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A Hamiltonian formulation of the theory of induced gravity in two dimensions is constructed.

This formulation differs from previous efforts in that the formalism is covariant under all relevant

transformation groups. In particular, spatial diffeomorphism covariance and/or invariance is mani-

fest throughout; the phase space carries a representation of the Lie algebra of the spacetime

diffeomorphism group; the group of conformal isometrics is projectively represented on the phase

space as a symmetry group. The key ingredient that allows covariance with respect to the above

groups is the enlargement of the gravitational phase space by the inclusion of the cotangent bundle

over the space of embeddings of a Cauchy surface into the spacetime.

I. INTRODUCTION

Interest in two-dimensional gravity has waxed once
again due to recent work of Polyakov and others. ' Origi-
nally found in the context of string theory, this nonlocal
theory of gravity also has applications in conformal field
theory, statistical mechanics and, when quantized, as a
model for 3+1 quantum gravity. In the latter applica-
tion especially, the Hamiltonian formulation of the
theory is most useful since it allows one to model various
proposals in quantum cosmology.

Hamiltonian formulations of induced gravity in two di-
mensions have come from Teitelboim and Marnelius.
In Ref. 3, the two-metric is split into its conformally in-
variant and conformally dependent parts. The nonlocal
gravitational action, which is induced by quantum
matter, correspondingly splits into a conformally invari-
ant and conformally dependent piece, neither of which is
separately a diffeomorphism-invariant functional. The
conformally dependent part of the action functional is lo-
cal and, while coordinate dependent, by itself yields the
correct covariant equation of motion provided one holds
fixed the conformally invariant part of the metric.

In Ref. 4, an alternative, local action is constructed
with the help of an auxiliary field. This alternative action
has the virtue of being both local and diffeomorphism in-
variant. However, in order to eliminate the auxiliary
field, the spacetime foliation is fixed to be adapted to a
conformal coordinate system and the resulting Hamil-
tonian formalism is noncovariant in much the same way
as in Ref. 3. One may summarize the situation by saying
that in Teitelboim's approach the foliation is arbitrary
but the action, and hence the Hamiltonian, is noncovari-
ant, while in Marnelius approach the action is invariant,
but the foliation is fixed and the Hamiltonian is, at the
end of the day, noncovariant.

In what follows we will blend these two approaches so
as to obtain a Hamiltonian formulation of two-
dimensional gravity which behaves properly under all
relevant transformation groups. In particular, we have in
mind the following groups and/or Lie algebras: the
spacetime diffeomorphism group Diff(M) and its Lie

The form of the gravitational action is controlled com-
pletely by the conformal anomaly and the requirement of
diffeomorphism invariance. It is given by

Sygg= —f2 MXM

+sf &—g.
&—g (x)R (x)G (x,x')& —g (x')R (x')

algebra diff(M); the group of diffeomorphisms of the
spacelike (equal-time) slices Diff(S ) and its Lie algebra
diff(S'); the group Conf(M, g) of conformal isometrics,
i.e., the subgroup of the diffeomorphism group which re-
scales the metric g by a function, along with its Lie alge-
bra conf(M, g). The key to keeping track of all these
groups is the introduction of, as dynamical variables, the
space of embeddings of Cauchy surfaces into the space-
time.

An outline of the paper is as follows. In Sec. II we
surnrnarize the properties of the nonlocal action. Because
of the conformal simplicity of two dimensions, we show
that two variational principles are possible, differing by
whether one treats the conformal structure of M as fixed
or variable. The local action of Ref. 4 is described in Sec.
III. Here again two variational principles can be used.
Our central results are contained in Sec. IV. There we
construct the Hamiltonian formulation of both variation-
al principles and, after "parametrizing" the theory, show
how they ultimately yield the same formalism. In Sec. V,
we discuss the status of the three transformation groups
that we have described. We have included two appen-
dixes. The first demonstrates the canonical equivalence
of two-dimensional gravity with the Hamiltonian formu-
lation of embedding deformations in two dimensions.
The second appendix provides some technical detail
necessary for computing the symplectic structure on the
gravitational phase space.

Throughout, latin indices are abstract indices for ten-
sors in two dimensions, greek indices represent com-
ponents in a coordinate basis which, unless otherwise
specified, is arbitrary.

II. NONLOCAL ACTION

40 2588 1989 The American Physical Society



HAMILTONIAN FORMULATION OF INDUCED CxRAVITY IN. . . 2589

In the above, I=R XS' is the two-dimensional space-
time manifold with Lorentzian metric g,b, R is the curva-
ture scalar of g, and G (x,x') is a Green's function satisfy-
ing

g' V, VbG(x, x')= 1
5(x,x') . (2.2)

The "coupling constant" a depends on the species of
quantum matter that has generated the action. For a sin-
gle minimally coupled massless scalar field a= —A'/48ir.
Henceforth we will choose units such that o.= —1. The
parameter A, is analogous to a cosmological constant and
is freely variable. For simplicity we will set it to zero, al-
though virtually all of the considerations of this paper
hold when A, is nonzero.

By a difFeomorphism, it is always possible to put the
metric into the form

gb=e f b (2.3)

where f,b is a fiat metric on M. With this choice of
metric, the action is local and equivalent to the action for
a free scalar field P. However, to construct a Hamiltoni-
an formalism meeting the requirements outlined in Sec. I,
we will need a local action that yields the correct equa-
tions without the choice (2.3).

While the action (2.1) is nonlocal, the equations of
motion obtained by varying it are essentially local. Thus
the functional derivative of (2.1) with respect to the
metric is given by

ab'
2 5S

g ggab

=g,bR (5,''b '—,'g, bg—'"—) 2V, Vd f dx'& —g(x')R (x')G(x, x')

—f dx'& —g(x')R (x')B,G(x', x)f dx "&—g(x")R (x")8 G(x,x") (2.4)

where we have split the functional derivative into its
pure-trace and trace-free components. The trace of T,b

yields twice the curvature scalar as required by the con-
formal anomaly. Thus one of the equations of motion is
simply

(2.5)

Equation (2.5) is in fact the only independent equation of
motion because the trace-free part of (2.4) vanishes iden-
tically when (2.5) holds. That (2.5) is the only indepen-
dent field equation is, of course, due to the fact that, once
R =0, there are no other relevant geometric restrictions
that can be placed on the two-dimensional spacetime.

The space of solutions to (2.5) is equivalent to the space
of solutions to the scalar wave equation on M. To see
this, choose conformal coordinates x in which the
metric components are in the form (2.3); then (2.5) is
equivalent to

(2.6)

Solutions to (2.6) are, however, "pure gauge" in the sense
that one can always find a conformal isometry, which is
the residual coordinate freedom left after imposing (2.3),
such that /=0. In other words, if R =0 there will exist
coordinates in which g t3=f p.

The redundant field equations, contained in the trace-
free part of T,b, come from varying the conformally in-
variant part of g,b. We therefore have the option of us-
ing a simpler variational principle: vary only the confor-
mally dependent part of the metric. Then the only equa-
tion obtained is (2.5), and the equations of motion have
the same content in either variational principle. By
holding fixed part of the metric, we break difFeomorphism
invariance; we will show how this can be restored when

I

we pass to the Hamiltonian formulation. Having, for the
time being, broken di6'eomorphism invariance by work-
ing in a fixed conformal equivalence class of metrics, we
can define an e6'ective energy-momentum tensor for the
gravitational field P. To do this, fix once and for all a Oat
metric f,b and define the metric via (2.3). The curvature
scalar is now aPxed functional of the field P:

R = —e ~f'"V, Vbg,

where

(2.7)

V,fb, =0 .

The functional derivative (2.4) can then be written

t,b
= ri, /dbms+ ,' f,bf '—d, Qddp-

2f,bf' V, Vdg+—2V, Vbg . (2.8)

We emphasize that it was necessary to break
difFeomorphism invariance to obtain this result. The
efFective energy-momentum tensor in (2.8) is not equal to
that of (2.4), the latter being trivial as is usual in generally
covariant theories. Thus, when R =0, the trace-free part
of T,b vanishes while the trace-free part of t,b does not
vanish unless we choose the solution (i.e., via boundary
conditions) /=0. It is not necessary to demand that the
trace-free part of (2.8) vanish either since it is not an
equation of motion of the restricted variational principle.
Nevertheless, as mentioned above, when we factor the
space of solutions of R =0 by the residual gauge group
(conformal isometrics) p and hence t,b are equivalent to
zero.

As we shall see, t,b in (2.8) does indeed play the role of
an energy-momentum tensor in the Hamiltonian formula-
tion. In this context, notice that the terms quadratic in P
have the ~rong sign for a physical field as is also the case
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for the conformal degree of freedom in (3+1)-
dimensional gravity. To construct the Hamiltonian for-
malism, we should start from a local action functional.
Moreover this functional must respect the dif-
feomorphism invariance of the theory. Such an action
was found by Marnelius and is the subject of the next sec-
tion.

theory based on (2.1). In fact, within the confines of the
Hamiltonian formulation associated with (3.1), we shall
show that the two variational principles are really two
sides of the same coin. The relation between them will, be
the same as that between eliminating gauge redundancy
by either fixing a gauge or working on the space of gauge
orbits.

III. LOCAL ACTION IV. HAMILTONIAN FORMULATION

We begin with the action of Ref. 4:

g—( ,'g "e,—.e, +R 0) 2y —&1'&0 .

(3.1)

We will break this section into four parts. The first
defines the phase space for the theory, the second and
third parts treat the two variational principles separately,
the fourth part relates them.

6S =&—g (g "V,V, g —R ), (3.2)

Here g is a scalar field, y is the induced metric on the
boundary of M (assumed spacelike), K is the mean extrin-
sic curvature of BM. As in (3+1)-dimensional gravity,
the boundary term serves to eliminate second time
derivatives of the metric from the action which are con-
tained in R.

Following Sec. II, there are two variational principles
availab1e; they differ by whether or not one chooses to
vary the conformally invariant part of the metric. In any
case, the relevant functional derivatives are

A. Phase space

X:R XS' (4.1)

In local coordinates x,o., ~ on M, S',R, respectively,
(4.1) reads

Given a local action, there are many equivalent routes
to the Hamiltonian formalism. To reach the desired goal
of a completely covariant formalism, it will be most use-
ful to proceed always keeping the foliation of M arbitrary
and the role of the embedded spacelike slices manifest.

Thus we begin by introducing a foliation Xof M: .

x =I (o,~) . (4.2)
—g &g'

+2g,bg' V, Vdf 2VgVi, g)—. (3.3)

In (3.2) and (3.3) V is the derivative operator compatible
with the metric g. Setting (3.2) to zero is equivalent to
finding a conformal factor, e~, which gives a rescaled
metric e g, b with vanishing curvature. Hence if we solve
(3.2) via

it(x) =I dx'& —g (x')G (x,x')R (x') (3.4)

g "V,V, g=R =0 (3.5)

and we have the trace-free part of (3.3) set to zero also.
As we shall see, these latter two equations play the role of
constraints and serve to eliminate all degrees of freedom
from the theory. This is consistent with the results of
Sec. II. Thus, irrespective of the choice of variational
principle, the action (3.1) gives a local formulation of the

then (3.3) coincides with (2.4). Notice that (3.4) fixes P
purely in terms of geometry; all source-free waves are
omitted. Thus there are no dynamical degrees of freedom
for P in (3.4). Using (3.4) and setting to zero the trace of
(3.3) as field equations, we recover the results of Sec. II.
In particular, if we hold fixed the conformal structure of
M, we have available the local, effective energy-
momentum tensor (2.8), the scale factor satisfies (2.6), and
there are no degrees of freedom left after factoring the
space of solutions by Conf(M, g).

If the full metric is varied, then both (3.2) and (3.3)
vanish as field equations. The traces of (3.3) and (3.2) to-
gether imply

The map (4.1) or (4.2) describes a one-parameter family of
embeddings of a circle into M. Embeddings which are
infinitesimally close with respect to the parameter ~ are
related by a deformation along the vector N, where

aXNQ. XA
a7

(4.3)

y=X )X~ )g p,

N'=y 'g pX

(4.4)

(4.5)

(4.6)

we use the notation X,=B X . In the above y) 0 is
the induced one-metric on the circles of constant ~; N is
the lapse density of weight minus 1 (Ref. 7), obtained by
projecting the deformation vector along the unit normal
n to a given embedding; N is the shift vector obtained
by projecting N along the tangent to the embedding.
These latter two, essentially kinematic, functions
represent the conformally invariant part of the spacetime
metric, while the scale of g,b is represented by the one-
metric y.

The basic dynamical variables will be the field g on a
given slice along with the induced one-metric on that
slice. Depending on the choice of variational principle,

N will be referred to as a "deformation vector. "
As usual, the spacetime metric is given a 1+1 decom-

position via

g,b ~(N, N', y ),
where
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the lapse and shift will enter either as externally
prescribed functions (conformal structure held fixed), or
as freely variable Lagrange multipliers enforcing con-
straints (conformal structure varied). To obtain the
canonical momenta conjugate to it) and y, the Lagrangian
density is pulled back by the foliation from M to R XS'.
The pullback of the first term in (3.1) is standard. To pull
back the curvature scalar it is useful to use the identity
(in two dimensions only)

R = 2—V, (n'K+n Vbn'), (4.7)

where K is the mean extrinsic curvature of the time
slices. Isolating velocity terms (derivatives with respect
to r), and defining the momenta, the action (3.1) can be
written as a functional on curves in the phase space I ',
which is the cotangent bundle over the product space of
one-metrics and functions on the circle:

h, =II y i
—2B)(yII )+II&/, . (4.10}

The functions h and h ( are respectively the {weight 2) en--

ergy and momentum densities measured by observers
moving along the integral curves of n'.

Varying S with respect to II and II& yields the
definitions of the momenta. Together with these
definitions, the equations coming from varying g and y
are equivalent to (3.5). Introducing the fundamental
Poisson brackets

[y((T), II (cr')]=5(cT,cT')=[/(o ), Ilq(o')], (4.11)

the dynamical evolution (3.5) is generated by taking Pois-
son brackets with the Hamiltonian

h(N):= f,(Nh +N'h, ) . (4.12)

B. Variable conformal structure

Here we treat the lapse and shift as freely variable.
This leads to the constraints

h=O=h, . (4.13)

As these equations come from varying the conformally
invariant part of the metric, they correspond to the van-
ishing of the trace-free part of (3.3).

The constraints (4.13} refiect the underlying
diffeomorphism invariance of theory and form, via Pois-
son brackets, the 1+1 hypersurface deformation algebra.
Thus define

(4.8)

where

Ii = —
—,'(yII ) +yII II~+ —,'(P „) —2y'T B,(y 'T g, ),

(4.9)

where N is an arbitrary vector on S'. Then we have the
following nonvanishing Poisson brackets among the con-
straints:

[h(+)(N), h(+)(M)] =+h(+)(L~M ), (4.16)

C. Fixed conformal structure

Using this variational principle amounts to treating N,
N' in (4.8) as fixed, externally prescribed functions; the
constraints (4. 13) are not imposed. The equations of
motion for the one-metric and auxiliary field still hold;
they are equivalent to (3.5). Because the lapse and shift
are fixed, the action (4.8) is no longer a diffeomorphism
invariant functional. As one of our goals is a diff(M) co-
variant formalism, we will need to reestablish this sym-
metry. We do this not by varying the lapse and shift
directly, but instead by adjoining the embeddings (and
their conjugate momenta) to the phase space. This is a
standard trick in mechanics, where it amounts to adding
the time to the phase space, and is known as "parametri-
zation. "

To parametrize the theory, we exploit the fact that the
conformally invariant part of the metric, i.e., N, N, is be-
ing held fixed. Thus, without loss of generality we can
choose the two-metric to be of the form (2.3) for some
fixed choice of the Aat metric. In the Hamiltonian pic-
ture, varying P is equivalent to varying y because there is
the relation

where I.~ denotes the Lie derivative along X. As usual in
1+ 1 dimensions, the constraint algebra consists of two
copies of diff(S ); i.e., the algebra is isomorphic to
conf(M, g ).

The closure of the algebra (4.16) indicates that the con-
straints are "first class. " The dimensionality of the true,
dynamical phase space is thus reduced by four from the
initial choice [two from the constraints, two from factor-
ing out the gauge group generated by (4.15)]. This leaves
no field degrees of freedom, which is consistent with ear-
lier reasoning. Notice that a generally covariant theory
which is "pure gauge" can be considered to be a theory of
embeddings. In Appendix A we demonstrate this explic-
itly for the theory based on the action (3.1).

The Hamiltonian formalism we have just developed is
adequate for describing two-dimensional gravity. But it
is somewhat unsatisfactory to have the auxiliary field P
present in the final form of the theory as it has no a priori
geometric meaning. While g, like y, is pure gauge, it is
difficult to factor P from the phase space while retaining
y since they are coupled via (4.13). At any rate, working
on a space of orbits is usually two unwieldy or too impli-
cit. A more useful alternative is to work on a gauge slice
that eliminates g. We will actually do this in the next
subsection, but we will not interpret the results as such
until the final subsection.

h(+).=—,'(h+h, ), (4.14)
where f is the metric induced on the circle by the fat
metric on M:

h(+)(N) =f Nh(+), (4.15) f =f p[X]X,X~
( . (4.18)
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Unlike y, f is a fixed, known functional of the embed-
dings (time) via (4.18). The lapse and shift, being confor-
mally invariant, can be expressed solely in terms of the
foliation X and f,b

..

N= f —' m~X

N'=f 'f X Xr

(4.19)

(4.20)

In (4.19) m is the covector which is orthogonal to the
slice (a conformally invariant notion) and normalized
with respect to f,b

We now add the embeddings to the phase space as fol-
lows. Rewrite the action (4.8) as

S[y, II,;y, II~]=J,(II,y+II&g Xh —),
where

h = —m f ' &+X'h

(4.21)

(4.22)

The embedding velocities (deformation vectors) X only
appear in the action as the coeKcient of h . Thus, if we
treat X (o ) as a dynamical variable, the definition of the
corresponding momentum P is a constraint:

P +h =0. (4.23)

The appearance of a new pair of constraints simply
reflects the fact that the embeddings are not truly dynam-
ical; they represent time. Momenta conjugate to time
(space) are associated with energy (momentum) variables.
This is the content of (4.23).

The action functional for the embedding-extended
phase space, which we shall denote I ", takes the form

S[y IIr', Q, II~,'X,P;N ]

, II,y+rr~ +P.X —X a. ,
AXS

where the constraints

Hamiltonian (4.27) is completely built out of the con-
straints, this implies they are first class. In fact, direct
calculation reveals that the constraint algebra is Abelian:

[H(N), H(M)]=0 V N, M (4.30)

[H(V), H(W)]=H( —[V,W]), (4.32)

where the brackets on the right-hand side of (4.32) is the
commutator of vector fields. Thus H(V) provides a
homomorphism from diff(M) into the Poisson algebra of
functions on I"'. lt is the existence of the functions (4.31)
satisfying (4.32) that indicates the general covariance of
this formulation of the theory.

Having reestablished difFeomorphism invariance, we
are now in a position to put the Hamiltonian theory into
final form by eliminating the auxiliary field g. The stra-
tegy is to use (3.4), rewritten in phase-space language. As
it is written, (3.4) is not very amenable to such a transla-
tion, but with the metric fixed to be conformal to a flat
metric, (3.4) is equivalent to

(4.33)

To implement (4.33), perform a canonical transforma-
tion

(y, IIr;Q, II~.X,P )~(P,P;fo, P~,X,P ),
where

(for a general discussion, see Ref. 10).
As shown in Ref. 11 (see also Refs. 12 and 13), the rela-

tion (4.30) guarantees that I"' carries a representation of
diff(M). The diff(M) representatives are simply the Ham-
iltonians (4.27), where the smearing fields are chosen to
be spacetime vector fields restricted to an embedding:

H(V):= J,V [X(o)]H (4.31)
S

Because the smearing fields now depend on the embed-
dings, we have

H:=P +h =0, (4.25)

are imposed via the multipliers N . Varying S in (4.24)
with respect to all of its arguments, we obtain a system of
equations equivalent to those coming from (4.8) (when N,
N' are held fixed). Using the Poisson brackets

y =e&f[X],
IIr =e ~f '[Xj(P+P~),
4=So—0

H~=P~,

(4.34)

(4.35)

(4.36)

(4.37)

[X (o ),P&(o')]=5&5(o,o'), (4.26) X =X (4.38)

the equations of motion are generated by the Hamiltoni-
an

H(N)= J,N H

In particular, we have

(4.27)

X =[X,H(N)]=N (4.28)

thus the multipliers N enforcing the constraints (4.25)
represent a deformation vector. The equations

P =[P,H(N)] (4.29)

ensure that the constraints are preserved in time. As the

P =P +F [X,P, P~] . (4.39)

The functions I will be defined shortly. There are a few
properties of the transformation worth mentioning.
First, it is easily verified to be canonical, e.g. , by checking
the invariance of the symplectic structure (using the
definition of F below) or by constructing the generating
functional. Notice that we have traded the one-metric
for the scalar field P. The shifted auxiliary field $0 is also
a scalar and vanishes when (4.33) holds. Finally, observe
that the canonical transformation is tIme dependent. The
dependence on time enters via the one-metric f [X(o )]
and extrinsic curvature (see below); it is mandatory due
to our insistence on both manifest Diff( S '

) covariance



HAMILTONIAN FORMULATION OF INDUCED GRAVITY IN. . . 2593

and the use of an arbitrary foliation [needed for diff(M)
covariance]. Recall that after performing a time-
dependent canonical transformation, the Hamiltonian
must be supplemented by the time derivative of the gen-
erating functional. In the parametrized formalism this is
automatically taken care of, i.e., in the term F in (4.39).

The new Hamiltonian takes the form (4.27) where (we
now drop the tildes on the new embedding variables)

H =P+h +F (4.40)

It is instructive to give explicit expressions for h and F
in two bases. First, we project them perpendicular and
parallel to an embedded circle:

h:=f' m h = '[P —+—(P )) ]+2D,D)P

+ ,'[P~+—(g,) ] 2D, D—, Q

h, :=X,h =PP, 2D, P+—P~fo ( 2D, P~- ,

F =f'/ m F =2K~(P~+P),

F, :=X~,F =2D, (p~+P) .

(4.41)

(4.42)

(4.52)H =P +h+F(4.43)

(4 44) where

throughout the dynamical evolution generated by H(N)
leads to an identity equivalent to (4.7). Thus, restricting
the extended phase space I"' to the subspace I" specified
by (4.51) is consistent with the dynamics of the theory.
Notice that the constraints (4.51) serve to eliminate prop-
agating degrees of freedom for the auxiliary field.

Having chosen to work on the submanifold I, one
must also work with the symplectic structure induced on
I from I"', i.e., construct the "Dirac brackets. " This is
done in Appendix 8 where it is shown that the Dirac
brackets of the remaining variables on I, (Q, P,X,P ),
are identical to their Poisson brackets. Thus it is permis-
sible to eliminate 1(0 and P& explicitly and work on I us-

ing the original Poisson brackets for the surviving vari-
ables.

After eliminating the auxiliary field and its conjugate
momentum, the Hamiltonian density (4.40) —(4.44), or
(4.48) and (4.49), reduces to

In the above we have denoted by D, the derivative opera-
tor on S' that is compatible with f,

D,f=0, (4.45)

while K, is the mean extrinsic curvature of the embed-
ding, defined with respect to f,b and rescaled with f to be
a scalar density of weight 1 (covector): or

h= —
—,'[P +(P i) ]+2DiDig+2(K, )

hi=pal i 2Dip+—4D, K, ,

F=2Ki(P —2K, ),
F, =2Dt(P —2K, ),

(4.53)

(4.54)

(4.55)

(4.56)

=f '"K[f] (4.46) h~=(X+, ) '[T —,'(P+P, )
—D, (P+P ()

From the projected form of h it is clear that the contri-
butions to the energy from the metric and auxiliary field
are equal and opposite, the auxiliary field having the
physical sign. Notice also that the canonical transforma-
tion has neatly decoupled the metric and auxiliary vari-
ables in (4.41)—(4.44).

It is also useful to see h and F expressed in a null
coordinate system on M. Choose coordinates x —such
that the line element corresponding to the metric (2.3) is

+(K, ) +2D,K)],
F+= (X—,) ' ' —'D, (P —2K, ) .

(4.57)

(4.58)

h=f' mta af3 ' (4.59)

The functions h have the interpretation of an effective
energy-momentum Aux for the gravitational field. It can
be checked that these functions are related to the
energy-momentum tensor (2.8) via

ds'= —e&dx+dx

then

h+=(X —,) '[+ ,'(P+P, )
—D, (P+P—))

+ '(Py+eo, I ) D I
—(P/+00, 1)]

F~ =(X—,) ' ' 'D, (py+P) . —

(4.47)

(4.48)

(4.49)

Combining the expressions (4.52) —(4.56), we can write
the super-Hamiltonian and super momentum for the
theory:

H:=f1/2m~H f1/2maP & [P2+(y )2]

+2D,D, /+2K, (P —K, ), (4.60)

In (4.49) we have introduced a pair of derivative opera-
tors ' +—'D, . They act on covectors on the circle as

(+)D, U, =D, U, +K, U

with obvious generalizations to other tensors. '

The auxiliary field is eliminated by setting

$0=0, P~= —2K) .

(4.50)

(4.51)

The restrictions (4.51) can be viewed as constraints on al-
lowable initial data. Preservation of these constraints

Hi. =X iH =X,P +PQ i . (4.61)

The supermomentum is standard; it simply indicates that
P and X are scalar functions on the circle. The super-
Hamiltonian is somewhat complicated; it is explicitly
time dependent and, in particular, depends on the extrin-
sic curvature of the embedded slice. As we shall see in
Sec. V, this time dependence is necessary for the space-
time diffeomorphism covariance of the theory.

The final form for the phase-space action functional on
ris
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S[y,P;X,P.;N ]=f,(Pj+P.X N—H. ) .

(4.62)

Varying S in (4.62) with respect to all of its arguments
leads to equations equivalent to (2.6) and hence (2.5). The
constraints H =0, obtained by varying X, still have an
Abelian Poisson-brackets algebra, as can be checked by
straightforward computation. Ultimately, the reason
these constraints remain first class is simply that the con-
straint surface I is preserved by the dynamical evolution
generated by the Hamiltonian which, in turn, is built out
of the constraints. The presence of these first-class con-
straints guarantees the elimination of (X,P ) as dynami-
cal degrees of freedom. As mentioned previously, we
should also reduce the phase space by the action of the
group Conf(M, g). We will return to the action of this
group on the phase space in the next section.

mulations of a trivial theory, differing only by whether
the gauge degrees of freedom are frozen by (gauge-fixed)
second-class constraints, (4.63), or by working on the
space of orbits of a symmetry group [Conf(M, g)] which,
as we shall see, is projectively represented on I .

V. TRANSFORMATION GROUPS

We are now able to evaluate the status of the three
transformation groups listed in Sec. I. Using the
equivalence between tensors and densities in one dimen-
sion, it is easy to verify that all elements of the Hamil-
tonian formalism are covariant/invariant under the spa-
tial diffeomorphism group [Diff(S')]. As for the space-
time diffeomorphism group Diff(M), we have seen how
its Lie algebra is represented on the phase space I"'.
That diff(M) is also represented on I is guaranteed by the
relation

D. Relationship between Secs. IV B and IV C
[H (o. ),HP(o. ')]=0 . (5.1)

The action functional (4.62) is also appropriate for the
Hamiltonian formulation of the variational principle of
Sec. IVB provided one supplements the equations com-
ing from varying (4.62) with the original Hamiltonian
and momentum constraints (evaluated on I )

h=O=h] . (4.63)

It can be checked that the time evolution generated by
the Hamiltonian H(N) preserves these constraints in
time. This is a consequence of the relation (4.59) and the
fact that if

f"V„V',/=0,
(here we use the connection compatible with f) then

V t'b=O
a

(4.64)

(4.65)

From the point of view of Sec. IVB, the constraints
(4.51), which govern the elimination of the auxiliary field,
represent a pair of gauge-fixing conditions. Consistent
with this interpretation is the fact that the constraints
(4.63) are second class. Thus, using h(+~ smeared with
vectors N, M on the circle,

[ h( +)( N)&h(g)( M)]=+ Ii(+)(L~M)+ F(N&M)

where

(4.66}

+'F(N, M) =+2 —(' —'Di ' —'DiN) ' +—'D, M . (4.67)s'
Closure of the constraint algebra is broken by the pres-
ence of the "anomalous" term I'. This term is identical
to the Diff(S )-invariant Schwinger term in the quantum
algebra of normal-ordered energy-momentum densities of
a massless scalar field on a fixed cylindrical background. '

The presence of covariant derivatives in (4.67), rather
than ordinary ones, is necessitated by the fact that the
smearing fields X, M must be vector fields on the circle.

The extended phase space of the parametrized Hamil-
tonian formalism thus allows the two variational princi-
ples of Secs. IV B and IV C to coalesce. More precisely,
the two variational principles are simply alternative for-

Equation (5.1) holds by virtue of the explicit time depen-
dence of the super-Hamiltonian (4.60), which is needed to
help cancel the "anomaly" generated by the energy-
momentum Aux. Thus the functions

H(V)= f,V [X(o)]H (5.2)

f tab 0

So, forming the covector
~ bj, =U t,b,

(5.3)

(5.4)

where U' is a conformal Killing vector,

I.„f.b =nf.b; (5.5)

then, by virtue of (4.65) and (5.3},j, is divergence-free.
Thus the quantities

j(v)= f do f' m'j, , (5.6)

provide a homomorphism from diff(M) into C (I,R}.
Alternatively, the algebra of the functions (4.60), (4.61) is
precisely the 1+ 1 hypersurface deformation algebra
(without center).

The spacetime difFeomorphism group enters the theory
as a dynamical group: the functions (5.2) are the Hamil-
tonians of the theory. Similarly, the conformal group,
Conf(M, g), can also be treated as a dynamical group by
replacing V in (5.2) with a conformal Killing vector. '

As shown in Ref. 13, in two dimensions Conf(M, g) is just
big enough to generate all dynamical evolutions. Rather
than represent Conf(M, g) (or rather, its Lie algebra) as a
subgroup of Diff(M), it is more interesting to study its
status as a symmetry group for the theory. More precise-
ly, is there an action of Conf(M, g) on solutions
(P(o', r), P(o', r)) that leaves fixed the embeddings, while
generating a new solution to the field equations? That
the answer is in the a%rmative can be seen by examining
the efFective energy-momentum tensor (2.8). We have al-
ready made note of the relations (4.64), (4.65). It is easy
to see that if (4.64) holds, then we also have
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where the integral is over a spacelike slice of M, are con-
stants of motion. However, the function (5.6) is nothing
but the energy-momentum fiux (4.59) smeared with a con-
formal Killing vector restricted to an embedding. Thus
the functions on I,
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h(v) =f,v [X(o )]h (5.7) APPENDIX A

are constants of motion, i.e., have vanishing Poisson
brackets with the Hamiltonian

[h(v), H(N)]=0 V N (5.8)

and

=
—,'(X+, ) 'v+[X+]( P+2K, +—P, )

+ —,'(X, ) 'v [X ](P —2K, +P, )

+v+ +[X+)+v [X ] . (5.9)

The portion of (5.9) containing the undifferentiated com-
ponents of v is precisely the dynamical evolution gen-
erated by

H(v) =f,v H (5.10)

and hence corresponds to the Lie derivative of P along
v . Thus, generalizing to an arbitrary coordinate system,
we have

To uncover the canonical transformation generated by
(5.7},work in the null coordinates on M, then

v
+—=v —(x —

)

In the Hamiltonian description of a generally covariant
system one typically encounters "pure gauge, " or kine-
matic, variables that are signaled by the presence of con-
straints. Io one form or another, these redundant vari-
ables represent time and, for 6eld theories, space also.
Thus, in the usual treatment of the relativistic point par-
ticle, there arises a constraint: the mass-shell condition.
Correspondingly, there is a kinematic phase-space pair:
the time in a given Minkowski frame and its conjugate
momentum which, via the constraint, is given the mean-
ing of energy as measured in that frame. A completely
analogous situation arises for the relativistic string'
where now the kinematic variables represent spacelike
embeddings and their conjugate momenta.

It is tempting to suppose that one can extract the
"many-fingered time" canonical pairs from the phase
space of any generally covariant system, e.g. , general re-
lativity, although in this theory one has never been corn-
pletely successful. The simplicity of two dimensions does
allow a successful extraction of the kinematic phase-
space pairs for induced gravity based on the action (3.1).
As we have seen, this theory has no (field) degrees of free-
dom so we expect that the theory should be completely
kinematic, i.e., solely a theory of embeddings. Thus con-
sider the transformation'

5,$=L„/+V, v' . (5.11)

[h(v), h(w)]=h([v, w])+F(v, w), (5.12)

The transformation (5.11}is easily recognized to be the
natural change in a conformal factor due to a conformal
isometry. The presence of the inhomogeneous term V', v'
is responsible for the appearance of a center' in the alge-
bra of the associated canonical transformations:

(y II 'P IIy) (T Pr'S Ps)

y 'y i= —Ps+(},ln[(S, )
—(T, ) ]+—,'T, ,

yHy= —S 1,
S1+T1

H = —P ——'S +BinT 2, 1 1

, 1 , 1

(A 1)

(A2)

(A3)

(A4)

where

v+ u+
F(v, w) ='+'F

X+ ' X+ X 1 X

If the spatial manifold is R' rather than S', this is a
canonical transformation. We will deal with the compli-
cations of a "closed universe" below. Notice that the
transformation is well defined only if

which follows directly from (4.66) and

hp =+(X,) 'h(+)

(5.13)

(5.14)

(S i
)' —(7'

i
)'& 0

which implies

(A5)

(A6)

(see Ref. 12 for a coordinate-independent expression of

F (v, w) can be verified to be a constant of motion, i.e.,
embedding independent, so F represents a central exten-
sion of conf(M, g). We conclude that, as is natural for a
conformal factor, the conformal group is projectively
represented as a symmetry group on I . Using this sym-
metry to reduce the phase space leads to a theory with no
dynamical degrees of freedom.

h =T1Pg+S ]P~,
h1= T,P~+S,Pq .

(A7}

(A8)

These are precisely the super-Hamiltonian and super-

This inequality can be viewed as a restriction on the aux-
iliary field provided y 11~&0.

In terms of the new variables the functions (4.9) and
(4.10) become



2596 C. G. TORRE

momentum describing the kinematics of hypersurface de-
formations when the embeddings are registered in a con-
formal coordinate system. '

For spatial topology S' the transformation (Al) —(A4)
is not canonical owing to the existence of a kernel for 8&.
Thus, when we try to integrate the transformation, in
particular (Al) and (A3), there is an unspecified integra-
tion constant in (A3) and a missing mode for Ps in (Al.).
The origin of this difhculty in geometric terms is as fol-
lows. The function S is to define a map between circles.
As we must work in local coordinates, there must be a
preferred point, i.e., where we must make an
identification to produce the circle. However, there is no
way to extract a preferred point from the phase-space
data since, in general, such a point does not exist. If
space is topologically R ' this problem does not arise be-
cause the preferred point can be taken at infinity. A re-
lated feature of (Al) —(A4) is that there is no way to in-
corporate the constant mode of lny into the embedding
variables. Thus, strictly speaking, one mode of the
metric is dynamical. In the absence of matter fields, then,
we are one mode short of identifying the phase space I"
with the cotangent bundle over the space of embeddings.
This missing mode, if it existed, would represent a choice
of origin on the circle.

A remedy for this situation can be found in Ref. 13.
The idea is to supplement I" with one additional phase
space pair, denoted (q,p), which is rendered trivial by an
extra constraint @=0. This extra set of variables pro-
vides the gauge degrees of freedom necessary to describe
the choice of origin. If gravity is coupled to matter, one
can use a canonical pair from the matter sector to play
the role of (q,p). However, from the above geometric in-
terpretation, one expects some di%culty in isolating suit-
able matter variables as they would have to provide a pre-
ferred choice of origin on a given slice.

the Poisson brackets [, ] defined with respect to the in-
duced symplectic structure on I are defined in terms of
the Poisson brackets [, )"of I "by

[ A, B]= [ A, B]" [A,—y ]"D P[yp, B)",
where A, B E C "(I"',R ), and

(83)

The brackets on I are usually called the "Dirac brack-
ets t~18

Computing the matrix D for the constraints (4.51)
with

Xi=Co X~=Py+2&t (84)

we find

(85)

Using (85) in (82), it is straightforward to verify that the
Dirac brackets for the remaining phase-space variables,
i.e., the coordinates of I, are identical to their Poisson
brackets. Thus, for a, b, E C "(I,R),

[a,b)=[a,b]" . (86)

APPENDIX B

We are interested in computing the symplectic struc-
ture induced on the submanifold I C I"', which is defined
by the constraints (4.51). In general, given a symplectic
submanifold I of a phase space I"' specified by the van-
ishing of a set of functions,

(81)
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