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Einstein gravity coupled to a massless scalar field in arbitrary spacetime dimensions
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We obtain the exact static spherically symmetric solution of the coupled Einstein-massless-
scalar-field equations for arbitrary spacetime dimensions. The general solution involves two param-
eters: it is asymptotically flat and the scalar field tends to zero at spacelike infinity. It exhibits a
naked singularity unless the scalar field vanishes when it naturally reduces to the Schwarzschild
solution in D spacetime dimensions.

I. INTRODUCTION

The idea that we might live in a spacetime possessing
more than four dimensions is almost as old as general rel-
ativity itself. Introduced by Kaluza and elaborated fur-
ther by Klein, this counterintuitive notion is now the soul
of certain modern unifying theories. As a consequence,
an understanding of the Einstein gravity in more than
four dimensions gains importance to physicists, as the
growing volume of recent literature indicates. With this
as our motivation, plus the fact that exact solutions of
any theory are always desirable and valuable, we here
derive the exact static spherically symmetric solution of
the coupled Einstein —massless-scalar-field equations valid
for arbitrary dimensions D 4 of the spacetime manifold.

Exact solutions of the higher-dimensional Einstein
gravity have been previously discussed in the literature.
Much of the research has been devoted to finding solu-
tions which represent a realistic Kaluza-Klein cosmolo-
gy, i.e., solutions (preferably singularity-free) where a D
dimensional space is topologically the product of a four-
dimensional expanding world with a (D —4)-dimensional
(preferably compact) internal space. However, other
solutions such as D-dimensional black holes have also
been found and examined in detail (see Ref. I). In our
work we will examine spherically symmetric static non-
vacuum spacetimes. A massless scalar field wi11 be taken
as the source of gravity. Although at first sight such a
choice of source would appear to be of purely mathemati-
cal interest, further thought suggests the opposite. For
example, if in ten-dimensional X=1 supergravity one
neglects the Kalb-Ramond field, then the bosonic sector
of the theory involves a massless scalar field alone. Also,
the spectrum of superstring theories always involves a
massless scalar fieM —the so-called dilaton field. We
should point out that at D =4 dimensions the problem of
a self-gravitating massless scalar Geld has drawn the at-
tention of many researchers. In a series of recent papers,
Christodoulou employs a time-dependent massless scalar
field to attack some of the unresolved issues of general
relativity, such as the formation of an event horizon and

cosmic censorship. Almost 30 years ago, Bergmann and
Leipnik attempted to construct static solutions to the
problem but due to an inappropriate choice of coordi-
nates (they used Schwarzschild-type coordinates) their
e6'orts met with limited success. During the same period,
exact spherically symmetric solutions by means of suit-
able generation techniques were obtained by Buchdahl.
In fact his powerful technique enable him to construct
the most general two-parameter family of solutions of the
static field equations (of course our solution, in the spe-
cial case of D =4, reduces to his). At about the same
time Yilmaz also discovered a special class of solutions,
which however was a particular case of Buchdahl's gen-
eral solution. Recent work by Wyman appeared to have
exhausted all possible classes of solutions to the problem.
Further we should note here that very recently
Mannheim and Kazanas have suggested an interpreta-
tion of the solutions of the Einstein —massless-scalar-field
equation as a possible manifestation of the Higgs vacu-
um.

A clear message emerging from the above-cited investi-
gations is that the relevant field equations appear easier
to be handled in isotropic-type coordinates rather than,
say, Schwarzschild-type spherical coordinates. In our
analysis we shall employ a D-dimensional version of the
former set.

II. THE SOLUTION

We seek the general static and spherically symmetric
solution of the Einstein equations coupled to a massless
scalar field. We shall assume that the scalar Geld is static
and spherically symmetric, i.e., that it shares the same
symmetries with the geometry.

The D-dimensional (we always assume that D )4) Ein-
stein equations coupled to a massless scalar field are

Rg kT

T„=(V„ttp)(V,P) ,'(V'P)(V, P)g„, , ——
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while the scalar field obeys the equation

V"V„/=0 .
r2D —6+ gf (—D —3)h = ln
Pr 2D —6 (12)

Equations (1) are equivalent to

R,=k(V„P)(V„P) . (3)

Adopting a set of isotropic coordinates in D spacetime
dimensions we can write the line element in the form

ds = e—(dt) +e "[(dr) +r2y, (dx')(d"x )], (4)

where f =f (r), h =h (r), while y," and x 1 are the intrin-
sic metric and coordinates of a (D —2)-dimensional
sphere. For the above line element the only nonvanishing
components of the Ricci tensor are

r

f f hf + D —2
1

rh f (5)
4 2r

~ ~

f —.+ ,' f+ —,
' h +—

4

rh =0.
2

(14)

Considering the case f%0 and eliminating h and its
derivative by virtue of Eqs. (11)and (12) we obtain

with 8 another integration constant, and therefore by
combining Eqs. (9) and (12) we get

r2D —6+ g

To complete the solution we should determine f and h

separately. If we employ the (t, t) component of Eq. (3)
we obtain

f+f + "f-D '(.h)
2 4 4 2r

r D —4

r'D 6+a ' (15)

ehR' = 5' ,'rf(l ——'—rh)+ —(rh—)'J 2 J 2 2

~ rh+rh 1 — (D —3)
4,

(7)

The Laplacian associated with the line element (4) and
acting on static and spherically symmetric scalar fields
reduces to

4A (D —2)(D —3)=— kC 8 + — S G
1 D —2
4 D —3

(16)

This relation indicates that the constant A must be nega-
tive, which we shall denote hereafter by

where 6 is another integration constant. If we now sub-
stitute our findings, i.e., Eqs. (11), (13), and (15), in the
(r, r) component of Eq. (3) we obtain an identity, provided
the various integration constants encountered so far satis-
fy

( f /2h+(3 D)/2r D —2~ —
) ()Y, r , r

which admits the first integral
T

~ C (D —3)h f-
exp

r

(8) r2D —6
0

With the above definite choice of the sign of A the
remaining relevant integrations needed to complete the
solution are rather trivial, yielding the following final
form for the massless 6eld and metric, respectively:

the overdot denotes difFerentiation with respect to r and
C in Eq. (9) is an integration constant.

Next we turn to the Einstein equations. From Eq. (3) it
follows that the only nonvanishing component of the Ric-
ci tensor should be R,„=k(() . From the equations
R', =R' - =0 we form the combination

R', +(D —3)R', =0 (10)

(there is no summation over the index i) which using Eqs.
(5) and (7) implies the following first-order differential
equation for y =f (D —3)h:—

r —roD —3 D —3

D-3+ D-3 ~
A= ]n

r +ro
D —3 D=3 2r —ro

r +roD —3 i D —3

e = 1
—h

r 2D —6 D —3 i D —3r +ro

where

2D —6 D —3 D —3ro r —ro

(17)

(18)

(19)

y 2 y
y 2D —5 (10') D —2

y (D 3)k
'

' 1/2

(20)

The integration of the above equation is easy and its gen-
eral solution is given by

4(3 D)/I—
r(r +3)

with A an arbitrary constant of integration. It turns out,
a further integration of the above value of y implies

In the process we have eliminated the parameters 8 and
6, in favor of a new parameter y defined by
4(D —3)ro y=kG, and we have disregarded all the
physically irrelevant integration constants.

When r~a'o, f~0, h~0, $~0: Hence the space-
tirne becomes asymptotically Aat and the scalar field van-
ishes at infinity. In more detail we readily find that
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7'0
ef=1—4y f'

'D —3

D —3

M =2r 0
For the lower bound of y, i.e., y =0, the obtained solu-

tion reads

rp

D —3

e "=1+ 4
D —3

(20') D —2
k(D —3)

1/2 D —3 D —3r —rp
D —31 D —3r +rp

(26)

~= 2—r 0

r

Thus the higher the dimension, the faster the scalar field
vanishes asymptotically.

ds = (dt—)

2/(D —3)
l'0

+ 1 2D —6
(dr +r y, dx'd"x'), (27)

III. TWO PARTICULAR CASKS

Equations (4) and (17)—(20) describe a two-parameter
family of solutions of the Einstein —massless-scalar-field
equations. The parameter rp by construction is required
to be positive while, on the other hand, the reality of P
demands the following range of y: 0 y &1. When
yP [—1,0), the solutions, although asymptotically fiat,
are characterized by "negative" Arnowitt-Deser-Misner
(ADM) mass. In particular for y= —1, which is a vacu-
um solution, it describes the D-dimensional
Schwarzschild solution with negative mass (i.e., a naked
singularity). So we shall demand the following range of

0

which is a one-parameter family of solutions,
parametrized by rp. This one-parameter class of solu-
tions could also have been discovered by a direct integra-
tion of the field equations, if one had chosen f=f=0 as
the solution of Eq. (14). The solution described by Eqs.
(26) and (27) appears rather interesting, and we shall
study it in some more detail. It turns out that this solu-
tion can be explicitly expressed in Schwarzschild-type
coordinates. This can be easily seen if we set

(r2D —6 r2D —6)1/(D —31- D —32D —6
0 ~p

r

—1[RD—3+(R2D —6+4 2D —6)1/2)

(21)

It is interesting to see the limiting form of the metric
and field at the lower and upper bounds of y. For the
latter case, i.e., y= 1, it is obvious from Eqs. (17)—(20)
that /=0, while the metric reduces to

'2

(dt)2+(1+ )4/(D —3)
1+2

Using further that
2D —6 2/(D —3)

ro R
p2

and

HARD

—4(dR)(R2D —6+4@2D —6)—I/2 (28)

where

z =(rolr)

X[(dr) +r y, (dx')(dx~)], .

(22)

(23)

we finally obtain the following one-parameter family of
solutions in Schwarzschild coordinates:

R' '(dR)'
d 2 (dt)2+ +R2y, (dx')(dx')"

S = —
R 2D —6+4 2D —6

(29)

The solution is recognized as the Schwarzschild solution
-in D spacetime dimensions, ' in isotropic coordinates. To
verify that we introduce the Schwarzschild coordinate R
defined by

and

D —2
k(D —3)

1/2

ln
4r2D —6

1+
R2D —6

2p'

RD —3

GS -=2— 4~D —3 4~D —3

(dt)+ 1—
R RD —3

Z=, z=(rolr), Z=(ro/R)D
(1+z)

The metric (22) becomes

(24)

(dR)

(30)

The behavior of the above solution for small and large
values of the radial coordinate R can be easily exhibited.
Calculation, for example, of the scalar curvature of the
solution gives

+R y;J(dx')(dx J), (25)
4(D —2)(D —3)ro'D

R 2(D —2i
(31)

which is the Schwarzschild solution, in Schwarzschild
coordinates, in D spacetime dimensions, with mass Hence, the spacetime exhibits a naked curvature singu-
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larity at R =0 (Ref. 11). It is worth pointing out that
R =0 represents a (D —2)-dimensional sphere, as can
easily be seen from the definition of R. Except at R =0,
the solution is everywhere regular and asymptotically
Minkowskian. Asymptotically the m.assless scalar field
tends to zero with the behavior

1
(32)

IU. SINGULARITIES IN THE GENERAL CASE

%e now return to the two-parameter family of solu-
tions given by Eqs. (4) and (17)—(20). To determine the
singularities of this solution we have evaluated the scalar
curvature" of the metric (4). Working (again) in the iso-
tropic coordinates we have found, after some consider-
able reductions, that

4(D 2)(D 3)r ( )(1 g )r ( +

(
D —3+ D —3 )2(D —2+y)l(D —3)grD —3 rD —3 )2(D —2 —y)l(D —3)l'o p

(33)

However as we have mentioned in Sec. III [Eq. (21)], it
is required for the parameter y to take values in the
range [0,1]. It is then easy to see that

2& 2(D —2 —y) 2(D —2)
D —3 D —3

(34)

V. CONCLUSIONS

It is well known that in four spacetime dimensions the
"chemistry" between gravity and a massless scalar field is

Therefore Eqs. (33) and (34) imply that the (D —2)-
dimensional surface r =ra is always a curvature singular-
ity. Since, on the other hand, the time translational Kil-
ling field remains timelike for all r ) ro, we conclude that
the curvature singularity at r =ro is a naked singularity.

problematic: Static, spherically symmetric, asymptotical-
ly Hat solutions of the coupled Einstein —massless-scalar-
field equations either represent a regular black-hole solu-
tion with a physically trivial massless exterior field' or a
nontrivial massless field configuration and a singular
pointlike event horizon. ' To discover this incompatibili-
ty one had to fully couple gravity to the massless scalar,
in the manner of Einstein. Our investigation has estab-
lished that the incompatibility between black holes and a
massless scalar persists in any D ~4 spacetime dimen-
sions. The only case when the singularity at r =ro is ab-
sent would correspond to y=1. In that case, the scalar
field would be absent, while r =ra would be a (D —2)-
dimensional regular event horizon, confirming a no-hair
theorem for a higher-dimensional Einstein gravity.
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