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String distributions above the Hagedorn energy density
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The formalism for discussing energy and charge distribution functions in the microcanonical en-
semble is presented and applied to strings. This yields information of direct physical significance in
string statistical mechanics. Above the Hagedorn energy density the free string gas exhibits a num-
ber of interesting features. For toroidal compactification, the distribution of the total energy among
strings of various energies depends upon the number of noncompact spatial dimensions d. For
d =0 the energy is distributed uniformly among strings at all energy scales, while for d ~ 3 a single
string captures most of the energy. The imposition of conservation laws does not alter this qualita-
tive picture. We show that the d = 1 and d =2 cases are qualitatively different from the others.

I. INTRODUCTION

An issue of fundamental importance in string theory is
its behavior in the Planck and higher-energy regime.
This regime is where the theory is likely to be most in-
teresting and where might lurk new insights into its fun-
damental degrees of freedom, into the structure of space-
time, and a framework for the unification of spacetime
with matter. At the very least we expect significant
departures from conventional theory. This is borne out
from our at-present-meager knowledge of this regime
through studies of string statistical mechanics at high en-
ergies' ' and high-energy-scattering thought experi-
ments. ' ' An immediate objective is to explore diverse
properties of the theory in this regime as it stands and to
try to achieve a united understanding of these phenome-
na. In this paper we discuss how useful information can
be extracted about a gas of strings above a Hagedorn en-
ergy density, cro (Ref. 15). This could be relevant for ap-
plications to the very early Universe in the context of
superstring theory, to cosmic strings close to their time of
creation, and to hadronic matter close to the
deconfinement temperature.

Consider the following thought experiment: a gas of
charged particles is enclosed in a large isolated box. This
box has a small opening, outside which sits a detector
which measures the energy, momentum, and all the
charges of all particles that emanate from it. After a long
period of time the accumulated data give us the distribu-
tion of the total energy, momentum, and charge of the
gas in the box among individual particles of specified en-
ergy, momentum, charge, etc. A similar thought experi-
ment can also be carried out in the case of a gas of strings
with an energy density much higher than the Hagedorn
energy density (which is characterized by the string
length scale &a'). For instance, assuming that the whole
system has a total energy E and a total charge Q (Q cor-
responds to a generic conserved quantity including

momentum and is taken to be discrete for the moment for
ease of writing), one can ask: what is the average number
of strings in the box in a given energy range e to a+de
and having a fixed charge q'? Denote this number by
X)(e,q;E, Q)de. Then

2)(e;E,Q)de —= g 2)(e,q;E, Q )de
q = —oo

equals the average number of strings in the energy range
e to @+de, irrespective of their charge, given that the
whole system has total energy E and total charge Q.
Similarly, for the same system

2)( q; E,Q )—:J d e 2)( e, q; E, Q ) (2)
0

equals the average number of strings of charge q, ir-
respective of their energy. We would like to determine in
this paper such distribution functions from the theory in
a microcanonical treatment.

The distributions we are studying are traditionally re-
ferred to as "inclusive" distributions in high-energy mul-
tiparticle production. ' This terminology originates from
the fact that, for example, 2)(e;E,Q) measures the rela-
tive frequency of occurrence of a specific substate ~g)
contained in a set of states that includes all possible states
for the remaining gas, subject to an overall constraint of
total energy and charges. We ask for the distribution as a
function of variables specifying a particular substate ~P),
without caring about the rest of the system. For
2)(e;E,Q), the substate is a single string with energy e.
[The formalism to be discussed can also be used for mul-
tistring substates, e.g. , when a pair of strings is chosen at
random from the gas, one can ask for the relative fre-
quency that their energies are e, and e2. The analogous
"multipoint inclusive energy distributions, "
2)(e&, . . . , et„'E,Q), that provide a measure of frequencies
of such occurrences are of special interest when one in-
cludes interactions. ]
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We consider first an even simpler distribution function,
the single-string inclusive energy distribution, denoted
2)(e;E) and defined such that 2)(e;E)de equals the aver-
age number of strings of energy between e and a+ d e in a
gas whose total energy is fixed to be E but whose total
charge is arbitrary. We can imagine that the box is in
equilibrium with a neutral "charge-bath" with which it
can exchange charge, but not energy, which is fixed to be
E. (This picture will be made more precise later. ) Once
determined, 2)(e;E) can be used to estimate the average
number of strings in a given range of energy. For exam-

pie, JV(&i, Ez ,E)—=. f,'de2)(e;E) equals the average num-

ber of strings in the energy range [e„ez]given that the
total system has energy E. Similarly B(ei, ez', E )

= f,'decl)(e;E) is the average total energy carried by

all the strings in the energy range [ei,ez] given that the
total system has energy E. This can be used to estimate
the average number of high- or low-energy strings in the
gas. [When integrated from 0 to E, JV(O, E;E) and
C(O, E;E) by definition give the total average number

A;„,&
of strings in the gas and the total energy E, respec-

tively. ]
For an ordinary gas of particles, the e dependence of

2)(e;E) is typically 2)(e;E) ~e e ~', which is schemati-
cally plotted in Fig. 1(a). [Figure 1(b) shows e&(e;E).]
There is a power-law growth (due to the density of
states), a single peak, and an exporiential decay (the
Boltzmann factor). The region of e where the peak
occurs represents the average energy of a particle in the
box of total energy E. We will argue that the results are
strikingly different for a gas of free strings, and in fict de-
pend upon the compactification. In this paper we consid-
er strings in a space that is toroidally compactified. The
total spatial dimension is D (D=25 or 9); there are d
uncompactified spatial dimensions and D —d toroidally
compactified dimensions with radii R; (i = 1, . . . , D —d ),
which for purposes of this paper are taken to be of the or-
der Va'. It turns out that the results depend significantly
on the number of uncompactified dimensions. At energy
densities much larger than the Hagedorn energy density
oo, the picture is summarized in Figs. 2(a) and 2(b) for
d ~ 3, and in Figs. 3(a) and 3(b) for d =0.

0
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FIG. 2. (a) Schematic plot of X)(e,E) as a function of e for a
string gas with d ~ 3. (1) Schematic plot of e2)(e, E) as a func-
tion of e for a string gas with d ~ 3.

The area under curves 2(a) and 3(a) between values of e
in the range [ei,ez] is by definition JV(E„ez,E ) and under
2(b) and 3(b) is 8(e„ez,E). Figures 2(a) and 2(b) together
with the discussion in Sec. III give quantitative substance
to the Frautschi-Carhtz picture ' ' ' ' that a single
string contains most of the energy of the gas. In Fig. 2(a),
the area under the first peak is much larger than the
second peak (under which the area is essentially unity)
implying that there is essentially one very energetic string
and many more low-energy strings. In Fig. 2(b), the area
under the second peak is much larger than the first (pro-
vided the energy density is much larger than the
Hagedorn energy density), implying that the single ener-
getic string captures most of the energy. These results
hold only for d ~ 3.

For d =0, Fig. 3(b) tells us that we have a kind of a
scale-invariant distribution. The total energy is distribut-
ed equally among strings of all energies over most of the
energy domain. (The energy deposited near the end
points e=O and e=E is small. ) Both these results are in
sharp contrast to the usual case and to each other. For
d = 1 and 2, the gener'al analysis is more complicated and
the results under specific assumptions are described later.

(b)
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FIG. 1. (a) Schematic plot of 2)(e,E) as a function of e for an
ordinary gas. (b) Schematic plot of e2)(e, E) as a function of e
for an ordinary gas.

FIG. 3. (a) Schematic plot of 2)(e,E) as a function of e for a
string gas with d =0. (b) Schematic plot of e2)(e, E) as a func-
tion of e for a string gas with d =0.
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In a toroidal compactification of D —d spatial dimen-
sions, the conserved quantities are the momenta in the
noncompact spatial directions, and the discrete momenta
and windings in the compact directions. Taking their
conservation into account restricts the allowed states of
the system, but we find that Xl(e;E, Q ) as a function of «

possesses the same behavior as described above for
2)(«;E) for any finite Q, provided E is large. Thus the
distribution of the total energy among individual strings
of various energies is unaltered. For d ~ 3, one very ener-
getic string still captures most of the energy and for d =0
the distribution is again Aat.

In Sec. II we discuss the general formalism for obtain-
ing the above density functions that characterize physical
quantities in the microcanonical ensemble. The discus-
sion is valid for any statistical system. In Sec. III we ap-
ply the formalism to strings and quantify the results men-
tioned above. Section IV discusses the incorporation of
conserved quantities other than the energy by the use of
chemical potentials in general and also obtains the results
when applied to strings. A short summary and some
questions are presented in Sec. V.

II. FORMALISM FOR INCLUSIVE
ENERGY DISTRIBUTIONS

In this section we discuss how to obtain 2)(«;E) and
other quantities of interest. The basic quantity to be used
in the discussion that follows is the single-particle or
single-string density of states

f(«) =g 5(e E, ), — (3)

PDe

f(«)=CV—,[I+O(e ')] .
E

(4)

Vis the volume of the uncompactified spatial dimensions,
and it is absent for d =0. (However, for notational
simplification, we adopt the convention in this paper that
V= 1 for d =0.) Vis to be taken to infinity (the thermo-
dynamic limit) at the end of the calculation. PD, the in-
verse of the Hag edorn temperature, is given by
(2m. a')'~ (+co&++co„),where (co&,co„)is (2,2), (2, 1) and
(1,1) respectively, for the closed bosonic string, het-
erotic string, and type-II superstring; and
C=(2n ~'P0) (coico„)" . Here the "box" is all of
space; the difference between the compact and noncom-
pact dimensions of the box is that in the former string-
winding modes are included and in the latter they are ex-
cluded.

The basic form of (4) is well known in the literature
(Refs. 1 —18 for d ~ 1 and Ref. 14 for d =0). A recent
rigorous proof including the precise form of the correc-
tion term and the prefactor C from first principles is
given in Ref. 15. We recall in particular that, when all
dimensions are compactified, d =0, the leading correc-

where a labels all single-particle (-string) states so that
f( e ) counts the number of single-particle (-string) states
at a given energy e. For relativistic particles
f(e)-« +', and for strings its asymptotic behavior is
given by

tion is suppressed exponentially, O(e "'), rather than by
powers of e ', where g-R; /&a' or a' /R;, whichev-
er is smaller. Equation (4) is valid only at e sufficiently
large, say e~m0, where m0 is of order a' ' . A com-
plete knowledge of f(«) would enable us to compute, in
principle, any thermodynamic quantity for a gas of free
strings. However, as we shall see, even our knowledge of
the expression in the restricted domain e m0 is suScient
to draw a number of significant conclusions.

To begin, we obtain a general expression for 2)(e;E ) in
terms of f(e) which is valid for any noninteracting sys-
tem. The microcanonical distribution function Q(E) or
the total density of states of the ensemble is given by

Q(E)=+5(E E)—, (&)
a

where a sums over all multiparticle (-string) states so that
Q(E) counts the total number of states at given energy E.
Write Q(E)=gg, Qz, where Qz(E) =g 5(E E)—
is the number density of states az possessing X particles
(strings). If we insert in the sum over a~ the quantity
g+ i 5(« E; )d—e where E; is the energy of the ith parti-
cle (string) in the state az, the resulting expression

5(E E)g+—
i 5(« E, )de—cli.cks only for those

states aiv which have at least one particle (string) of ener-

gy between e and @+de. Indeed for each state it clicks as
many times as the number of such particles (strings) it
possesses. Thus the above expression counts the number
of N-particle (-string) states that possess a particle (string)
of energy between e and e+d e and weights each state by
the number of such particles (strings) in it. To get the
average number of such particles (strings) in the gas we
must sum over N and divide by Q(E). Therefore

12)(«;E)= g +5(E—E )g 5(~—E ) . (6)
N=i a~ i=1

In the Maxwell-Boltzmann statistics one can obtain a
simple explicit expression for 2)(«;E) in terms of f(e)
and Q(E). (The validity of the Maxwell-Boltzmann
statistics in the context of a noninteracting high-energy
string gas was discussed in Ref. 15.} For MB statistics we
have

Q~(E) =Q 5(E E)—
, J g dE;y(E;)5 E—y E;

i=1 i=1
L

Inserting g+ i 5(E E, ) in (7) and doing th—e E, integra-.
tion for the ith term in the sum gives f(E)Q& i(E «). —
Using this result in (6) gives

g)(«;E}= f(«)[Q(E —«)+5(E —«)] . (8)
1

Q(E)
This is the desired expression for the number density of
particles (strings) of a given energy e. The 5(E —«)
which comes from the N =1 term is insignificant corn-
pared to Q(E —e); it is the contribution of states that
correspond to having only one particle (string) in the gas
occupying all the energy E. [A similar analysis also al-
lows us to express multiparticle (-string) inclusive distri-
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butions in terms off(e) and Q(E) (Ref. 22).]
Before proceeding further it is perhaps worthwhile

contrasting a string gas with an ordinary classical gas in-
volving N weakly interacting identical particles in a large
volume V. I.et the total energy be E, and consider the
large- V limit with E/ V and N / V fixed. Let

~
(()'i ) be an ar-

bitrary n-particle state with a total energy e; it is intui-
tively clear that the desired inclusive distribution is pro-
portional to f&(E)Qiv „(E—e), where f&(e) is the n

particle density of states and Q)v(E) is the microcanoni-
cal distribution function. In the large- V limit,
lnQ)v „(E)-inQ)v(E):—S(E,N, V)=O(N lnE); an ex
pansion of Q& „(E e) i—n e then leads to the familiar
Boltzmann distribution

2)&(e;E ) ~f&(e)e (9)

where P is the inverse canonical temperature and is relat-
ed to E by P—=BS(E,N, V)/dE. In particular, the distri-
bution is exponentially small for e large since f&(e) in-
creases only as a power of e [Figs. 1(a) and 1(b)].

For a string gas above the Hagedorn energy density,
Eq. (9) no longer follows from (8). The notion of a canon-
ical temperature now breaks down. Furthermore, since
the corresponding density of states f&(e) now increases
exponentially, nontrivial structure can emerge when e is
of the order E. In Sec. III we shall concentrate on
single-string inclusive distributions and discuss their re-
sulting novel features at high energy densities.

If one knows f(e) and Q(E) completely, one would
know 2)(e;E) for all e for a fixed E. But if only asymp-
totic expressions are known we can only find 2)(e;E)
quantitatively in the "central" region where e/E is finite,
nonzero, and less than unity. To discuss end-point re-
gions, e-0 or e-E, it will be useful to introduce a
complex-P representation for 2)(e;E ).

Expressing the delta function 5(E E) in (5) as a-
Fourier integral:

5(E E)=I —e

p(E —E„)= I . e ", P=L+ik,
L —i ~ 2&l

this gives

(12)

ep'z(p. ), (10)
L —i ~ 2&l

—PE
where Z(p)=g e is the canonical partition func-
tion. For free particles (strings), carrying out an analysis
analogous to (7) and summing over N, one finds
Z(P)=e~'P' —1, where

f(P)=—I dEe P'f(e) . (11)
0

From (4) we note that for strings we need L )I3o, so that
(11) converges. In Ref. 15 we have shown how the
complex-P representation for f(e), i.e.,

1 ~ ~ dp pF+f(p)f (p)Q(E) Ii~ .2—vari

(13)

Using the same steps we can obtain analogous expres-
sions for JV(e„ez,E) and 6(e„e~;E).The result is

J)V(e„e,;E)= 1 L+i co epE+g(p)f(~ ~ .p)Q(E) L i~ 2—~i

(14)

6(e„ez',E)= I.+i ~ dR ePE+ f(P)
Q(E) L i ~ 2—rii

X — f(e„ez,I3)

where

f(e„e2',13)=:I de e P'f (e) . (16)

Equation (14) difFers from (13) in that f(P) is replaced by
f(e), e2,P). By narrowing the interval, @2~A)+5m„(14)
simply reproduces (8).

Equation (14) will be useful in discussing the average
number of low- and high-energy strings in the ensemble.
Choose an intermediate energy scale m, mo & m (E, and
call all strings with energy e & m as energetic strings and
all those with @&m as low-energy strings. Denote their
average numbers in the ensemble by N&(m;E) and
N & ( mE ), respectively. Then, from (14),

JV =JV(m, E;E)
~. e p'+/(p) f(m, ;p),

Q(E) I. 2mi- '

JV( =JV(0, m;E)

eP +~'P'f(0, m;P) .
Q(E) I.—i~ 2n.i

(17)

(18)

Note that in JV&, we can use f(m, ~;((3) in place of
f(m, E;p) because 2)(e;E ) vanishes if e )E. Thus all
quantities of physical interest, i.e., Q, X)(e;E ), JV„„„JV&,
etc. , are expressed in terms of f(P), f(e„e2;I3),etc. ,
which in turn are completely determined from f(F.).

III. SINGLE-STRING INCLUSIVE
ENERGY MSTRIBUTION

how other quantities of interest are obtained in the
complex-P representation.

Consider first

J[i',..., =Q(E) 'f de f(e)[Q(E —e)+5(E —e)].

Write Q(E —e) = 1 o dE'Q(E')5(E (—e+E')) and ex-

press the 5(E (—e+E') ) as a Fourier integral:

5(E ( +E~)) I ik[E (e+F.'—)]
2 IT

e
L+i dI3 p[E —(e +E')]

I.—i oo 2VTl

with L )Po. After interchanging the order of the e and )33

integrals, this gives

and for Q(E), i.e., Eq. (10), can be used to extract the
asymptotic behavior of f(e) and Q(E). We now discuss

In this section we apply the results of Sec. II to the
specific example of strings, starting from expression (4).
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To begin we discuss how our knowledge of the large-e be-
havior of f(e), Eq. (4), determines f(p), etc. , and hence
the other physical quantities. From (11) we have
f(P) =f(O, mp,'P)+ f (mp, 0O, P). Note that f(O, mp,'P)
admits a Power-series exPansion at Pp..

f(O, mp;P)= Vg, ( —1)"(P Pp—)"b„,1

o nt

where Vb„=Ip de e ~'e"f(e) are all positive
coefficients. On the other hand, (4) implies that
f(mp, ~;P) is singular at Pp:

f(mp, ~,P)=CV f dee
mo

=CV(P P,)'"—r , m—p—(P Pp)—, (19)o

where I (a,x) is the incomplete gamma function. Since
the analytic structure of I (a,x ) is known, this allows us
to separate out the singular and regular parts of
f(mp, ~;P) at Pp. Further, one can combine with
f(O, mp;p) to get f(p). The result is

f(mp, ~ ', p) =& (p)(p pp)
~ +—a(p),

f(p)=/i(p)(p —pp)" '+&(p) .

Here

(20)

(21)

/ (p) =( —I){'"+""bcvr —+1d
2

and

h(p) =( —1)" "+"cvr —+1d
2

ln[mp(P —Pp))

for d odd and even, respectively. The regular parts can
be expanded in a power series:

00
1a(P)= Vg a„(mp)(P—Pp)"

o nt

and
oo

A, (P)=Vg, A,„(P—Pp)",.=o n

where k„=a„(mp)+(—1)"b„.The coefficients a„canbe
determined from various known expansions for the in-
complete gamma function, and they are given by
a„(mp)=(—1)"+'Cmp ~ l(n —d/2) for all n when d
is odd and for n )d/2+1 when d is even. For n ~d/2
(d even), the expressions are ap(d =0)= —y,
ap(d =2)=CV/mp, ai(d =2)=CV(y —1), etc. (y is the
Euler number. ) The corrections to Eq. (20) arise from the
0(1/e) corrections in Eq. (4) for d&0. They give rise to
terms that are less singular [—(p —pp)" +'] than the
one shown in Eq. (20) and also modify the regular part
a(p).

This completely expresses f(p) in terms off(e). Note
that f(m, ~;p) required in N& is given by (20) with mp
replaced by m and f(O, m;P) required in N& is simply
f(p) —f(m, ~;p). Our ignorance about f(e) is mainly
in not knowing the precise value of mo and the

A. d~3
When d&0 the volume V of the uncompactified spatial

dimensions is another large parameter in addition to E.
We discuss the situation when the energy density
cr =E/V is fin—ite but ranging from small to large values
while V~ ~. An intrinsic quantity in the theory that
has the dimension of an energy density is
op—= —V 'BA, /BP~& = —

A, „where A(P) is the nonsingu-
0

lar part of f(p). Henceforth we shall refer to crp as the
Hagedorn energy density. All relevant energy densities
will be compared with oo, and we use the notation

o and E=E ooV
Consider first the case d) 3. Equations (10) and (21)

give
POE+A, o V

Q(E)=CV „,1+0 —+0
E d/2+1 Ea (22)

where a= —,
' for d =3 and a=2 for d 4. Thus the

corrections are small for any finite value of o. since V is
large and the leading term gives a good approximation to
the full expression as long as u ) op. (A reason for results
at d =1,2 being different from d ~ 3 is the fact that for
d=1,2 these corrections are no longer small and an
infinite nuinber of terms have to be taken into account. )

We can now use (22) and (4) in (8) to discuss 2)(e;E).
Let us first concentrate on two "end regions": 0 e mo
and E —6 +e+E with b, =O(crpV). In the low-e domain
we do not know the precise form of f(e), but we may use
(22) for Q(E —e). Similarly, in the high-e domain we do
not know the form of Q(E —e), but we may use (4) for
f(e). Thus in these two domains we have, respectively,

2) (e E)=e ' f(e)(1 E/E)— (23)

2)H(e;E)=e ' ' Q(e)[(E/E)(1 8/E)]—
(24)

coefficients b„which reflect f(e) for small e. Here we
have given formulas for A,

„

in terms of the cutoff trio and
b„.However, they depend ultimately only on a' and the
compactification radii and are independent of mo. For
low n, the A.„have simple physical meanings in a canoni-
cal approach. That is seen from Z(p)=e~'~' —1 which
implies that f(p) is essentially the free energy,

Bf—(p)/Bp is the average energy (E) in the canonical
ensemble, and 8 f(p)/Bp equals the energy fluctuations
(E ) —(,E) =(1/p )Ci, . From (21) we see that at
P=Pp the free energy diverges for d =0 and equals Apv
for d) 1. The average canonical energy density at Pp
diverges for d &2 and equals —

A, , for d )3. (Note that
op= —

A, , is positive for d)3.) The canonical specific
heat at Pp diverges for d ~ 4 and equals Ppl, 2 V for d ) 5.

In Ref. 15 we obtained (21) from first principles and de-
duced (4). Here we have deduced (21) from (4) thereby
establishing their equivalence. It now remains to perform
the p integration in (10), (13), (14), and (15) to obtain
Q(E), N„„„etc.This can be done by the method de-
scribed in Ref. 15. We find qualitatively different results
for d ~ 3 and d =0, 1,2. We now present these results in
turn.
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CT0
+xoV (26)

JV) =1+ 1+0dm"" (27)

From (27) one finds that there are always many massive
strings present, JV& -E ' ~, when m -E&, 0 & g
& 2/d & 1. As m approaches E, the second term in (27) is

suppressed since d & 3, with a single energetic string sur-
viving in this limit. The number of low-energy strings is
given by JV& =JV, „~—JV& which grows with V linearly.
This is the statement that the area under the low-energy
peak is much greater than under the high-energy peak.

The situation is reversed for the energy-distribution
plot, e2)(e;E) [Fig. 2(b)]. In this case, the second peak
has more area under it than the erst when o. is much
higher than the Hagedorn energy density o.0. To see that
we compute A'& from (15) with the result

where Z= E——e. The leading term in (23) is independent
of E (depends only on e), since ma«E. The leading
term in (24) is independent of E (depends only on 8), if
o.0V(&E. Thus at energy densities much above the
Hagedorn energy density, the behavior of 2)(e;E ) close to
both the end points @=0,E becomes an E-independent
'limiting" distribution: it depends only on the distance

from the end point. At the end points, of course 2)(e;E)
goes to zero because at low energies f(e) and Q(E) go as
a positive power due to the excitation of the low-mass
modes only.

In the central region, m0&e&E —6, we can use both
(4) and (22) to obtain the explicit form

2)c(e;E)=,[x(1—x)] (25)
E d/2+1

where x =e/E. This expression is interesting for the fact
that 2)(e;E) does not continue to decrease for large e; in
fact it rises when e)E/2. It also implies that at the
lower end point of the central region, e=m0, its value
Cgm 0

'" +" is much greater than its value at the upper
end point e=E —6, which is CVh . This is because
ihe low-e domain is much narrower than the high-e
domain.

The above information implies a schematic plot of
2)(e;E ) vs e as shown in Fig. 2(a). The significant feature
is that there are two peaks, a sharp and high peak be-
tween zero and m0 and a broad and low peak between
E—6 and E. The value in the central region is small
[suppressed relative to the value at the beginning of the
central region by a factor of approximately
(m0/E)"~ ']. The tail of the first peak starts off as a
power law -e ' +". Another instructive plot is the
graph e2)(e;E) [Fig. 2(b)]. The only thing lacking is a
quantitative knowledge of how high these peaks are.

To obtain that, let us compute JV„„~,which is the area
under the whole curve in Fig. 2(a), and next JV&, which is
de6ned as the area under the curve from a value m
(chosen to be much greater than ma but less than E) up
to E. Using (21) and (20) in (13) and (17) we get

6) —E——Voa 1—

The second term in the large parentheses is again a small
correction as m approaches E. Thus, when o. )&o0, we
see that the second peak takes up most of the total area
which equals E. While the height of the first peak,
O ( A0 V), is much higher than that of the second,
O(o /o0), most of the energy is nevertheless in the single
energetic string, which is precisely the Frautschi-Carlitz
scenai io.

Note that, unlike in Q(E) for d ~ 3, and, as in f(e) for
d =0, the leading correction is suppressed exponentially
and not by powers. The detailed form of the correction
and its consequences, e.g. , of yielding a positive speci6c
heat, are discussed in Ref. 15, and g is the same as for
f(e). Thus, at R -a'~, for the leading term to be the
dominant contribution, we must have E m0. In this pa-
per we discuss the number densities in this regime where
one can drop the correction term. The contribution of
the corrections, which become important when the
Universe expands, will be reported elsewhere. '

To discuss the string number distribution in e we again
divide the domain into three regions: 0 ~ e ~ m 0,
m0 (e & E—m0, and E—m0 + e ~ E. The results are de-
picted in Figs. 3(a) and 3(b). Using (29) and the same ar-
gument as before, in the low-energy domain,

2)r(e;E)=e ' f(e) . (30)

Again this is independent of E. It follows that the total
nuinber of strings in this domain is a constant, JVL —b0, —
and the energy deposited in these strings is also a con-
stant, CL =b, . In the central domain, using (4) and (29)
in (8), we find

12)c(e;E)=-
E

(31)

Integrating this, the number of strings in the central
domain is JVC —-ln[(E —m0)/ma]. In this domain, the
energy distribution function e2)(e;E ) is constant and uni-

ty, thus the energy deposited in this domain is
6o-E—2m0. From —this it follows that the energy de-

posited in the high-energy domain is again a constant,
60-—Zm0 b„independent —of E. In this domain, from
(4), we have

2)H(e; E ) = e ' '[Q(e)+ 5(Z)] .
E'

(32)

When multiplied by e we see that the resulting expression
depends only on Z and not on E. no- E—Zma is the-
bulk of the energy and the above analysis substantiates
the result mentioned in Ref. 15: namely, that the energy

B. d=0
We now turn to the d =0 case. Here the singular term

in f(P) is —in[(P —PD)], which makes P0 a simple pole of
Z(P) (Ref. 15). Equation (10) then gives

Q(E)= e ' '[1+O(e " )) . (29)
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is distributed equally over most of the spectrum. This is
refiected in the flat portion of the curve in Fig. 3(b). The
dotted end regions refiect our ignorance of f(e) and Q(E)
for e, E (mo. Since mo is of the order g ', (30) and (32)
together with the condition Po&rl suggest the existence
of the two small peaks shown in Fig. 3(b). We do know
that the area under them is AL =b~ and 6~ —-2mo b-

„

which is small compared to the area under the central re-
gion.

To compute the number of strings in the high-energy
domain, it is convenient to first determine A;,„,I from
(13):

PoE+ioV mC V —/E

E 3/2

Substituting in (8) for the central region we obtain
3/2

(35)

tions to the leading term in (22) are of the order V/v E
for d =1 and order ( V/E)lnE for d =2 and the infinite
series of corrections can no longer be ignored for finite
energy densities. However, at finite energy densities, the
integration over P in (10) has a saddle point. For d =1
the saddle-point integration gives (up to corrections to be
discussed shortly)

't

JV, „i=in +bo+0
P2p

total 0 (33)
2)(e E)=CV

e(E —e)
e

—m C V e/E(, E—e) (36)

Subtracting JVI +JVc from this one finds that
A'H = 6H /E vanishes asymptotically.

Similarly, for pip (7?z &E ~p we have

E teal p
JV =ln +0

m
(34)

C. d=1

The cases d = 1 and d =2 turn out to be more compli-
cated than the rest. A principal reason is that the correc-

I

which implies that the number of energetic strings, each
with an energy more than m, decreases logarithmically
with m, so as to accommodate the Hat distribution in e.

It is remarkable that the d =0 case exhibits behavior
opposite to the d ~ 3 case. Here most of the energy is de-
posited in the central region, whereas for d ~3 this re-
gion contained almost nothing and most of the energy
was concentrated in the two end regions. Further, here
the energy deposited in the upper end region is a constant
independent of total energy, whereas for d ~ 3 it was the
number of strings in the upper end region that was a con-
stant. In the 8 =0 case the energy is distributed equally
on all length scales, whereas for d & 3 one energetic string
dominates at high-energy densities. Both these cases are
strikingly diA'erent from the usual free gas of a finite num-
ber of light particle species, e.g. , Eq. (9), which is shown
schematically in Fig. 1 for a contrast.

Here we see that 2)(e;E) is damped out exponentially in
the region where e is a significant fraction of E. This is
unlike the situation in d =0 or d & 3 where e2)(e;E) was
constant or rising. Thus for this case we have energetic
strings exponentially suppressed.

In the saddle-point method the corrections to (35)
come from the A2, A,i, . . . terms in A(P). For instance,
keeping A, 2 would change the exponential factor
e / in (35) to expI (mC V /E—)[1+O(A,zC V /
E )]I. (The E in the denominator is also modified by a
similar factor. ) These corrections are small if
A.2C V /E «1. Thus Eqs. (35) and (36) are valid for
the situation cr »O(C(kzV)'/ ). At finite energy densi-
ties this requires A,2, etc., to be close to zero.

Notice that if we have E & V rather than E —V (in the
thermodynamic limit V~ ~ this corresponds to the situ-
ation of strictly infinite energy density) the exponential

—~C V/Efactor e becomes essentially unity and the ex-
pression reduces to the one analogous to d ~ 3. This is to
be expected because the corrections VE ' mentioned
above now become small. In this limit we recover the
picture that holds for d ~ 3 also for the d = 1 case.

D. d=2

For d =2 we consider two cases: one when
o 0(o & C ln( CV/m 0 ) and the second when
o & C ln(CV/mo). In the former, the saddle-point
analysis gives

A,0 V+ poEe'
Q(E)= exp

( 21TCVm )
1/2

CV
exp( —I —o /C) —

—,'(1+cr/C) 1+0
P1p

2 —2( l ++/C)e
P?Z p

(37)

2)(e;E)=CVe e (38)

Here a =e " / ' —mo(2CV) ' is a positive number.
In the second case (of strictly infinite energy densities) we
find

We study this in the regime where A,2, etc., are essentially
zero so that the corrections can be ignored. In this re-
gime, energetic strings are exponentially suppressed as
can be seen from

—2
ov+ poE

eO(E) =CV E CVln—CV
Pg p

This is again similar to the d 3 case. Therefore, above
the Hagedorn energy density, so long as o is finite, a
single-energetic-string-dominant picture holds only for
d & 3 (the lower limit happens to coincide with the num-
ber of physical uncompactified dimensions). This com-
pletes our discussion for single-string number densities
when all string states are included in the ensemble.
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IV. CONSERVATION LAWS AND
INCLUSIVE DISTRIBUTIONS

We now turn to what happens when we take into ac-
count other conservation laws in string theory which was
proposed in Ref. 15. In the case of toroidal
compactifications that we have been considering, the con-
served quantities are the total winding number 8'; and
the discrete momenta M,. in each compact spatial dimen-
sion (i = 1,2, . . . , D —d ), and the momenta I' in the

I

and

f(e, q)=—
all single-string states

5(e—e, )5

noncompact dimensions. For the heterotic string, the
U(1) charges for the 16 internal directions are also con-
served.

The analog of 2)(e;E) when the total charge is fixed to
be Q is 2)(e;E,Q ) defined in Eq. (2), and we would like to
compare the two. Defining

A(E, Q) =
all multistring states

5(E E)5—g g

QN(E, Q)
N=1

oo oo E N N

f g [de,f(e, , q, )]5 E—g E; 5
N=l ' q), q&, . . . , q&

———co i =I i =1

+5(E—e)5@ ] . (39)

Thus to compute (1) we need f(e, q) and A(E, Q). These
are obtained by introducing a chemical potential p for
the conserved charge in addition to P which was intro-
duced for obtaining the energy dependence. Using steps
similar to those above (13), one can see that

in analogy with (3) and (7) and following the same steps
as for Eqs. (6)—(8) we find

X)(e,q;E, Q) = f(e, q )[A(E e, Q——
q )

1

0 E,

f(13,p, v, p) =h (P)(P—Po(p, v, p)) (43)

2 1/2 2
1+ co„+ 2 g iu;R;

2 1/2
J

J
(44)

In h(I3) also /3o is replaced by Po(p, v, p). The latter is
found to be of the form

12
- 1/2

1
Po(p~ v~p) = col+ X )u, ;R;+

fL+ioo dP fin dP E+
L —i ~ 27Tl —in 27Tl

Q(E, Q)= f . f . eE +"~Z(13,p, ),
L —i oo 2&l —in 27Tl

(40)

(41)

where R =a' ' R with the convention 2m o."=1. For
small p this reduces to

tio(P) =~o+ /I uPIPJ

where Z(I3,p)—:e~'@"'—1 and

f(P,p)= g f dee E' "qf(e, q)
q = —oo

pE pqe (42)

A chemical potential is to be introduced for each con-
served charge. Thus for toroidally compactified strings,
pq —+p;m;+v;m;+p. p, where m; and m; are the mo-
menta and winding in the compact directions and p are
the momenta in the noncompact directions that charac-
terize a single-string state a. Since p. are continuous, p.
will be integrated from —i ~ to i ~, instead of —im to
l &.

We have computed (42) froin first principles using the
string spectrum. We find that the leading behavior of the
singular term in P depends in a very simple way on the
chemical potentials. The chemical potentials simply
change the location of the singularity in P from Po to
Po(p, v, p). That is, the singular term of (21) is modified
to

C1 C& p,.-(4.)-'q'~-&q
f(e,q)=, e '

E'

~( Q
1 2o+POE (4E) )QrA )Q

m, ED

C1CV g y+p E (4E)
—igT

e '
E (d l2)+ 1ED —d/2

(46)

d~3.

where the pl stands for all the chemical potenials p;, v;,
p. and the coefticients AIJ are determined in terms of the
radii from (44).

Using (43) one can perform first the P and then the p
integrations in (40) and (41). The consequence of the p
dependence to leading order appearing chieAy through
Po()M) is that tu, goes for a ride in the P integrations, which
can be performed in the same way as before. The p in-
tegrations are then evaluated by the saddle-point method.
In the large Elimit with finite-q and Q, the saddle point is
at p =0; therefore, only (45) is needed. For instance, with
C, —:(2&qr)" (detA )

' we have
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Comparing these with our earlier expressions for f(e)
and A(E), note the presence of additional power suppres-
sion factors e ' " ' and E ' " ', respectively,
rejecting the shrinking widths of the p-saddle point.
[The imposition of the conservation of the 16 U(1)
charges in the case of the heterotic string will produce an
additional factor of E .] Also note that the

—(4z)e ' @' ~ " ~ factor implies that the number of states
decreases as Q increases for fixed E. This is to be expect-
ed because the charges we have considered all cost energy
(E -Q +g„u „a„),so at nonzero Q less energy (and
hence fewer number of states) is available for the oscilla-
tors. Will these factors alter our previous conclusions for
the inclusive distribution'7 The answer is no.

It is convenient to introduce a "mixed" description by
defining

f(e;p)= f . e~'f(P, p)

and (48)

This corresponds to the "charge-bath" picture mentioned
at the beginning of Sec. II, with p characterizing the
external charge bath. For a neutral charge bath, by set-
ting p=0, all our previous results then follow.

However, for a strict microcanonical treatment, we can
do away with an external charge bath and obtain

and

f),(E;p):f — . e~ Z(P, p) .

(47)

In particular, the distribution Xl(e;E, Q), instead of Eq.
(1), can be expressed as

2)(E;E,Q)='' f "e~&f(e;~)[n(E e;p)+o—(E e)]-
Q(E, Q) ~~2m—i

(49)

It is then easy to see that, at high-energy densities where Q/E +0, efFects—of charge fiuctuations about the saddle point
@=0,i.e., those leading to (46), cancel between those from the numerator and the denominator.

More directly, using (46) in (39) gives, e.g., for d =0 in the central domain, the distribution function of energy and
charge to be

D
1 E

2)(e, q; E,Q ) =C, — exp' e e(E —e)
1

4(E —e)
[(e/E)Q 2 'Q+(E/e)q 3 'q —2Q "3 'q] (50)

A dramatic simplification occurs upon summing over q.
We get

2)(e;E,Q) =—,1

which is the same result as (31). Thus the imposition of
conservation laws does not alter the distribution of the
total energy among strings in a specified energy range.
The same is observed for dAO, e.g., for d ~ 3, 2)(e;E,Q)
is given by (25).

V. SUMMARY

To summarize we have presented a formalism for
determining physical quantities such as the energy spec-
trum of a free gas. The formalism is valid for the micro-
canonical description of any noninteractirig gas. This
was used to determine properties of a string gas at high-
energy densities. The nature of the Hagedorn singularity
in the free energy as a function of p turned out to be cru-
cial in the analysis. It was found that the spectrum de-
pends on the number of noncompact dimensions. For
d =0 the distribution is fiat [Fig. 3(b)], strings of all ener-
gies contributing equally to the total energy. For d ~3
the distribution is peaked at the two ends [Fig. 2(b)] with
a single energetic string soaking up most of the energy.
These properties are the same when conservation laws

are taken into account and are in striking contrast to usu-
al gases of a finite number of species of particles (Fig. 1).
For d = 1,2 energetic strings are exponentially suppressed
at finite energy densities under the conditions described.

In this paper we have assumed that all compactified
spatial dimensions have a radius of the order &a'. As
the compact dimensions expand, other singularities (in
addition to the Hagedorn singularity po) in the complex p
plane also become important. ' As a radius goes to
infinity, an infinite number of these singularities accumu-
late at Po thereby changing the nature of the Hagedorn
singularity. This then affects the high-energy behavior of
the string gas and it is interesting to compare the energy
distribution for the case of compact space with a very
large radius with the case in which space is intrinsically
noncornpact. '

At sufticiently low energies only a few modes of the
strings are excited and the qualitative behavior of the
string gas is like an ordinary gas depicted in Fig. 1. At
energies significantly higher than Hagedorn energy densi-
ties the behavior is described by Fig. 2 or Fig. 3, which
are qualitatively different from Fig. 1. It is clearly of in-
terest to study the Hagedorn region where the descrip-
tion changes. Since asymptotic formulas, e.g. , (4), are no
longer valid in this region, numerical studies using alter-
native representations must be adopted. Here again the
complex-/3 representation is useful in the context of the
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free gas. Work along this line is in progress.
Finally, while the free string gas already exhibits novel

properties, it is of great interest to study the interacting
gas. A number of issues have to be addressed in this con-
text, not least the consequences of gravitational interac-
tions. We hope that the relationship between the thermal
partition function and the S matrix of a system discussed
in Ref. 25, together with results on string scattering at
high energies, (involving extension of Refs. 19 or 20), can
be used to provide some insight in the subject of string
statistical mechanics.

Tote added. After the completion of this paper we re-
ceived Ref. 26 which also independently discusses the use
of chemical potentials to impose conservation laws, and

recognizes the appearance of additional energy prefactors
in O(E) as a consequence. However, its conclusion that a
high-energy string gas is always dominated by a single en-
ergetic string applies only for d ~ 3, as argued in this pa-
per. In the case of d =0, for example, strings over almost
the entire energy range contribute equally to the total en-
ergy of the gas, whether or not momentum and winding
number conservation are imposed on the ensemble.
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