and use a notation N( j) where j denotes
the species of the field as well as other degrees of freedom
of the corresponding field. When we want to indicate the
species of the field, we write it explicitly as N(qj )=q~,
etc.

The action I [@,J] is written as

I[4,J]—:Jl(j)@(j)+—,'[J2(j,k)+u2(j, k)]4(j)4(k)

+—[J3(j,k, I)+ u 3(j,k, l)]N( j)4(k)4(l)

+—,u4( j,k, l, m)N( j)4(k)N(l)N(m), (3.1)

+ + ~ ~ ~

FIG. 1. The graphical representation of ~. We have adopted
the same diagrammatical expressions as in Ref. 7; the solid line
denotes 62 and the wavy line 6&. The three-point vertex and
the four-point vertex represent C3 and iv4, respectively. FIG. 2. The two graphs excluded from the definition of ~.
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o ~I =0 (functional) left derivative. Here the left and right
derivatives, denoted by 5/5J and 5/5J, respectively, are
given by the definition

=0

=0

F[J+5J] F—[J]=5J —= 5J .6J 5J
Of course, the left and right derivatives for the ordinary
number are equivalent.

Next, as in the case of Sec. II, we define the two-point
connected Green's function G2 as

G2(j, k):—G2(j, k) —G, (j)Gi(k), (3.3)
—Ql =AGi =ZG, C33 =ZC,

FIG. 3. The graphical representation of the coupled NBS
equations in the boson field case. K K, K, etc., are defined in
a: similar way as I",I', I ", etc., in {2.10). The slash across
the line denotes the amputation of the propagator and G„G~,
and C3 part of the graphs indicate the corresponding solution of
the SD equations ( 6 & )0, (62 )&, and ( C3 )0, respectively.

G,(j,k, . . . ) =v! 5W[J]
5J 'k5, J, k, . . .

(3.2)

for v=1,2,3. In the above definition, we have used the

where the terms including U come from the usual QCD
action. J 's are the external sources and each U or J is
properly syrnmetrized under the exchange of the indices.
For example, U 3 (q~, qk, A t ), the three-point vertex of
quark-antiquark-gluon, has mixed symmetry, because un-
der the exchange of the quark and the antiquark it
changes the sign, but the exchange of the (anti)quark and
the gluon does not. Moreover, since 4 contains both fer-
mion and boson fields, U or J includes the Grassmann
number components in addition to the ordinary ones.
Therefore, in (3.1), we have to treat the order of the vari-
ables in each term carefully.

We can follow the original derivation of the De
Dominicis —Martin rule taking care of the sign due to the
anticommutativity of these Grassman numbers. We sum-
marize the result and write down the expression of I .

The generating functional W[J] is defined as in the
previous sections and the vacuum expectation values of
the fields and the Green's functions are defined as

e '1"" —G, (j)G2(k, l)
p(j, k, 1)

+—Gi( j)Gi(k)G, (l)
1

G (J k l) &P(j', k', I';j, k, l)C (j
(3.4)

X G2(j', j)62(k', k)Gz(l', l) . (3.5)

Here the sum is taken over all the permutations of j,k, l
and e ' ' '" is the sign coming from the permutation of
@(j)N(k)4(l). The symbol e 'J'""'J '" ' ' denotes the ex-
tra sign change which is caused by the rearrangement of
the order of the field such as

@(j)c (k)@(l)& (j')@(k')+(l')
=e 'J'""'~ '" ' '4(j )4&(j')4(k)@(k')@(l)@(l') .

In the usual approach the three-point Green's functions
sllch as G 3 ( qj qk, q& ) are not introduced but in our case it
is convenient to have G3(q~. , qk qt ), etc., at hand although
it will be set to zero at the end.

By the above preliminaries, we can derive the e6'ective
action I in the same way as in the case of the boson field.
The di6'erences arise because of the existence of the fer-
mion fields in addition to the boson fields. We get

the three-poirit connected Green's function G3 and its
amputated one C3 as

G3(j, k, l) =G3(j,k, l)

I'[G „G,C ]= W' —g ,
J,(j,k, . . . )G (—j,k, . . . )

1
V V

=
—,'U2(j, k)G2(j, k)+ —U3(j, k, l)G3(j, k, l)+ —STrlnGz

3&
' ' ' ' 2

+ g E '"' '1 '" ' 'C3(j,k, l)62( j,j')G2(k, k')G2(l, l')C3(j', k', I') i~, —
j,k, l

I I (I

where K is the sum of 1-, 2-, 3PI vacuum diagrams and C3 is defined as

0&(j)@(k)C&(l)C3(j,k, l)—:C3 (j,k, l)N( j)@(k)4(l) .

(3 6)

In writing I in the form (3.6), we have employed the notation supertrace (STr) or the related superdetermi nant (SDet).
Let g be the ferrnion field such as q, q, c, or c: then it is defined by
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STr lnGz =Tr ln62(Xj, Xk )—Tr ln[Gz( A j, Ak )—Gz( Aj,Xj )6 z (X(',Xk )Gz(Xk. , A„)]:—ln SDet62,

SDetGz =—Detf 62(X(,Xk )]Det '[Gz( Aj, Ak )—62( AjXj )6 2 (Xj,Xk )62(Xk Ak )] .

The identities corresponding to (1.3) in this case are
given by the replacement of the derivative with the right
derivative and the SD equations are derived by setting
J=O:

5I
5Gz( j,k)

(3.7c)

5I [6„]
~f

5G,(j,k, . . . )

= —J,(j,k, . . . )=0 (v=1,2,3),
(3.7a)

where 6, —:6, . We can, of course, use the left derivative
instead, but in that case the extra sign factor appears in
front of J„. As for the variation with respect to C3, how-
ever, it is useful to adopt the left derivative since C3 is lo-
cated at the left end in the definition (3.5). Then in terms
of G, , Gz, and C3, these equations take the expressions

=0,6I"
(3.7b)56, j

5C3(j,k, I)
(3.7d)

In (3.7), some of the Green's functions, which do not
appear in the conventional QCD theory, can be set to
zero, C3(qj, qk, q()=0, for example. This is because they
are nonzero when the external sources. coupled to them
are nonvanishing. %e discuss here only the equations
that have nontrivial solutions. There are six nontrivial
SD equations up to the three-body operators. [We have
set the trivial solutions such as C3(q, qk, q() equal to
zero. ]

q-q propagator:

Gz '(qk, q()+(uz(qk q)j=[ 2(u(3q'(qk Al ) C3(qj q—k Al )]

KX C,(q, q ...A, )6,(q,'.,q,')6, (A, , A,.)—2 (3.8a)

c-c propagator:

6 2 '(c„,c, )+iuz(c„,c, )= [2iu, (c, ,ck, A(') C, (cj,ck—, A( )]

KXC3(c,c'., Al-)Gz(c. ,c')Gz( A(-, A( ) 2
56,(ck, c, )

(3.8b)

A- A propagator:

2 ( Aj«Ak )+( 2( Aj«Ak ) [ (u3( Aj'«Ak'«Ak )+TC3( Aj'«Ak'«Ak )]C3(Aj"» Ak"«Aj )62( Aj"«Aj')62( k"«Ak')

+[ ' 3(q, qk. , A„)—C3(q', q„, A„)]C3(qk-,q', A()G ( 2'q, q)(G (q2kq k)

+ [2(u3(c( «ck «Ak ) C3(c «ck, Ak )~] C3(c k~«c»» A j )62(c «c )62(ck»ck )

q-q-A vertex:

5x

562( A„, A )
(3.8c)

C3(qk 'qj Al ) u3(qk qj Al ) 6 2 ('qj qj') 2 (qk' qk )6 2 ( Al Al')
5C3(q'qk A(. )

c-c-A vertex:

(3.9a)

C3(ck«cj» A() —lu3(ck»cj» A() 6 z (cj»cy)6 z (ck «ck )6 z ( A(«A( )
5C3(cj ck A( )

A-A-A vertex:

(3.9b)

C3(A. , Ak, A()=(u3( A, Ak, A()+6 2
'( A, A )6 2 '(Ak, Ak. )G 2

'( A(, A(. )
3 j' k' I'

(3.9c)
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The solutions of these equations are denoted by (6„)0.
We now derive the NBS equations. We need only the

second derivatives I"' of I in the case that all the sources
vanish. Our NBS equation is written as

2

~&3(v, a, a)l c3(v7~)

6 5I
56„(j',k', . . . ) 56 (j,k, . . . ) 0

X b,G„(j ', k', . . . )=0, (3.10a)

where [ ]0 is [ ] evaluated at the solution (6 )0 (with the
trivial solution set to zero). It is worth mentioning here
that the spontaneous chiral-symmetry-breakdown solu-
tions in QCD, for exainple, can be chosen as the solution
(6 )0; we can pick up the solution corresponding to the
nonperturbative condensation in this formulation as we
have already noted.

We write (3.10a) explicitly in the forms of (3.7b)—(3.7d):

FKJ. 4. (a) The graphical expression of the NBS kernel for
the first several terms. (b) The several graphs appearing in v.
Each term corresponds to the graph in (a).

1 "(j ',j )b G, (j ')+ I '(j ', k',j )EG2(j ', k')

+ b, C (j', k', 1')I '(j', k', 1',j)=0,
2!I'2(j';j,k)bG&(j')+2!I (j', k', j,k)bG2(j ', k')

(3.10b)

vanish, after we substitute (G„)0. We finally obtain the
NBS equations for baryons in the simple form

r

~C3(qj ' qk' ql ) (62 )0—(q, ,q, )(62 )0(qk qk )( 62 )0(ql' ql )

+13C3(j ', k', 1')2!I (j',k', 1',j,k)=0, (3.10c)

3!I '3(j';j,k, l)bG, (j')+3!I (j', k';j, k, l)bG2(j ', k')
5 ~

5C3(q,', qk, qi )5C3(q, qk ql)
(3.128)

+EC3(j ', k', 1')3!I (j', k', 1',j,k, l)=0 . (3.10d)

b C3(q, q, q)
b, C3(q, q, q)
b, 62( A, A)

462(q, q )

b, 62(c,c)
bC3(A, A, A)
b, C3(q, q, A)
b, C3(c,c, A)

0

Glueball and
meson part

0 =0.

Other
parts0

(3.11)
Let us concentrate on the baryonic part of (3.11). The

diagonal elements

5 I
5C3 ( q, q, q )5C3 ( q, q, q )

and

31
5C3(q, q, q )5C3(q, q, q )

Here the notation I "' is the same as in Sec. II, except
that the order of the derivatives is fixed and that we use
the right derivative for G] and G2 and the left for C3.
Note that some parts of the I"' vanish after the substitu-
tion of (G )0. They are the parts which connect the sec-
tors whose quantum numbers are different from each oth-
er, so that the (I ")0 becomes block diagonal when we
write them in the matrix form. For example, the NBS
equations for the baryons are expected to be isolated
from other parts of the NBS equations. In fact, (3.10)
looks like

Baryon 0
part

~C3(qj' qk' ql') (62)0('q' 'qj')(62)0(qk qk')(62)0(qi qi )

Q
2—31 —=0.

5C3(q, , qk, ql )5C3(q, qk, q, )
(3.12b)

IV. DISCUSSION

We have presented a formal scheme of deriving the
three-body bound-state equation by the formalism of Ref.
1. Since our method is a systematic one, we can extend
the method straightforwardly for any theory once the
effective action is known. For example, the rule of
evaluating the effective action of the four-body operator
0 o- N&WI@ W„has already been given in Ref. 7 so that
we can easily write down the four-body bound-state equa-
tion. However, the bound state composed of such a high

The two terms in the large parentheses come from the
last two terms in (3.6). The solutions EC3(q, qk, qi) and
b, C3(qj, qk, ql) are the wave functions for the baryon or
the antibaryon, considered as the bound states of three
quarks or antiquarks, respectively. These two equations
(3.12a) and (3.12b) are related by the charge conjugation
so that they are not independent of each other. The
graphical representations of the NBS kernel

25 ~

5C3(q, q, q)5C3(q, q, q )

are given in Fig. 4. Since sc contains only 1PI, 2PI, 3PI
graphs [Fig. 4(b)], the kernel consists of 3PI six-point dia-
grams [3PI with respect to quark line, see Fig. 4(a)]. So
they coincide with the results of the intuitive graphical
expansion approach.
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power of the field variables is interesting only when the
bound states with the lower power do not exist. This is
the case for three-body bound state of quarks, for which
one- and two-body bound states of quarks are expected to
be absent.

Our three-body bound-state equation takes into ac-
count the full quantum effects including the vacuum Auc-
tuations of all the fields. This differs from the original
Faddeev equations where the equation is derived in the
framework of the potential problem. In order to see the
connection between our equation and the Faddeev equa-
tion, we have to make an approximation which correctly
incorporates the above situations. However, we are
mainly interested in the relativistic field theory so that we
are not allowed to make such an approximation.

We have already developed an expansion scheme for
the effective action I where the coeScients of the expan-
sion are the connected S-matrix elements corresponding
to the scattering among the particles found as the solu-
tion to the NBS equation (1.4). We can apply our method
to find the S-matrix elements for the scattering among
baryons in the framework of QCD. Before doing this
task, we have to solve the SD equation to obtain (G, )o,
which will show the nonperturbative nature in the gluon-
ic sector, gluon condensation, for example, since it is ex-
pected to be crucial for the confinement of quarks.

In this paper no attempt has been made to solve explic-
itly our three-body bound-state equation. Some of the
calculations for the QCD baryonic case have been per-
formed in Ref. 6.
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