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New variables for gravity: Inclusion of matter
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The Lagrangian and Hamiltonian formulations of general relativity in terms of soldering forms
and self-dual connections are extended to include matter sources and the cosmological constant.
For matter sources we consider minimally coupled Klein-Gordon fields, complex- and Grassmann-
valued Dirac fields, and Yang-Mills fields. Somewhat surprisingly, in spite of the derivative cou-

pling in the spin-half fields, the use of only the self-dual part of the connection as a basic variable
does not lead to spurious equations or inconsistencies. Furthermore, as in the source-free case con-
sidered earlier, all equations of the theory are polynomial in terms of these variables. Therefore, the
framework has several potential applications especially to the nonperturbative canonical quantiza-
tion program.

I. INTRODUCTION

In this paper we continue the development of a nonper-
turbative approach to canonical gravity. (For a review,
see Ref. 1.) The first step in this program was a reformu-
lation of general relativity. ' The key idea there was to
perform a' canonical transformation on the gravitational
phase space to pass on to new variables in terms of which
the basic equations of the theory simplify considerably.
To see how this arises it is convenient to shift the per-
spective slightly and begin with complex general relativi-
ty. That is, let us first consider complex four-metrics on
a real four-manifold JM, , which has the topology of X X lR,

for some three-manifold X. Then, the new canonically
conjugate pair (o '„,A,„)consists of a soldering form
o '~ (of density weight 1) for SU(2) spinors on X, and a
connection one-form A,z, with values in the
(complexified) Lie algebra of SU(2). The soldering form is
in essence the square root of the three-metric whi1e A, z
represents, in any solution to field equations, a potential
for the self-dual part of the Weyl curvature. It turns out
that the constraint functionals as well as the Hamiltonian
of the theory are polynomial in these variables. To obtain
real —Euclidean or Lorentzian —relativity one has to re-
strict oneself to the appropriate "real section" of the
complex phase space. This is accomplished by imposing
suitable reality conditions. These conditions are again
polynomial: they just require that the (density-weighted)
three-metric —tro. 'o. constructed from o. '& and its
Poisson brackets with the constraint functionals be real.
In the canonical quantization program, one can first ig-
nore the reality conditions, solve the quantum con-
straints, and then incorporate these conditions as
Hermitian-adjointness relations on the appropriate opera-
tors on the Hilbert space of physical states. Considerable
progress has been made in solving the quantum con-
straints exactly (both in quantum cosmology and full
quantum gravity ) because of simplicity of their expres-
sions.

The general framework involving new canonical vari-
ables was first obtained using Hamiltonian methods indi-

cated above. However, a manifestly covariant Lagrang-
ian formulation was soon given independently by Samuel
and by Jacobson and Srnolin. (See also the Appendix of
Ref. 9.) This formulation is better suited for inclusion of
matter terms. For, in the Lagrangian formulation, one
has only to choose the basic dynamical variables and
their couplings. Given the source-free Lagrangian for-
mulation and general facts about gravitational coupling,
this is a relatively easy choice to Inake. In the Hamiltoni-
an formulation, on the other hand, one has to guess the
appropriate canonical transformation and this becomes
rather complicated once Dirac fields are brought in.
Therefore, we shall use the work of Samuel, Jacobson,
and Smolin as our point of departure. The purpose of
this paper is to extend their framework by including
matter sources and to analyze the resulting algebra of
constraints and Hamiltonians. We shall find that the key
features of the source-free framework are preserved in the
extension. More precisely, we shall see that the con-
straint functionals, the Hamiltonians, and the reality con-
ditions continue to retain their polynomial form in the
basic canonical variables for matter and gravity and that
the close relation with Yang-Mills theory also continues
to hold. Consequently, one can continue to borrow tech-
niques from Yang-Mills theory and QCD to analyze
physical predictions of general relativity and quantum
gravity. '

We begin, in Sec. II, by introducing the basic fields and
the Lagrangian on a four-manifold AL, topologically
X XR. As in the source-free case, we use a first-order
formalism and express the gravitational part of the action
in terms of the four-dimensional SL(2,C) soldering form,
o'z ~, the unprimed spin (or "internal" ) connection,

, and a possible cosmological constant A. As in
Ref. 8 we restrict the soldering form to be anti-Hermitian
from the beginning so that the space-time metric will al-
ways be real [with signature ( —+++)]. The matter
fields consist of minimally coupled, massive Klein-
Gordon field p, massive Dirac field (g",rl„), and Yang-
Mills connection one-form A, (with an arbitrary inter-
nal gauge group). It is easy to extend the framework to
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include suitable interaction terms between Klein-Gordon,
Yang-Mills, and Dirac fields and to allow several distinct
fields of any given spin. In particular, one could replace
the real Klein Gordon field by a Higgs multiplet and/or
let the Dirac field have an additional, Yang-Mills internal
index. As in the source-free case, our total action is com-
plex. One would a priori expect that this would lead to
twI'ce as many equations as one wants. In the source-free
case, the extra equation turns out to be simply the Bian-
chi identity. We shall show that the situation remains
unaltered despite the fact that the Dirac field now cou-
ples to the complex-ualued self-dual connection
Thus, the main result of Sec. II is that, even though our
action depends only on the self-dual part of the spin con-
nection, its variation does not lead to spurious equations
of motion.

In Sec. III we carry out the variation explicitly and
write down the resulting equations of motion in a space-
time language. We find that while the Klein-Gordon and
Yang-Mills equations are the expected ones, the Dirac
equation contains a cubic term in the spin- —, fields. This
is not surprising: since we are using a first-order formal-
ism, one would suspect that the outcome would resemble
the Einstein-Cartan theory rather than the minimally
coupled Einstein-Dirac. However, it is not a priori clear
that our theory is equivalent to the Einstein-Cartan
theory since, unlike in the usual Palatini formulation, our
Lagrangian depends only on the self-dual part of the spin
connection. Given any solution to the field equations,
however, we can extend the connection to primed spinors
and vectors by requiring that it be real and annihilate the
space-time metric. Then, the connection develops the
standard torsion terms of the Einstein-Cartan theory.
That is, as far as solutions to the classical equations of
Inotion are concerned, our Lagrangian is equivalent to
the standard first-order Einstein-Cartan Lagrangian.
Now, it is well known" that the Einstein-Dirac theory
can be recovered in a first-order framework by adding a
quartic term to the Dirac Lagrangian. We show that this
is also the case for our self-dual Lagrangian by exhibiting
the required quartic term.

One often uses Grassmann-valued fermion fields in
path integrals. Therefore, it is desirable to let our Dirac
fields be either complex or Grassmann valued in the dis-
cussion of the action. This is straightforward to achieve:
the discussion of Secs. II and III is completely insensitive
to the choice. In the Grassmann case, one just has to be
careful with orderings and use consistently the ordering
of spin- —,

' fields specified in the paper.
In Sec. IV we pass to a Hamiltonian formulation

through a Legendre transform. All the canonically con-
jugate variables are now fields on the three-manifold X.
These are subject to four types of constraints: the graui-
tational Gauss law, the Yang-Mills Gauss law, the uector
and the scalar constraints. We exhibit these constraints in
terms of the canonically conjugate variables. They are all
polynomial. For the convenience of the reader we list
them in the form of a table.

In Sec. V we examine the Poisson-brackets algebra gen-
erated by these constraints. The gravitational Gauss-law
constraint generates internal rotations on (unprimed) spi-

nor indices and provides a representation of the Lie alge-
bra of local SU(2) transformations. Similarly, the Yang-
Mills Gauss-law constraint provides a representation of
the Lie algebra of local gauge transformations. A linear
combination (with "q-number coefficients") of the vector
constraint and the gravitational Gauss law generates
di8'eomorphisms on the three-manifold X. This combina-
tion will be referred to as the diQeomorphism constraint
The Poisson-brackets algebra of diA'eomor-
phism constraints provides us with a representation of
the Lie algebra of the difteomorphism group of X. Thus,
the Gauss law and diffeomorphism (or vector) constraints
generate a closed Poisson-brackets algebra which mirrors
the "kinematic symmetries" associated with (suitable
bundles constructed on) the three-manifold X. The
geometrical interpretation of these constraints also trivi-
alizes the task of computing their Poisson brackets with
scalar constraints. Thus, the only nontrivial computation
left is that of the Poisson brackets between scalar con-
straints themselves. As expected, the bracket is a vector
constraint whose coe%cient is a "q number. " Thus, al-
though the constraints are of first class, their algebra is
open in the sense of Becchi, Rouet, Stora, and Tyutin
(BRST).

Section VI discusses Hamiltonians. As is well known,
if X is compact, the Hamiltonian consists only of a linear
combination of constraints, basically because we do not
have a background space-time geometry. A more in-
teresting situation occurs in the asymptotically Bat case.
(For details, see, e.g. , Ref. 1.) Therefore, in this section
we restrict ourselves to a noncompact three-manifold X
and canonically conjugate fields thereon satisfying suit-
able boundary conditions. In this case, constraints only
generate those canonical transformations which are
asymptotically identity. In particular, they do not gen-
erate space-time translations. Thus, the Hamiltonians
are distinct from constraints. To obtain Hamiltonians
one must add suitable surface terms to constraints func-
tionals. As one might expect, these are precisely the sur-
face integrals that define the Arnowitt-Deser-Misner
energy-momentum. We conclude this section by discuss-
ing the reality conditions that must be imposed on the
basic canonical variables in order to ensure that we are
dealing with real general relativity. These arise as direct
consequences of equations of motion and definitions of
the canonically conjugate variables. They are also polyno-
mial in the basic uariables.

Our conventions are as follows. Throughout we use
Penrose's abstract index notation. ' The signature of the
space-time metric is ( —+++). Usually, the stem letters
of various fields and/or their index structure are used to
distinguish between space-time, "four-dimensional" fields
on M, and spatial "three-dimensional" fields on X. Thus,
while g,b and 0'z are the space-time metric and the
corresponding SL(2,C) soldering form on M, q,b, and
cr'z are the spatial metric and the SU(2) soldering form
on X. When there is a possibility of an ambiguity, the
"four-dimensional" fields carry an explicit prefix 4.
Thus, A, z is the space-time connection while A, z is
its pullback to X. The torsion-free derivative operator
compatible with a'~ is denoted by V', while the one
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compatible with o'z is denoted by D. The derivative
operator on unprimed spinors, defined by the gravitation-
al self-dual connection A, A is denoted by 2) while that
defined by the Yang-Mills connection A is denoted by
D. The relation between the "four-dimensional"

SL(2,C) spinors and the "three-dimensional" SU(2} spi-
nors is as follows. Recall first that, given a Hermitian
metric, G„A ( =GA A ), the primed SL(2,C) spinors define
a Hermitian conjugation operation on the unprimed ones
via (g )„:=GA"gA. . Given a spacelike submanifold X
with a unit normal field n "":=0., n. ', we will choose
the required Hermitian metric to be G "=ii 2n "A.
Consequently, the "dagger" operation will satisfy:
(g ) "$A ~0; and [(g ) ]„=—gA. Finally, while in the
main body of the paper we have set 6 =c= 1, at the end
of Sec. III, we briefly indicate how to restore factors of G.
In the present framework they appear in rather unexpect-
ed terms so that care is needed in taking the weak-field or
strong-coupling limits. '

After this work was completed we learned that some of
the results presented in this paper had been obtained in-
dependently by other authors. Jacobson' has discussed
the coupling to Dirac 6elds brieQy, while S. Koshti
(private communication) has analyzed some features of
the coupling to Klein-Gordon fields.

II. SELF-DUAL ACTION AND REALITY OF EQUATIONS

Fix a four-manifold At, with topology X X R for some
three-manifold X. The total Lagrangian density XT on
Ari, will be a sum of several pieces, each of which is a sca-
lar density of weight 1:

+T +E ++C ++KG++D ++YM (2.1)

where ( o ) is the determinant of the inverse soldering
form and F,b~ is the curvature tensor of A, ~ . The
soldering form cr'„" defines a real four-metric g' of sig-
nature ( —+++) via g' =cr'AA o " and a (unique)
torsion-free derivative operator V which acts on
unprimed and primed spinors as well as tensor indices.
The connection 2) defined by A,„via
2), A, A. =B,A, „+ A, A A,B bears no relation to V at this

stage. Indeed, 2) can only act on unprimed spinors. It is
a somewhat remarkable fact that none of the essential
equations of the theory require the availability of a
specific extension of 2) to tensors or primed spinors.

Here XE is the gravitational part of the Lagrangian den-
sity, Xc is the cosmological constant term, and %KG,
XD, and XYM are the matter Lagrangian densities for the
spin-0 Klein-Gordon 6eld, the spin- —,

' Dirac field, and the
spin-1 Yang-Mills field, respectively. As in the source-
free case, we use a first-order framework for the gravi-
tational part. Thus, XE =—XE(o'A", A, A ) is a func-
tional of an anti-Hermitian soldering form a'z" and a
connection A, ~ which acts only on the unprimed spi-
nor (or, rather, internal) indices. (Note that, being anti-
Hermitian, o'AA satisfies cr '„„=—o'„„.) It is given
by

(oa A' 4F B)—(4o )oa A'ob 4y AB (2 2a}

Thus, although for computational convenience we may
occasionally extend 2) in an appropriate way, it should
be borne in mind that the framework does not require the
knowledge of any derivative operator on tensors or
primed spinors. The cosmological constant A contributes
via

(2.2b)

The Klein-Gordon and Yang-Mills Lagrangian densities
are the familiar ones:

(o', P):=4m( cr)(g' B,QB„rtp+p P ), (2.2c)

(o' ", A ):=—'("o)g"g tr F F (2.2d)

where tr denotes the trace over the (suppressed) Yang-
Mills internal indices. Finally, we shall take the Dirac
Lagrangian density to be

(Oa A' 4g B gA g
A'

+ A ~A')

+2(4 } a [gA'4~ gA (4cg ~ A)+A']

+
2

(2.2e)

where the spin- —,
' fields g" and ii ", can be either complex

or Cxrassmann valued. Note that XD contains derivatives
only of unprimed spinors and that these fields are
minimally coupled to gravity. This coupling is the same
as in Yang-Mills theory except that the "Higgs scalars"
are now spin- —,

' fields of one chirality; the Yang-Mills
internal index is replaced by the unprimed spinor index.
Note also that while all matter fields couple to o'„",
only the Dirac field couples to A, ~ . Because of this,
much of the conceptual and computational nontriviality
of our analysis lies only in the gravitational and Dirac
parts, XE and XD, of the total Lagrangian density XT.

Note first that while Xc, XKG, and XYM are manifestly
real, RE+AD is not, owing to the absence of the primed
spin connection A,„,the complex conjugate of A, z
This gives rise to the possibility that equations of motion
may not be real; i.e., the Lagrangian density considered
here may not lead to the familiar equations for the gravi-
tational and Dirac fields. Indeed, a priori, it is quite pos-
sible that the variation of RE+ED may give rise to
spurious equations which may even lead to inconsisten-
cies. Therefore, before proceeding with a detailed
analysis of the theory, let us make a detour to ensure that
the complex nature ofRE+ED does not give rise to such
unforeseen problems.

To analyze this issue it is particularly convenient to use
a general fact about variational principles. Let S(x',y )

be an action depending on two types of dynamical vari-
ables, x' and y . Solutions to dynamical equations are
extrema of S with respect to both x' and y . Let us sup-
pose that the equations BS/By =0 admit unique solu-
tions yo (x) for each choice of x ' so that the surface in the
x-y space representing the solutions to this equation can
be coordinatized by x '. Then the pullback,
S(x}:=S(x',yo(x)), of the action to the solution set has
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the property that its extrerna are precisely the extrema of
the full action S(x',y ). In our case, the role of y will
be played by the connections A, ~ and the role of x ' by
the remaining variables, o'z, g", g ", i) ", il", p, and
A„ that occur in XT. We shall first show that the ex-

trema of XT with respect to variations in A,„,i.e.,
solutions to the equations of motion of A, ~, exist and
are unique for each choice of the remaining variables.
Therefore, equations of motion for o'~" and for the
matter fields can be obtained by extremizing the pullback
ST(cr'~~, g", . . . ) of the full action to the space of solu-
tions A, ~ . We shall show that this pullback is real,
ensuring that equations of motion for o'„,P, and A,
are real, and those for g„and i) „are the complex conju-
gates of the equations for g

" and ri" .
Let V denote the unique torsion-free connection com-

patible with cr'„". Then ( 2), —V, )A, ~= C,~ Aii for
some C,„.Hence, varying the total action

ST.= J d~x&T(o, A, P, "A,g, f, ri, g) (2.3)

m A' I

(cr Mg—k~—" +o +g kM" ) (2.4»
2

with respect to A, „keeping all other fields (including
o'„" ) fixed is equivalent to varying ST with respect to
C,~ . The corresponding equation of motion for C,~

(or A,„),5ST/5 C,„=O,yields

2u ~ o. ~q Caw +2c w o z'w C,[m ~' a] 4 ~ [m A' a] 4 A

with

k AA'. — &i/2(g A'gA —A A') (2.4b)

This algebraic equation has the unique solution

4C gg l k( A 9)D
a 4 D'~a (2.5)

Thus, given any choice of field configurations cr'z ",g",
and il ", the connection 2) (or A,„)is uniquely deter-
mined. Therefore, to obtain equations of motion for the
remaining fields, we need only consider the reduced ac-
tion Sz, obtained by substituting the solution (2.5) for

in ST. Simplifications occur only in the gravita-
tional and the Dirac parts of ST. The curvature tensor
F,i,~ in Xz can now be expressed in terms of the curva-

ture tensor of o'„and the field k defined above,
while the connection 2) in XD can be replaced by the
torsion-free connection V compatible with o'z and
k "". The reduced gravitational action is given by

L~=( o )
—

—,
' R ——V, k' —

—,
' k'k,3l

(2.6a)

where R is the scalar curvature of the four-metric
g'"=o'z„cr "" and k' =cr'„„k. "",and the reduced
Dirac action, by

—( o )o'„~ [g" V, g
—(V,g" )g"+il V, i)" —(V, i) ")ii" ]+( cr)im(ri„g" vari„—)+ ,'( o )k—'k,

+—( cr)V k' .a (2.6b)

Note that Xz now depends not only on the gravitational
variable o'~ but also on spin- —,

' fields because we have
solved for A, z in terms of the soldering form and
Dirac fields. Since Xc, XicG, and XvM do not involve

, the reduction has no effect on these terms. Com-
bining all terms, we now have

ST= Jd x(XE+XD+Xc+XicG+XvM) . (2.6c)

Since the vector field k' is real by its definition, each term
in the integrand is manifestly real, except for a total
divergence (i/4)( o—)V, k'. Since total divergences do
not affect equations of motion, we conclude that equa-
tions of motion arising from (2.6c)—and, hence, from
(2.3)—for g,b, P, and A, are all real and those for the
spin- —,

' fields g" and i)" are complex conjugates of the
equations for g

" and g . Thus, even though ST is com-
plex, it does not give rise to any spurious equations of
motion.

III. EULER-LAGRANGE EQUATIONS

and

g' V, Vbp P /=0

D, 4F'—:V, "F' + [ A„F' ]=0

(3.1)

(3.2)

where, as before, V is the unique torsion-free derivative
operator compatible with the metric g' . Variations with
respect to the Dirac fields yield

—a

2

—('o4~ =o
2

&,(o '~„g" )
— —( o)9„=0,

2

(3.3)

form and matter fields.
The variation with respect to the scalar field P and the

Yang-Mills potential A, is straightforward and yields
the expected equations for these fields:

Let us now vary the total action ST to obtain the
Euler-Lagrange equations of motion for the soldering

—a W —a ~~ 4

2
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To compare these equations with the standard ones, let
us express 2) in terms of V and the spinor fields using the
equation of 2) obtained in the previous section. We then
obtain

Note that E,b(KG} and E,b(YM) are the standard stress-
energy tensor s of the Klein-Cxordon and Yang-Mills
fields. The field equation for m'A now becomes

H,b+Ag, b =8nE,b(matter) . (3.7)
g 3l A le

v2
(3.4}

I.et us now focus on the gravity-spin- —,
' part, SE+SD,

of the total action ST. We can simplify (3.7) further by
substituting for 2) and F,bA in terms of cr'A" and
Dirac fields. We have

and the complex conjugate equations for g and rl ",
where, as before, k, = i&—2cr,""

(gA, gA
—gAriA, ).

These are not the standard minimally coupled spin- —,
'

equations owing to the presence of terms involving k, .
Since these terms are cubic in spin- —,

' fields, (3.4) are not
even linear in Dirac fields. We will return to this point at
the end of this section.

To obtain the gravitational field equations, we have to
vary ST with respect to o'AA . Since each piece in Sz de-
pends on o'AA. , let us carry out the variation term by
term. We have

5S~
(4~ )(2~b A'4F AB

H4b=Ggb —('~g4b(k k +8iVck )+ V—kb

+ e,b
— V kd kk—b (3.8a)

8rrE, b(D)=&2 crbAA [g" V, g —(V, ri ")ri" ]

+—,'g,b(k'k, 4i V,—k') ,'k, k—b—, (3.8b)

G — ~ [g A'V gA (V g A'g A+~ AV +A'
2

where G,b is the Einstein tensor of the metric g,b.
Hence, if we had only the Dirac field as the matter
source, the field equation for g' would have been

d D' b 4F DB AA')
D BD' db ~a

A(4 )
AA'

(3.5a)

(3.5b)

~ A)+A']

+ l6ggb k'k~ —
4 e~b V ~ kd (3.9)

1 AA'(gbdg Pg P+p2gi)] (3 5c)

=2( o )tr(c7 ""g'"tr F„Fbd
AA'

A A' cd mnt 4F 4F ) (3 5d)

—Q2(4~) g
A'4~ gA (4~ —A) A'

AA'V kb
2 2

(3.5e)

5SE
H b ( ~} ~bAA' (3.6a)

and

4 —1 ~SmatterE,b (matter ) = f 8~( cr ) ] cr b„„
AA'

(3.6b)

[Here, in the last equation, we have used the equation of
motion (3.4) for spin- —,

' fields. ] Thus, the Euler-Lagrange
equations for o'A say that the sum of the right-hand
sides of these equations should vanish. The numerical
factors in front of the matter terms have been chosen to
agree with the conventions for stress energy in the litera-
ture. " Set

where we have expressed the term (i/2)V, kb in terms of
Dirac fields. We see that, as expected from our discus-
sion in the previous section, the right-hand side is mani-
festly real. Unfortunately, it is not manifestly symmetric.
However, since the equations of motion obtained from S„
are the same as those obtained from the reduced action
ST of (2.6), modulo equations of motion for matter fields,
(3.9) is just the result of setting the variation of Sz with
respect to g' equal to zero. Thus, equations of motion
for matter ensure that the right-hand side of (3.9) is in
fact symmetric in indices a and b.

Since the equations of motion (3.4) for spin —,' fields
contain a cubic term, and since the e6'ective stress-energy
term for spin —,' fields [i.e., the right-hand side of (3.9)]
contains a quartic term in these fields, the equations of
motion obtained above are not the standard Einstein-
Dirac equations. This is not surprising since we are using
a first-order formalism and since the usual Palatini first-
order formalism leads to Einstein-Cartan theory rather
than the standard Einstein-Dirac theory. In the Palatini

, framework one can just add a quartic term to the action
to recover the Einstein-Dirac equations. %'hat is the sit-
uation in the present case? Let us return to the reduced
action Sz of (2.6). Sr contains precisely one term,
+ —,', k'k„ involving Dirac fields, which fails to be qua-
dratic in these fields. Therefore, one would expect that
the removal of this term from S„would lead us to the
Einstein-Dirac theory. This expectation is correct. Set

ST=ST—
—,', Id x( cr)k'k, . (3.lo)

Since the added term does not involve A, A, the solu-
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tion (2.5) for the equation of motion of A, z remains
unaffected. Therefore, ST is obtained from ST simply by
removing quartic terms, "k'k„ from ST. The new re-
duced action ST is precisely the usual Einstein-Dirac ac-
tion. The new equations of motion for spin- —,

' fields are
simply

l tie lPl„V,g = i1 a. and o'„„V,vl
2 2

(3.4')

and their complex conjugates, while the new equations
forg' are

G~b+Ag b oh~~ [g V, g (V,—g )g +rl V, rl
2

4e,b—'"V,kd +8lrE, b (KG)+ 8lrE, b(YM ),
(3.9')

where, as before, E,b (KG) and E,b (YM) are the stan-
dard' stress-energy tensors for the Klein-Gordon and
Yang-Mills fields. Thus, if we had used ST as our total
action, we would have obtained the standard equations of
motion for all fields, including, in particular, spin- —, fields.
Note however, that it is only the action ST that admits a
direct extension to supergravity. '

A number of remarks are in order.
(i) As we have seen, the action SE+SD leads to the

Einstein-Cartan theory. Why then did we not encounter
torsion terms in the derivative operator? It is because we
have formulated the theory using only the self-dual con-
nection 2) which does not act on tensors. Nonetheless,
our description is complete and there is no compelling
reason to extend its action to tensors or unprimed spi-
nors. However, let us suppose that we do extend the ac-
tion by requiring that it be real and that it annihilate the
space-time metric g,b.- Then, the resulting connection
does admit torsion. The torsion tensor is, however,
governed entirely by the spinor fields: it is given by
T,b'= —2e~,b.'k, where e,b« is the unique alternating
tensor determined by the metric g,b, and k' (as before) is
the vector field determined by the soldering form and the
spinor fields.

(ii) Since it it is often convenient to let the spinor fields
be Grassmann valued while performing path integrations,
we have tailored our discussion of action to allow for this
possibility. Thus, all our results up to this point hold ir-
respective of whether spinor fields take their values in
complexes or Grassrnannians. In the latter case, howev-
er, one has to follow consistently the ordering we have
chosen for Dirac fields.

(iii) For simplicity we have set G=l in this paper.
However, since factors of 6 are reshufHed in the passage
to new variables, let us discuss brieAy how 6 would have
entered various expressions had it not been set equal to
one. In this framework 6 plays the role of the Yang-
Mills coupling constant. (However, since it is dimension-
ful, dimensions of A, z and I',b& in the gra-
vitational case are different from those in the Yang-
Mills theory. ) Thus, 2) has the expression

=B.g„+G 'A. „fall and 'F.» . is g~~~~ by 'F.»
=28(, Ab)„+G[ A„Ab]z . As a result, F,b„has
the dimensions of Lagrangian density. Since o'~ is di-
mensionless, the expression of the gravitational action
does not have a rnultiplicative factor of G. Since matter
fields have conventional dimensions there is no factor of
G whatsoever in the matter action, except through
(which appears only in the Dirac Lagrangian). Thus, the
only term in the action which has an explicit G depen-
dence is the cosmological term, which has to be multi-
plied by an overall factor of 1/G. In the absence of a
cosmological-constant term the only G dependence in the
entire action comes through the expressions of F,b„(in
Sz ) and 2) (in Si, ) in terms of "A,„

(iv) Why is there no surface term in the expression of
the gravitational action Sz? It is because we are using a
first-order formalism. Thus, in the expression of SE, we
have treated o'~ and A,„as independent variables.
In particular, while deriving the equation of motion for
A, ~ we keep A,„ fixed on the boundary (and o'„"

fixed throughout the volume). Therefore, there is no need
to add a surface term to obtain the correct equations of
motion from variations. In the second-order formalism a
surface term is essential: since the soldering form o'z"
is the only dynamical variable in this case, one is allowed
to keep only o'z —rather than both o'z and its
derivatives —fixed on the boundary while performing the
variations. How can we then reconcile the fact that, on
solving for A, ~, we obtained a reduced second-order
action ST without any surface term? The answer is that
the reduction procedure comes with a prescription on
how to do variations. For paths which lie entirely in the
solution set of 5ST/5 A, =0, fixing o'„" on the bound-

A'
ary automatically fixes certain derivatives of o'~ on
the boundary as well, so that a surface term is not needed
in the action for the variation to give the correct equation
of motion.

(v) We shall see in the next three sections that, in the
Hamiltonian description, the reality conditions, the con-
straints, and the Hamiltonians are all polynomial in the
basic canonical variables. Our Lagrangian, on the other
hand, depends nonpolynomially on o'„ through the
determinant ( o) of the inverse of cr'z". Samuel has
pointed out that in the source-free ease, this situation can
be remedied by using o.,„"as the basic variable in place
of o'z" . (See, e.g., pp. 88 and 89 of Ref. 1.) If we in-

clude matter fields, on the other hand, this strategy does
not work since the matter Lagrangian explicitly contains
the contravariant space-time metric. Is there an alterna-
tive strategy?

IV. 3+1DECOMPOSITION

In this section we introduce a foliation in the space-
time manifold JR and carry out a 3+1 decomposition of
the action to pass on to the Hamiltonian framework.

Let us introduce on At a smooth function t whose gra-
dient is nowhere vanishing and whose level surfaces X,
are each diffeomorphic to X. Let t' be a smooth vector
field on At with an affine parameter t, i.e., which satisfies
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0 AB:= '" O (A nB)A' ~ (4.1a)

This form is automatically Hermitian, (o'Az) =o'A~,
and trace-free, cr'A =0. It is also nondegenerate; it

I

t'V, t =1. Given a soldering form o'AA on A, with
respect to which each level surface X, is spacelike, denote
by n ' the future-directed, unit, timelike vector field
everywhere orthogonal to X, . Denote the induced,
positive-definite metric on X, by q,b (=g,b+n, nb), and
obtain the lapse and shift fields N and N' by projecting t'
into and orthogonal to X, ; t '=Nn '+N'. Using
i+2 n'o, AA(:=i+2 n AA. := GAA. ) as the Hermitian
metric for SL(2,C) spinors, we can identify unprimed
SL(2,C) spinors on JR with SU(2) spinors on X, and, at
the same time, introduce a dagger operation on these spi-
nors: we set GA gA =(g )„,the Hermitian conjugate ofA'

Using this identification we can now introduce a
soldering form a'A on SU(2) spinors:

defines an isomorphism between the space of second-
rank, trace-free Hermitian spinors g Az at any point of X,
and the tangent space to X, at that point. Finally, it
serves as the square root of the three-metric q,b on X, :
q' = —tro'cr . We can "invert" (4.1a) to express o'A"
in terms of o'A and n

a ~Z a B ao.
AA

= —i" 2o. ABn „.—n nAA

Finally, we note a useful identity

(4.1b)

A'
nAA nB (4.2)

which, in particular, implies that o As defined by (4.la) is
already projected into the three-surfaces X, .

We can now obtain a 3+ 1 decomposition of the action
ST. Let us begin with the gravitational part Sz. Using
(4.1b) in the gravitational Lagrangian density Xz and
substituting N '(t' N') for —n' we get

( o )0' "o ~ F " =("o )tr( —iV'2n'o F cr'cr —F )

=( cr)trI i&—2N 'o [X, Ab —2)b("A.t)] o' cr F—,b+i&2N '¹F,b], (4.3a)

where ( A t) denotes t' A,„;X,"Ab is the Lie deriva-
tive of A, A ~here internal indices are treated as if they
were scalars; Xl, :=q, 2)b is the pullback of 2) to the
three-surface; and where we have used the identity
t' F,b =X, Ab —2)b( A t). To further simplify this ex-
pression we define

o 'A:=(o )o'„and N:=(o)'N, . (4.4)

where (o ) denotes the inverse of det(o'A ). Then, in
terms of g—:det(g, „) and q=det(q, b) we have
( o ) =v' —g =NV'q =N(a ). (Note that, by convention,
a tilde over a tensor denotes a density of weight one and a

I

(4 )
a A' b 4F AB

BA' ab

=tr[ iV2a X,—A +i&2cr 2) ( A t)

+i+2Nao, b4F
¹

ao. b4F ] (4.3b)

Finally, we introduce pullbacks, A, A and I'abA, to X,

F,bA .=q, 'qb" F,d„. Then, (4.3) can be expressed in
terms only of "three-dimensional" fields:

I

tilde below a tensor denotes a density of weight minus
one. ) Using these fields we obtain

Sz= Jdt f d x tr[ —i&2o "X,A +bi&2o. "2) (bA t)+i&2N'.tr F,b No 'cr F,—b], (4.5)

where we have used the identity X,q, =0 to write
tr(o "X, Ab) astr(o X, Ab) in the first term. This is the
expression we were seeking. It is clear from its form that
if we use A, A as the "configuration variable, " apart
from a numerical factor, o 'A is the canonically conju-
gate momentum. Note also that time derivatives of A -t,
N', and N do not appear in the action. We shall see that
this continues to be the case even when the matter contri-
butions to the action are included. Therefore, they will
play the role of Lagrange multipliers in the theory. Their
variations will lead to the constraint equations. From
(4.5) one can also read off the gravitational contributions
to the constraint equations. We can repeat the above
procedure for matter fields. Let us begin with the Dirac
action SD. As in the gravitational case we have to re-
place spinor fields (g" and il" ) with primed indices by
the corresponding Hermitian conjugate fields:

(gt) = —g
A G A, and (g t) A = —ri G (4.6)

N(rr)~ 'A (g~)&2—),g"— —(cr )(gt) AX, gA

+ —(cr )( A:t)s "(g ) A g2

+ ~—( )N'(g )„2),g", (4.7)v'2
where, as before, the Lie derivatives treat internal indices
as scalars and Xl, :=q, 2)b. Transcribing this result for
(4g )o'A „.y" 2), ri

" and using the identity
=(gt)"(g )„we obtain

Using (4.1b) and (4.6) and substituting N '(t' N') for-
n' we obtain

(4~)~a g
A'4~ gA
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SD= t x — 2N0 o'z, —g g, g & ~ g '9
t

+i(o )(~A. t)~~[(g)'„g —(ry )„g ]+i (0 )N'[(g )„2),g (g—)g2), g "]
+N(cr ) im [g"q„—(g ) "(q )„]I . (4.8)

(4.10)

This is the desired form of the action. Again, apart from numerical factors, we can pick out [g, (o )(g„) ] and

[g ",(cr )(g~ ) ] as the canonically conjugate pairs and read oft' the contribution of Dirac fields to the constraint equa-
tions.

The treatment of the contributions due to the cosmological constant, the Klein-cordon and the Yang-Mills fields is
straightforward. The final 3+ 1 forms of these terms are

Sc = f dt f d'x N(cr)'A, (4.9)
t

Sico= f dt f d x(4m)[ N tr(—o 'cr )d, Pdi, P N'(—X,P N'd, —g) +N(o ) m P ],
t

SYM= f dt f d x N '(cr) tr(o 'o )tr X, A, —D, ( A. t) B—
X t a a X, Ab —Di, ( A. t) — B„b4 N"

(4.11)

where A, :=q, " Ab, D, :=q, " Db, and Bab
:=2q, 'qb "F,d. (B,& is the dual of the magnetic field of
A, . ) We can now collect the phase-space variables.
They are all represented by fields defined intrinsically on
the spacelike three-manifolds X, . We choose our
"configuration variables" to be A,„,p, g", il ", and A, .
Then, from the expression of the Lagrangian, it follows
that their canonically conjugate momenta are given, re-
spectively, by i&2o—'„,n:= (Sm )N. '—(X,P X~/), —

i(o)(g )—&, co&.=t'(o )(q )~, and

5SE5¹==i &2 tr(cr F ),

5SKa
a

Sc =0,
5N'

5SD

5N' (m~2), g"—+co„2),rl"),

YM
1 b c b= —

—,'g,„,tr(E B') [=—tr(E F,b)],

E':= 2N '(o ) —(trcr 'o )

X(X, Ai, —Dt, ( A t) —
—,'N B i, ) .

(If X is noncompact, these canonically conjugate fields
are subject to certain asymptotic fall-off conditions which
we will specify in the next section. ) Note that the La-
grangian also contains other variables: N, N', 3 .t, and

A t. However, since the time derivatives of these vari-
ables never occur, they play the role of Lagrange multi-
pliers. They do not obey any dynamical equations of
motion and we can fix their values by a gauge choice. We
now carry out variation of the action with respect to
these variables. The variation with respect to N yields

5SE 5SC

5N ' ' 5N
= —tr(cr 'a. F ), =(o ) A,

5N ' 16m
4mtr(o 'cr )B—,ctpdbg+ m. +4m(o ) p P

5S
i &2 cr '„—(S.ii2), g"+ waco)i,ill )

+(a) imp rt„ime "co—„,
5SYM

5N
=

—,'(o ) tr(o 'o ')tr(cr "a' ")tr(E,I,E,d+B,bB,d ),
where E,b is the dual of the Yang-Mills electric field.
The variation with respect to N' yields

5S~
C(cr, A;5, co, g, 7);E, A):= '=0, (4.12a)

5Sz-
C, (0, A;m, co, g', rt;E, A):= . =0,

5Na
(4.12b)

5S~C„(o,A;5., co, (,q;E, A):= „=0,
5('A t)".(4.12c)

5S~
C(o, A;rr, co, g, rt;E, A):=

~
=0,

5('A t)
(~ 12d)

where p,&, is the (c-number) Levi-Civita form-density.
Next, we carry out the variation with respect to A t.
The only nonzero terms are

SE
i +22)bct s5('A t)„

5SD = —
—,
' (Ks g"+ n "gii +cos rt "+co "g~ ) .

5('A t)„
Finally, the only nonvanishing variation with respect to
"A.t comes from the Yang-Mills action:

5SYM =Dba5('A t)

Summing each of the above variations and setting the
results equal to zero, we obtain four constraint equations:
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TABLE I. Gravitational and matter contributions to constraints.

Lagrange
Constraint multiplier Gravity Dirac Klein-Gordon Yang-Mills C.C.

CAB

C,
4g AB

~a

t ~ 4A

i&22)bO- AB

i&2 tr(o. "F,b )

—tr(o. 'o. F,b)

~( A kB)+~( A 9B(
A—{m„2),g"+co„2),g )

l v 2 cT g (77i(gl~g +cilia(2)g7) )

+im (crag "g„—5. "co„)

0
—m(), Q

—4m tr(o 'o )(),QB (I)

+ +4mo (u (l(
(N. )

16m
0

0
——'g ab, tr(E 8')

1 tr(o 'o. ')tr(o. cr )8(~')
X tr( Eab Ecd +Bab Bcd )

0 E m

C=0 is called the scalar constraint, C, =0 is called the
Uector constraint, and Cz =0 (C=O) is called the Ein-
stein (Yang-Mills) Gauss-law constraint. For the con-
venience of the reader we have collected the contribu-
tions to these constraints from the various parts of the ac-
tion in Table I. The expressions of the Gauss-law and
vector constraints are manifestly polynomial in the basic
canonical variables. In the expression of the scalar con-
straint, on the other hand, the Yang-Mills contribution,
as written, fails to be polynomial due to the appearance
of the multiplicative factor (o ) . Fortunately, however,
since

2== 1
(o ) =q = — il,b, tr(o 'o o. ')

is polynomial in o. ', we can just multiply the scalar con-
straint equation by ((r ), thereby restoring the polynomial
character of all constraint equations. [Note, incidently,
that, had there been a relative multiplicative factor of (o )

or (o. )
' between matter terms, this procedure would

have failed. ] Thus, the presence of Yang-Mills fields
leads us to scalar constraint with density weight four.
Therefore, in the presence of Yang-Mills fields, a minor
modification occurs in the discussion of dynamics: the
lapse function must now be a density of weight minus
three. In the absence of Yang-Mills fields we can proceed
in the same manner as in the source-free case and contin-
ue to use a lapse with density weight minus one.

(4.13)

V. CONSTRAINT ALGEBRA

'2

o '= 1+ ' e'+O(1/r )
I'

In this section we shall discuss the Poisson-brackets
algebra generated by constraints. To compute these
brackets in the case when X is noncompact, one needs to
keep track of the precise boundary conditions satisfied by
the fields since several integration by parts are involved.
(See, e.g., Chap. II.2 in Ref. 1 for a general discussion of
this issue. ) Therefore, let us begin by specifying these
conditions. In the case when X is compact, one can just
ignore these conditions and the subsequent discussion of
surface integrals.

For simplicity, let us suppose that X has only one
asymptotic region, i.e., that the complement of a compact
subset of X is di6'eomorphic to the complement of a
closed ball in I . Let e ' be a Oat soMering form in this
complement. Then, for reasons explained in Refs. 1 and
3, the gravitational variables o. 'z and A, ~ will be re-
quired to satisfy

e 'A, =O(1!r ),
A, + —,((trA e )e, =O(1/r ),

where r is the radial coordinate defined by the Hat metric
((I,b( = —tre, eb ) and where the fall-off refers to the Carte-
sian components of fields in the chart defined by this Aat
metric. For matter fields we will simply require that all
fields and their canonically conjugate momenta should
fall off as 1/r . This will in particular ensure that the
stress energy will fall off as (1/r ). These are not the
weakest conditions necessary for our framework. How-
ever, these are the simplest to work with. (We can, in
particular, weaken the conditions on the Yang-Mills po-
tential to allow a nonzero magnetic charge by a more
subtle choice of conditions. ) Note that these boundary
conditions are adapted to asymptotically Minkowskian
space-times. That is, we are considering the sector of the
theory for which Minkowski space can be thought of as
the "classical vacuum. " Thus, from now on, we will set
the cosmological constant to zero. In the spatially non-
compact situation now under consideration, we could
also have used conditions which refer to asymptotically
anti —de Sitter space-times. ' We expect that the main re-
sults of this and the following section will go through in
that case as well.

The phase-space I will now consist of fields satisfying
these boundary conditions (in addition to the obvious
algebraic conditions on their indices). The symplectic
structure on I is specified by the following fundamental
(nonvanishing) Poisson brackets:

l
Io '„g(x), Ai, (y)I = — 5(x —y)5b'5(„5~)

2

t ~„(x),g (y) I =5(x y)5„~—,

t%(x),P(y) I =5(x —y),

I fl '~a(x» Ab (» I =5(x —y)5b'5 ~s

where boldface uppercase latin indices ( A, B, etc.) are the
internal indices of Yang-Mills fields.

Next, we define constraint functionals by smearing the
left-hand sides of constraint equations (4.12) with suitable
fields. Let us set
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Civ=i&2 f d x NC,
X

C~= —
— x N'C, , (5.2b)

C~ N
=f d x tr(NC+ NC), (5.2c)

X

where X, X—:X', N„, and NA are the smearing fields.
Recall that, to qualify as generators of canonicil transfor-
mations, functions on phase space must be differentiable.
It turns out that, to ensure that the constraint functionals
have this property, one must impose boundary conditions
on the smearing fields as well. (See, e.g., Refs. 1 and 3.)
It turns out that the appropriate condition is that they
must go to zero at infinity [as (1/r)].

We- now wish to find the canonical transformations
that these constraint functionals generate. To do this we
use the fundamental Poisson-brackets relations (5.1) and
the properties

(5.2a)

{A,Bj=—{B,Aj,
{A, B+ACj = {A, B j+A{A, Cj,
{A,BCj=B{A,Cj+{A,BjC,

(5.3a)

(5.3b)

(5.3c)

obeyed by all Poisson brackets.
Let us begin with the Gauss-law constraints. For con-

ciseness we will treat the gravitational and the Yang-
Mills Gauss laws simultaneously. The gravitational part
can be recovered by setting N equal to zero in (5.2c) and
the Yang-Mills part by setting X=O. An integration by
parts of (5.2c) yields

C~N= f d x(i&2tr{(c)bN+[Ai„N])o

N~ (5ii—g"+cobg'")

—tr{(c)i,N+[ Ai„N])E "j ) . (5.4)

Therefore, (5.1) and (5.3) immediately imply

{CN,N&o A j [N&o ]rt & {CN,N& ~aA j +»NA

{Cx,N ~~ j=N~ ~a {C~,N ~~ j=N~'~a

{CN,N 0"j= —O'Na" {C~gn"j = n—'Na" (5.5)

{C~N&pj =0, {C~N&~j —0,
{CN,N E j [N E ]A {CX,N A A j D NA

Thus, the infinitesimal canonical transformations gen-
erated by CN N are precisely the infinitesimal rotations on
SU(2) spinor indices by Nz and infinitesimal rotations of
Yang-Mills indices by N& . This geometric interpreta-
tion gives us immediately all the Poisson brackets be-
tween the Gauss-law and other constraints. In particu-
lar, we have

x, N& ~ aej
=

(iv ~)(N ~)
(5.6)

C- = I(:-—f d x tr[N'( A, C + A, C )] (5.2d)

(i.e., we have eff'ectively set N„=N'A, ~
N A

=N' A, A ). To compute the infinitesimal canonical
transformations generated by this new constraint, it is
convenient to rewrite it. We have

(The brackets between the vector and the Gauss-law con-
straints is also zero. ) It turns out' that our vector con-
straint itself does not have direct geometrical interpreta-
tion. A combination of this constraint with the Gauss
law does. I et us therefore define a new constraint func-
tional C~ as

Cz= f d x[ i&2tr(N—'cr F,i, )+¹(S~B,g"+co~d, ri )+N'n "d,Q+tr(N'8 F,b)+i&2tr(N'A, 2)bcr )

—tr(N" A, Di, E )]

=f d x[ i&2tr(o—Xg Ab)+(Fr„Ã~g" +m„Xyri")+5XgP+tr(E XgAb)],

where we used the result that

tr(N'E F,b
—N'A, DbE")=tr(N'E "(2c)(, Abl+[ A„Ab])—Di, (N'A, E )+Db(N'A, )E")

=tr(N'E "8, Ai, +E A, BbN' &3i, (N'A, E ))—
=tr(E X~ Ab ) —tr(c)i, (N' A, E "))

(5.7)

(5-&)

and also the fact that surface terms which arise in the
simplification vanish because of our boundary conditions.
It follows immediately from (5.7) that canonical transfor-
mations generated by the new constraint correspond pre-
cisely to the diffeomorphisms generated by the smearing
field N' on the three-manifold X (with spinor and Yang-
Mills indices treated as scalars). We have

I

for all the dynamical variables. Therefore, the new con-
straint (5.2d) will be referred to as the di+eomorphism
constraint. Now, we can once again use the geometrical
interpretation of the canonical transformation to deduce
the Poisson brackets between (5.2d) and other con-
straints. We have

{Cg, C~ m j = —C~- (5.6a)

{C~,C~j = —C(gg) where [N, M j'=/~M', (5.6b)
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ICiv~CMJ Cx M (5.6c)

[Civ, C~J =C» (=C»+C». w». w),

where

(5.6d)

K':= —2(Nc) M —Mc) N)tr(o. 'cr ) .

Note that in this calculation we did not have to use non-
degeneracy of o '. In fact, none of our evaluations of
Poisson brackets are altered by the possible degeneracy.
This is an important point to which we shall return in
Sec. VII.

The smearing field E' in (5.6) depends on the dynami-
cal variables o. '~ . Thus, although the constraints are of
erst class in the Dirac-Bergmann terminology, they do
not generate a proper Lie group. In particular, as has
been emphasized in the literature, e.g., by Bergmann and
Komar, ' the algebra of constraints is not isomorphic to
the Lie algebra of the obvious "gauge group" of tetrad
gravity (i.e., the semidirect product of the group of
"internal" tetrad rotations with the four-dimensional
diffeomorphism group of XXE). In the BRST terminol-
ogy, the algebra is open. Note, however, that the struc-
ture functions —and, hence, also the BRST charge'—
are polynomial in the canonical variables. Finally, al-
though the constraint functionals now contain contribu-
tions from matter fields, the structure of the constraint
algebra is identical to that in the source-free case. ' . As
has been emphasized (especially by Hojman, Teitelboim,
and Kuchar) this comes about because the algebra has
its roots in geometrodynamics.

VI. HAMILTONIANS AND REALITY CONDITIONS

We are now ready to discuss dynamics. The analysis
here is quite similar to that carried out previously in the
source-free case. ' New issues arise only in the discus-
sion of reality conditions, where it is the presence of spi-
nor fields that adds new twists. Therefore, for brevity we
shall focus on the Einstein-Dirac system and only com-

Thus, by a judicious choice of constraints, one can corn-
pute all but one of the possible Poisson brackets between
constraint functionals. The brackets yet to be evaluated
is that between two scalar constraints. This computation
is somewhat long. However, it is considerably simpler
than the corresponding computation in terms of the more
traditionally used gravitational canonical variables since
the functionals themselves are polynomial in the new
variables. The final result is the expected one: the Pois-
son brackets is a vector constraint. A straightforward
evaluation of the brackets using only (5.3) yields

(Civ, C~j
=J d x(Nd, M Mc), N—)tr(o o 'o'' —o 'o o ')Fb, .

To show that the right-hand side is a linear
combination of constraints, we add and subtract
(Nc), M —Mc), N )trcr "o 'cr 'Fb, and use the fact that
since o. ' are trace-free in the internal indices, they satisfy
o. 'o "'=

—,
' trcr 'o. . We then have

ment at the end on the effect of other matter sources.
As mentioned in Sec. V, constraint functions C& and

C~ are differentiable on the phase space only when the
lapse and shift fields, N and N' tend to zero at infinity.
The lapse-shift pairs generating space-time translations,
on the other hand, tend to nonzero (constant) values at
infinity. Therefore, constraints do not generate canonical
transformations corresponding to space-time translations;
they are not the Hamiltonians of the theory. However,
the geometrical interpretation of the canonical transfor-
mations generated by the constraints suggests that the
Hamiltonians should be closely related to the constraints.
This is indeed the case. More precisely, we have the fol-
lowing. Let T be a smooth scalar density of weight —1

which equals (detP, b )
'~ outside some compact subset of

X and let T' be a vector field which is a translational Kil-
»ng field of P,i, outside come compact set. The "time
evolution" defined by the geometric lapse function
T (detq)' and the diffeomorphism generated by T' on
X provide us with one-parameter families of mappings of
the phase space onto itself. One can verify that these
mappings preserve the symplectic structure. One can
therefore compute the corresponding generating func-
tionals. These are obtained by adding suitable boundary
terms to the constraint functions. We have

Hr( A, cr, g, vr, g, co)

= lim —J d x TC 2$&—sdS, Tcr 'o' Ab
S—+X

(6.1)

and

Hr( A, o., g, 5,g, co)
r

= lim J d x T'C, —2+2i fssdS, T('o )Ab
S~X

(6.2)

where the integral is first evaluated on a finite portion S
of X and the limit of the result is then taken as S expands
out to fill all of X. (To see how this subtlety arises, see,
e.g. , pp. 50—52 of Ref. 1.) These are the Hamiltonians
generating asymptotic translations, i.e., dynamics.

Note that, on the constraint surface, the numerical
values of the Hamiltonians are given just by the surface
integrals. Since these integrals explicitly involve A, ~
from one's experience in Yang-Mills theory, one might
conclude that they are not gauge invariant. This is, how-
ever, not the case because our gravitational boundary
conditions are different from those normally used in the
Yang-Mills theory: since the connection A, „ is now as-
sumed to fall off as I/r, the gauge invariance is in fact
assured. Furthermore, because of this fall-off, we can re-
place the o. 'z in the surface integrals by its asymptotic
value e '~ . A simple calculation then shows that, when
expressed in terms of the three-metric and the extrinsic
curvature of the three-manifold X, these integrals reduce
to the familiar Arnowitt-Deser-Misner (ADM) expres-
sions. Thus, in particular, while the surface integral in
(6.1) is a holomorphic function of the connection A, „
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and therefore complex valued at a generic point of the
phase space, its restriction to the constraint surface is in
fact real (and, with our conventions, negative). Note also
that, as is usual in theories without background struc-
tures, the energy and momentum integrals do not have an
explicit dependence on matter fields. Matter fields make
their presence felt in the expressions of the constraints
and thus contribute indirectly to the asymptotic values of
the gravitational field on which the energy and momen-
tum integrals depend directly.

[HT, o 'I =%Ter ' and [HT, A, I =ETA, . (6.3)

HT on the other hand generates evolution equations:
denoting [HT,f J by f, we have

Let us examine in detail the infinitesimal canonical
transformations generated by these Hamiltonians. As ex-
pected, those generated by HT are the Lie derivatives of
the dynamical variables along the asymptotic translations
TQ,

cr M~ =i 2 l2) ( Tcr ~cr )M~ Tcr (M g~)&g —Tcr (M 'ribr)Sg

MN ?—[Cr
b + ]MN ? (~ (MZ gN)+@ (MZ ~X)) 1 m? (gA+ )(+ ~ b~ c)MN (6.4)

=V2iTcr'q 2), g "+imTco, SM=&2i2), (Tcr'M iraqi)+imcr?nba,

where, as before, g,b, is the metric independent Levi-
Civita tensor density of weight minus one. We will need
these equations in the analysis of the reality conditions
that follows.

Let us begin with reality conditions in the source-free
case. In the previous work on the subject it has often
been stated that these conditions are nonpolynomial in
the basic variables. We sha11 first show that, while there
was no computational error, this conclusion is neverthe-
less incorrect: the conditions are in fact polynomial Re-.
call, first that these conditions arise because we now want
to restrict ourselves to the real section of the complex
phase space. Let us return, for a moment, to the
geometrodynamical variables, the three-metric q, b and
the extrinsic curvature K,b. One can, if one so desires,
begin with complex-valued fields (q,b, IC,b), set up the
constraint and evolution equations and, at. the end, take
the real section of the complex phase space by imposing
the reality condition: q, b

=q, b and K,b
=E,*& (or,

equivalently, q,b=q,'b). These conditions are automati-
cally preserved under time evolution. We want to impose
a similar restriction on the phase space spanned by our
pairs ( A,„,cr '„).Hermiticity of o '„guarantees the
reality of the (densitized) three-metric q ':=—tro 'cr
The additional condition we need is that its time deriva-
tive (q ' )', also be real. Using (6.4) we have

(q '
) = —&2iT(tr2) (cr ( o '))o.

+tr2) (u' c-b))~'] .
Since T appears as an overall multiplicative factor in this
equation and since the Poisson brackets of HT with q

'
gives just the Lie derivative of q ', the reality of q

' and
of its time derivative under arbitrary real lapse and shift
evolutions is ensured by requiring
(tro 'cr )*=[tro 'cr ),

(6.5)
[trn (u( c-'))ub+trn (u™nb))u']*

= —[tr2) (cr ™cr'))o +try) (o. ™cr))cr '] .

This is the required reality condition in the source-free
case. It is clearly polynomial in the basic canonical vari-

ables. Indeed, q
' is just quadratic, and, its time deriva-

tive, being its Poisson brackets with the Hamiltonian
which is at worst quartic, is also at worst quartic in o '~
and A, z . Again, if the reality condition is imposed ini-
tially on a pair (A,z, o' '„) satisfying constraints, un-
der the Hamiltonian Aow, it is preserved in time. Why
then was it previously stated that these conditions are
nonpolynomial? It is because, in the earlier work, one in-
sisted on expressing them in terms of the geometro-
dynamical variables, the metric and the extrinsic curva-
tures, and the nonpolynomial dependence entered in the
transition from the new to the old variables. More pre-
cisely, the situation is the following. Let o. '~ be nonde-
generate and let D denote the unique torsion-free deriva-
tive operator which annihilates o '~ . The difference
between 2) and D is captured in a field Il,„
(2), D, )A. „=(i/&—2I)I,„A i.iThen, using the evolu-

tion equation of q ', it is easy to check that
q, b

= 2T trlI~, crb~. —(Thus, K,b
= —trll~, o.b~. ) Hence,

the second of the reality conditions may be replaced by
Hermiticity of II,„, i.e., of i ( A,„—I,„), where
I,„ is the spin connection of D. However, since I,~
is nonpolynomial in o. 'z, this last condition is also non-
polynomial. Put differently, the extrinsic curvature K,b

is a nonpolynomial function of the basic phase-space vari-
ables so that the condition that K b be real is also nonpo-

lynomial. However, (q ' )' =( edtq)(E' b Kq'b) i—s poly-
nomial and so is the condition that it be real. Since there
is no reason to revert to the geometrodynamical variables
in the formulation of the reality conditions, we shall just
use (6.5) as the reality conditions in the source-free case.

Let us now return to the Einstein-Dirac system. The
reality conditions on o. 'z and A, ~ are again that q

'
and its time derivatives be real. However, since the time
evolution equation of o. 'z now involves the spinor fields
as well, the explicit form of the condition is modified to
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(trcr 'o )*=(tro 'o "),

tr2) (o ™o'))o "+trXl (o. ( o ))o '— —(g ~.~+i) "co„)q '
(6.6a)

= — trg) (a™o')o +trn (o. ' o ")c-'— ' (g'rr, +tl"co„)q"

(
—a gA- B)e (

—a gA- B)

wB'9 ~ ) =(cr aB'9

(
—a —A- B)e —

( )2( —a gAgB)

(a '~B~ "~')*=(a)'(a '~B8'n') .

(6.6b)

The reality conditions for the Einstein-Dirac system are
thus given by the two sets of Eqs. (6.6a) and (6.6b).

These conditions have been formulated in terms of
physical, tensorial quantities, while the phase space is
defined in terms of spinorial fields. Therefore, to single
out the real section of the phase space explicitly, we have
to eliminate some ambiguities by fixing conventions. This
can be achieved as follows. First, we consider the com-
plex phase space spanned by the fields
( A,„,o '„,g",~ ~,g ",co ~ ) with the Poisson-brackets
relations given by (5.1). Then, on objects with internal in-
dices, we introduce a "d'agger operation" satisfying rela-
tions (i) (aa„+bP~) =a* a+~b*13&,' (ii) (a„) = —az,
(iii) (a")ta~ ~0; (iv) (e„B) =e„B; and, —(v)

(a„PB) =a„PB, for all fields a„and P„and complex
functions a and b. The field nz will be called the adjoint
of a„. (There is considerable freedom in the initial
choice of this operation. But once chosen, it is to be kept
fixed. ) Now, let us consider the reality condition on o. '.
Let o. o be such that q 0:=—tro. oo.o is real, and non-
negative. Then, we can find a unique equivalence class of
o. ', each element of which is Hermitian and satis-

fies —tro 'cr =q o, where two o. ' are considered as
equivalent if they are related by an SU(2) group element.
[Note that the initial cr o may not be in this equivalence
class; there may be a GL(2,C) transformation relating o o

There are, however, additional reality conditions involv-
ing spinor fields which arise simply from the definitions
of the spinor field momenta, Fr z = i cr—g ~ and
co~ =io.q ~. Note, however, that these spinors reality
conditions need to be imposed even in the traditional
frameworks though they are often not stated explicitly.
Without these conditions the observable currents that
arise as quadratic combinations of spinor fields will not be
real in the phase-space description and the evolution of
the initial data will not lead to real space-time geometry.
Thus, the idea of first introducing a complex phase space
and then looking at a real section thereof is rather gen-
eral; it is not peculiar to the use of new variables. Fur-
thermore, in the specific case of spinor fields now under
consideration, the conditions are precisely the ones that
arise in the traditional framework. In terms of observ-
able "currents, " these conditions are

and cr '. ] Each element of the equivalence class can lie
on the real section of the phase space. Next, consider the
spinor fields g" and rr„. [The treatment of the pair
(i1",co~) is completely analogous. ] Let us suppose that
this pair satisfies the reality condition (6.6b) on currents
with respect to any one of the Hermitian cr '~
obtained above. Then, it is easy to show that we have
%.„=+io(~. Of these two disjoint branches, we pick
one by requiring that i5 "$„~0. We now have the ap-
propriate conditions for o. '~ and the Dirac fields to lie
on the real section of the phase space. It only remains to
single out the compatible A,„.For this, we use the
second of Eq. (6.6a). Thus, a point (o '~, A, „

, co„)will lie on the real section if o '„and the Dirac
fields satisfy the conditions given above and if A, z is
such that the second of Eq. (6.6a) ensuring the reality of
(q ' )' is satisfied. If a point of the phase space lies on the
real section as well as the constraint hypersurface, its
Hamiltonian evolution yields a real, Lorentzian space-
time with Dirac spin- —,

' sources.
Finally, let us consider the efFect of inclusion of (real)

Klein-Gordon and Yang-Mills sources. These fields con-
tribute to the expressions of the constraint functions and
hence also to the volume term in the Hamiltonian. More-
over, as remarked in Sec. IV, the presence of Yang-Mills
sources forces us to use for lapse fields densities of weight
minus three. But these changes are minor and have no
bearing on any of the conceptual issues. In particular,
the inclusion of these bosonic sources has no efFect on the
reality conditions on o. '~ and A,„

I.et us conclude this section with a few remarks.
(i) As in the source-free case, while the Hamiltonian

(6.1) preserves the reality of tensorial quantities such as

q
' and the Dirac currents, it does not preserve Hermiti-

city relations between the spinorial quantities such as
o. '~ or the Dirac fields themselves. The spinorial fields
are in general "gauge rotated" by SL(2,C) transforma-
tions. However, again as in the source-free case, this can
be easily corrected by adding to this Hamiltonian a suit-
able multiple of the Gauss-law constraint. The Hermiti-
city preserving Hamiltonian is given by

HT=HT+ lim I (D, T)o'„BC"B, (6.1').
S~X 2 S

where HT is the Hamiltonian defined in (6.1) and C„ is
the Gauss constraint [of Eq. (4.12c)].

(ii) Let us see how the reality conditions given above
arise from the space-time geometry of solutions to the
field equations. Let us suppose that we are given an anti-
Hermitian soldering form o'„",a connection one-form
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A, z, and spin- —,
' fields (g, rj" ), satisfying the field

equations of Sec. III on a real four-manifold XXIR.
Denote by V the torsion-free derivative operator compa-
tible with cr'~; by 2) the derivative operator defined by
A, A', and by D the torsion-free derivative operator on a

three-dimensional submanifold X of M compatible with
cr'„. Then, by equations of motion (2.4) and (2.5) we
know that ( 2), —V', )a„= C,z ai), and, by the
definition of extrinsic curvature K,b, it follows that
(t)', D, )a—„=(i/&2)K,„a~ where K,„s=K,bo"„.
Therefore, using the fact that the pullback of 2) to X is
2), we have (2), D, —)a„:—( 3,„—l,„)ai)
=[C,~ +(i/&2)K, ~ ]a&, where, as before, I,~ is the
spin connection one-form defined by D, and
C, A =q, CbA . If we now express C, A in terms of
o. 'A, the Dirac fields, and their momenta on X, we ob-
tain an expression for the extrinsic curvature K,b in
terms of the phase-space variables:

l K AB ~ AB I AB
0 0 0

When o- 'B and the Dirac fields satisfy the reality condi-
tions [i.e., first equation in (6.6a) and Eq. (6.6b)], the reali-
ty condition on A, ~ [i.e., the second equation in (6.6a)]
is precisely the requirement that K,b be real.

(iii) Let us return to the difference in the Einstein-
Cartan and the Einstein-Dirae systems discussed in Sec.
III. How does this difference manifest itself in the Ham-
iltonian description? Since the two Lagrangians differ
from each other by a term which is quartic in Dirac
fields, the two Hamiltonians also differ by the same term.
However, since the term does not contain any derivative
couplings, the relations between Hermitian adjoints of
spinor fields and their momenta as well as the equation of
motion for o. 'A remain unchanged. Therefore, the real-
ity conditions are also unaffected. (One can also arrive at
this conclusion from the space-time viewpoint mentioned
above. Since the equation of motion of A, A and the
definitions of momenta conjugate to the Dirac fields are
the same in the two theories, the expression of the extrin-
sic curvature in terms of the phase-space variables
remains unaffected by the quartic term. Hence, the con-
dition that the extrinsic curvature be real is also
unaffected. ) Thus, the only difference in the two theories
is that their scalar constraints and hence also the volume
terms in their Hamiltonians differ by a quartic combina-
tion of Dirac fields. '

VII. DISCUSSION

A primary motivation behind the "new variables"
framework as a whole comes from the possibility that the
microphysics of the gravitational interaction may be
simpler to formulate in terms of the "Yang-Mills type of
variables" than the standard geometrodynamical ones.
Thus, for example, in the source-free case, using these
new variables Rovelli and Smolin were able to obtain a

large class of physical states, i.e., solutions to al1 quantum
constraints. By contrast, as far as the full theory is con-
cerned, not a single physical state is known in the more
thoroughly investigated metric representation of quan-
tum geometrodynamics. There are two reasons underly-
ing this success of the new framework. First, a significant
technical simplification occurs because constraints are
polynomial in terms of A, A and o. '„.The second and
perhaps more important reason is that the use of new
variables opens up fresh directions in the canonical quan-
tum gravity program. In particular, the "Yang-Mills for-
mulation" of general relativity enables one to introduce
two new representations of quantum states —the connec-
tion representation in which states are functionals of the
connection one-form A, A and the loop representation in
which they arise as functions on the loop space of the
three-manifold X—which in turn facilitates the problem
of solving the quantum constraints. The viewpoint un-
derlying the present program is that this shift of em-
phasis from geometrodynamics to gauge theory has a
deep significance. Observables associated with, e.g. , the
parallel transport of "spinors" around closed loops are to
be regarded as the fundamental quantities in the Planck
regime while the space-time geometry is to be regarded as
a secondary concept which comes on its own only
in the semiclassical and classical approximations. This
viewpoint is supported by the recent results in 2+ 1 gravi-
ty 22' 23

An important check on the viability of these ideas is
whether or not the attractive features of the framework
survive the introduction of matter, for it is often the case
that elegant features of source-free gravity are de-
stroyed when sources arq brought in. Let us therefore ex-
amine this question in some detail in the light of results
obtained in this paper. In the spirit of the program, it is
natural to regard A, A as the configuration variable and
o. 'A, its conjugate momentum, as being analogous to
the Yang-Mills electric fields. Therefore, in quantum
theory we wish to represent cr 'z by an operator of the
type 5/5A, „.But such a representation is permissible
only if the classical momentum variable takes values in a
vector space, i.e., in the present case, only if o. 'A is al-

lowed to become degenerate. Therefore, to import gauge
theory ideas into canonical quantum gravity, we must
make sure that the classical Hamiltonian theory itself is
meaningful if o. 'A B is degenerate. Now, in Sec. II, we be-

gan by assuming that o'A ", and hence the four-metric

g,b, are nondegenerate. The nondegeneracy was essential
to perform the Legendre transform and to pass to the
Hamiltonian description. However, in the final Hamil-
tonian formulation, which is complete in itself, the re-
quirement can be dropped entirely. The symplectic
structure, the constraint and evolution equations, the
Hamiltonian, and the reality conditions, all continue to
be meaningful even when we allow o. 'A to become de-

generate. A key question is whether the proof that the
constraints are first class depends on nondegeneracy,
for even if the constraints themselves are polynomial in
the basic canonical pair, the structure functions in the
Poisson algebra may involve the inverse of o. 'A . For-
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tunately, this does not happen. Thus, the key features
which enabled one to introduce the connection and the
loop representations in the source-free case are robust
and survive the coupling to matter sources. Further-
more, since every equation in the final canonical descrip-
tion is polynomial in the basic variables, one hopes that
the Jacobson-Rovelli-Smolin solutions to quantum con-
straints can be extended to include sources. Recently,
Rovelli has extended the loop representation to pure
Yang-Mills theory (private communication). Therefore,
there is now an attractive possibility on the horizon that
the use of loop representation may enable one to con-
struct, in a unified way, the nonperturbative quantum
theory of all four basic interactions.

The above discussion brings out the fact that the Ham-
iltonian framework presented in Secs. V and VI is in fact
a slight generalization of Einstein's theory with matter
sources, reducing to it in the case when 0. 'z is nonde-
generate. The new equations do admit a wider class of
solutions in which o. '„ is degenerate. In particular,
there is no a priori reason why o. '~ could not vanish
identically even though A, z and its curvature do not
vanish. These would be solutions in which there is curva-
ture but no metric. While such solutions have no obvious
significance in the classical theory, at least when 8 '„
vanishes on a set of nonzero measure, they may be of con-
siderable interest in quantum theory. Indeed, in 2+1
gravity, the most natural description of the quantum vac-
uum involves precisely the configuration in which o. 'z
vanishes identically.

We will conclude by pointing out a curious feature of

the Einstein Yang-Mills system in the present framework.
Now, the Einstein fields are represented by pairs ( A„o ')
and the Yang-Mills, by analogous pairs ( A„E'). Both
are subject to Cxauss constraints: X),o '=0 and
D,E'=0. The symmetry extends also to the vector con-
straint which has the form trcr 'F,b =(const) X trE'F, t, .
It is tempting to conjecture that this symmetry may be a
reAection of a new type of possible unification. Perhaps
there is a way to modify the present framework to larger
internal symmetry groups so that a part of the new A,
captures the Einstein self-dual connection and the
remainder, the Yang-Mills connection one-form, such
that the source-free Einstein constraints on the new 3,
and its conjugate momentum are equivalent to the Ein-
stein Yang-Mills constraints of Sec. IV. This would be
complementary to the Kaluza-Klein type of unification.
Now, the space-time dimension would continue to be-
3+1 but the internal-symmetry group would be enlarged
to encompass both the Einstein and the Yang-Mills fields
and it is the gravitational field that would emerge as a
part of an enlarged Yang-Mills type connection rather
than the Yang-Mills field emerging as a part of a metric
in a higher-dimensional space-time.
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That this is not just an abstract possibility is illustrated by the
following example. In the source-free case, assuming that

0. '& is nondegenerate, the vector and the scalar constraint
can be combined to a single expression: o. 'o. F,&

=0. The
trace of this equation gives the scalar constraint and the
trace-free part, the vector constraint. This form of the con-
straints is again polynomial and has a further attractive
feature that, as in 2+ 1 gravity, the only free indices are the
internal ones. Although the resulting algebra is again of first
class, as it must be, the structure functions involve the
inverses of o. '&


