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Field-theoretic derivation of Wolfenstein s matter-oscillation formula
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We use covariant field-theoretic methods to rederive Wolfenstein's formula for neutrino oscilla-
tions within a medium.

More than a decade ago, Wolfenstein' pointed out that
the patterns of vacuum mixing and oscillation of neutri-
nos can be significantly modified if the neutrinos pass
through a material medium. Recently, Mikheyev and
Smirnov have shown that this mechanism might play a
crucial role in understanding the solar-neutrino problem.
Since then, the subject has received a lot of attention.
Various authors have extended the original, two-
generation analysis to include the effects of the third gen-
eration. The magnitude of the effect in stellar objects
other than the Sun has also been discussed.

Despite all the attention received by the topic and
despite its potential importance in the field of neutrino
physics, there exists no field-theoretical treatment of it in
the literature. The original derivation employed a po-
tential picture, which has been used by subsequent au-
thors as well. In this paper we want to rectify this situa-
tion by showing how one can use covariant field-
theoretical methods to obtain Wolfenstein's formula for
neutrino oscillations in matter.

The central argument in Wolfenstein's analysis' is that
the effective mass of a neutrino changes considerably in a
medium owing to interaction with the particles in the
medium. The change is different for the electron neutri-
no v„which has both neutral- and charged-current in-
teractions with the electrons, compared to the v„and the
v„which have only the former kind of interaction. This
difference results in changing patterns of neutrino oscilla-
tions.

In quantum field theory, the mass of a particle is ob-
tained from the inverse propagator. To keep our discus-
sion clear, we consider Weyl neutrinos such as those in
the standard electroweak model. Such neutrinos are
massless in the vacuum and hence do not mix with one
another. Thus we can discuss the effective mass of the v,
separately from the other neutrinos. At the tree level, the
inverse propagator of such a neutrino is given by

iS()( ') (p ) =igfL,

where gf =y~" and L =
—,'(1 —y5) is the projection opera-

tor for the left-chiral fermions. The presence of this pro-
jection operator in the propagator implies that the neutri-
no can only be left handed, as is appropriate for a Weyl
neutrino.

Quantum corrections would add a self-energy X to the
inverse propagator, so that the full quantum propagator
will be

iS(,)'(p) =i (IiL —X) .

iS, (k) =(k+m, )
—2+5(k —m, )fF(k u )

k —m e

(3)

where u" is the four-vector denoting the center-of-mass
velocity of the medium and fF denotes the Fermi distri-
bution function

8(x) 8( —x)
/3(x —P ) + 1

—t)( x —P ) + 1
(4)

where P=1/T is the inverse temperature and (M is the
chemical potential of the species of particle. The 8' and
Z propagators are also modified in the medium, but let us

Our goal is to compute this X in the presence of a medi-
um and consider its implications for the neutrino masses
and rnixings.

At the one-loop level, contributions to X come, e.g.,
from the charged-current diagram of Fig. 1 and the
neutral-current diagram of Fig. 2. There are other self-
energy diagrams, obtained by replacing the gauge boson
lines in Figs. 1 and 2 by Higgs-boson lines (physical and
unphysical). In the gauge we use, the contributions of the
diagrams involving the Higgs bosons are suppressed,
compared with those involving the gauge bosons, by
powers of m) /Mz, where l stands generically for charged
1eptons. The effects of these diagrams are thus smaller
and unimportant for our purpose.

These diagrams, of course, are the same as the ones
which appear in the vacuum field theory. However, to
evaluate them in our case of interest, we should use not
the Feynman rules in vacuum, but the rules for field
theory in a medium in equilibrium. Better known as
finite temperatu-re field theory, the formalism is equally
equipped to discuss the effect of a finite density of parti-
cles, for example. There are two equivalent formulations
of these Feynman rules: viz. , in the imaginary-time and
in the veal-time formalisms. In this paper we use the
latter since it is easier in this formalism to separate the
vacuum effects from the effects of the medium.

The Feynman rules for all the vertices in the real-time
formalism are identical to the corresponding rules in the
vacuum. The propagators, however, are different. For
example, the electron propagator is given by
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FIG. 1. The contribution to the self-energy of a Weyl neutri-
no due to its charged-current interactions.

restrict our discussion to the temperature range for
which T &&M~, so that we can neglect the thermal
eAects in the 8'and the Z propagators. Then, using the
't Hooft —Feynman gauge to write the 8'propagator, we
can write the amplitude of Fig. 1 as

y LiS, (k)y L
2 (2m. ) (p —k )

—M~

where g is the SU(2) gauge coupling constant. The elec-
tron propagator iS, has been given in Eq. (3). Looking at
it, we notice that the first term in the large parentheses
gives just the electron propagator in the vacuum. The
contribution of that term to the amplitude in (5) will give
the wave-function renormalization of the neutrino in the
vacuum. In the present context, this is of no importance
to us. We want to discuss the effects of the medium,
which comes from the second term in the large
parentheses of Eq. (3). Using this we can write down the
medium contribution to X coming from Fig. 1 as

d "k kL
LXi = Lg

(2m ) (p —k ) —M~

To arrive at this form we have used the fact that the
number densities of the electrons n, and of the positrons
n, are given by

p d k 1
J (2 )3 P(cu~+P)

e
(10)

X, =&2GF(n, n, )—uL—:A, uL, (12)

for example. Thus, from Eq. (2), we notice that because
of charged-current interactions only, the inverse propaga-
tor is given by

iS~ ~'(p)=i(P —A, g)L,
so that

P —A, N

iS( )(p)=i L . (14)
(p —A, u )

The physical mass of the neutrino can be obtained by
considering the poles of this propagator. For this, we in-
troduce the I.orentz-invariant quantities

where the factor 2 appears because of spin degeneracy.
Using the definition of the Fermi constant

G~ g2

&2 8M~

we can easily rewrite Eq. (9), this time in a form that is
valid in any arbitrary frame:

X5(k —m, )f~(k u ) . (6) E—=p u, P=+E —p

So far, our discussion is completely covariant. Now, in
order to perform the integration we go to the rest frame
of the medium where u"=(1,0). In this frame we can
write

5(k' —m 2) = [5(ko —cok )+5(ko+~p )],1

COk

where

p =0 or K —P=0, (16)

corresponding to massless neutrinos. In the medium we
obtain the poles at

which can be interpreted as the energy and the magni-
tude of the three-momentum of the neutrino in the rest
frame of the medium. In the vacuum, where A

&
=0, the

pole of Eq. (14) is given by

To the lowest order in M~, the momentum dependence
in the 8'propagator may be disregarded. The integral of
Eq. (6) can then be easily evaluated to obtain

p =23)K—A ) or K —2A)K+ A j
—P =0 .

The solution to this equation is

K= A)+P .

(17)

v(p)
r

FIG. 2. The contribution to the self-energy of a Weyl neutri-
no due to its neutral-current interactions.

To interpret this result, it is best to go to the rest frame of
the medium, where K is the energy of the neutrino and P
is the magnitude of the three-momentum. The positive
sign in Eq. (18) corresponds to the particle solution. It
shows that, for the same magnitude of the neutrino
momentum, the energy of the neutrino is increased by an
amount A, compared to its value in the vacuum. This is
Wo1fenstein's result.

The other solution in Eq. (18), corresponding to the
negative sign, corresponds to the antiparticle solution.
As usual, by changing the sign of the energy, we obtain
the energy-momentum relation for the antineutrino as
K=p —A „sothat the energy of the antineutrino
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decreases within the medium. This result is also well
known in the context of a potential approach to the prob-
lem.

So far, we have been discussing the contribution due to
Fig. 1 only. A similar analysis can be performed on the
diagram in Fig. 2, yielding an extra contribution to the
self-energy. It must be noted that now any fermion can
circulate in the loop. Of course, the only nontrivial con-
tribution comes from the fermions which constitute part
of the background medium. A straightforward calcula-
tion shows that the axial-vector part of the fermion cou-
pling to the Z does not contribute to the self-energy of
the neutrino. We find that the net effect of adding the di-
agram in Fig. 2 is to replace the quantity A& in Eqs.
(12)—(18) by A&+ Az, where

A z
=&2GFQ (T3 ' —2Q' 'sin 0~)(nf nf )—, (19)

f
where Q' ' is the electric charge of the fermion and T~zf'

is the third component of the weak isospin for the left-
chiral projection of it. Considering, for example, the so-
lar interior where the temperature is such that only elec-
trons, protons, and neutrons are present and hardly any
of their antiparticles, we can reduce Eq. (19) to a simpler
form. Since T3 '=

—,
'= —T3' and charge neutrality re-

quires n, =n, the contributions of electron and proton
cancel in (19), and we are left with only the contribution
of the neutron:

A~= &2G—„2n„. (20)

The effective neutrino energy, or equivalently, the
effective neutrino mass, is accordingly modified.

There is, of course, one important difference between
the neutral-current contribution and the charged-current

contribution to the self-energy, as has been noted earlier.
If we consider more than one generation of neutrinos
propagating through a background which contains elec-
trons but not muons or taons (as is usual for ordinary
matter), the charged-current self-energy diagram affects
only the electron neutrino, whereas the neutral-current
contribution affects all Aavors equally. It is well
known' that because of this reason the neutral-current
contribution is irrelevant in discussing neutrino mixing.
It is relevant only for the discussion of the effective mass
of the neutrino.

We have thus derived all the features of Wolfenstein's
formula by using covariant field-theoretic methods. It
must be emphasized that although our result is the same
as the conventional one, some points come out clearly
from this derivation. For example, unlike the original
derivation, we never assumed that the electrons in the
medium are nonrelativistic, so our derivation shows that
Eq. (18) is equally applicable at temperatures comparable
to, or larger than, the electron mass. Moreover, it also
shows how to take a finite positron density into account.
Both these considerations might be important for discuss-
ing matter oscillations in supernovas, for example.

Note added in proof. Before publication of this paper
we came across a paper by D. Notzold and G. Raffelt,
Nucl. Phys. B307, 924 (1988), where a similar calculation
has been performed.
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Physique Theorique is Laboratoire Propre UPR A.0014
du CNRS.
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