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An analytical and numerical study of the effects of initial conditions on the evolution of a classi-
cal scalar field is presented. In this model, matter consists of a sca1ar field and a radiation bath.
The initial energy density of the scalar field is taken to be equa1 to the energy density of one degree
of freedom of the radiation bath. Even for this subspace of the space of initial conditions, three very
different scenarios are possible. One may get chaotic inflation, dynamical relaxation, or a tension
energy-dominated universe which results in no inAation. The phase space for each of these
scenarios is determined.

I. INTRODUCTION

Studies of the early Universe have generated a lot of in-
terest among the physics community. There has been
steady progress in our understanding of the possible ini-
tial conditions which may have existed in the early
Universe. Guth's (1981)' proposal of an infiationary-
universe model (now called the old infiationary universe)
made use a homogeneous scalar field P with a nontrivial
potential. It was assumed that at high temperature P was
trapped in a global minimum of the temperature-
dependent effective potential. Gravity was described by a
Friedmann-Robertson-Walker (FRW) metric of classical
general relativity. As the temperature of the radiation
background dropped, the global minimum turned into a
metastable local minimum. During this period V (/=0)
played a role of a cosmological constant. There was a
first-order phase transition from the false vacuum to a
true vacuum by quantum tunneling. This theory turned
out to be inconsistent. Because of the slow tunneling
rate, regions of the true vacuum never quite percolated
enough. The new inAationary models were proposed to
circumvent this problem. ' The crucial difference here is
that below a critical temperature T, the temperature-
dependent potential has a local maximum at / =0 instead
of a local minimum. Hence, there is a second-order
phase transition which occurs not by bubble nucleation
but by spinodal decomposition. The problem of
insufficient percolation was avoided.

Further study of new inAationary universe models has
taught us that the scalar field, which is responsible for
inAation, cannot be in thermal equilibrium with the radi-
ation bath. ' Hence, the use of finite-temperature
effective-potential methods is not justified. Since this
conclusion is so crucia, l we will brieAy summarize the
reasons. By demanding that the energy-density perturba-
tions produced during an inflationary phase be consistent
with the observed isotropy of the microwave background,
we get a severe upper bound on the value for the self-
coupling of the scalar field: ' namely, A,

&
~ 10 ' . This

in turn implies that the scalar field must be very weakly
coupled to every other field because, if there were cou-
plings of the form L;„,=gP g, where P is the scalar field

responsible for inflation and y is some other field, then
this interaction would induce one-loop corrections to A,

&

of the order 5A, =0 (g ). By demanding that the new
value of the effective four-point coupling be bounded by
10 ', we obtain g &10 . With such a small coupling, a
typical interaction time between P and y particles is
many orders of magnitude longer than the expansion
time of the Universe. Therefore if y is a field in thermal
equilibrium, then there can be no efficient transfer of en-
ergy between the P and y fields. Hence it is inconsistent
to assume that the P field was ever in thermal equilibrium
in the early Universe.

Since there is no thermal equilibrium, the initial condi-
tions for P(x, t) are not unique. In particular, large inho-
rnogeneities should be expected. Different choices of ini-
tial conditions will result in a different evolution of the
Universe. With this fact established one may analyze the
evolution for different categories of initial conditions. At
some initial temperature T;, p& (the energy density of the
scalar field) can be either larger or smaller than
(vr /30)T, That is, p& is smaller or larger than the ener-

gy density of a single spin degree of freedom in thermal
equilibrium. Chaotic inflation is a successful inflationary
model which falls in the former category and dynamical
relaxation" is a mechanism for creating inAation in the
latter category. In the chaotic inAationary universe mod-
el, the scalar field is assumed to start out at a large value
of P (and hence with a large potential energy) and homo-
geneous in space. In dynamical relaxation we start with a
plane-wave scalar field configuration which dynamically
relaxes to /=0. If V(P) is the standard-double-well po-
tential A, &(o —P ), then one may obtain infiation (these
mechanisms will be discussed in more detail in the later
sections). Both mechanisms have shortcomings, because
in either mechanism, one has to impose a priori at some
initial temperature T; certain constraints on P, P, and V'P

to be able to arrive at an inflationary period. An argu-
rnent against the chaotic inflationary model has been the
unnatural largeness of the initial value for the scalar field,
and a lack of justification for using a scalar field which is
homogeneous on a scale many orders of magnitude larger
than the size of the initial Hubble radius. In this paper a
systematic study of the evolution of the Universe is car-
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ried out for a field satisfying the initial condition
p&(t; ) ~ (ir /30) T; at some initial temperature T, and ini-
tial time I;;. An interesting result is that even within these
initial conditions there are some for which the Universe
will evolve into an inflationary phase via chaotic
inflation.

The organization of this paper is as follows. In Sec. II,
the mathematical framework of the theory is briefly re-
viewed. In Sec. III, we explore sets of possible initial
values for P, P, and VP, which are consistent with the
constraint p&(t;) p„d(t, ), where t; is the time corre-
sponding to the beginning of the scenario. It is shown
that if one uses the largest amplitude excitation (large P),
then energy considerations force upon us to use an ex-
tremely homogeneous configuration for the scalar field.
In particular, associated with the largest amplitude exci-
tation is a spatial fluctuation wavelength A. which is
larger than the size of the initial Hubble radius by a fac-
tor of A,

&
'~ (A,&~10 ' is the dimensionless self-coupling

constant for the scalar field). In Sec. IV we calculate the
- subphase space of the space of the allowed initial condi-
tions which will evolve by dynamica1 relaxation. Next
(Sec. V) we calculated the subspace that will evolve via
chaotic inflation and the subspace that will cause the
Universe to evolve into a tension energy-dominated
universe. Loosely, the phase space which will lead to
chaotic inflation is the large amplitude (P) region of the
space of the allowed initial conditions. Analytical and
numerical results, which include the back-reaction
eff'ects, are presented. One analytical prediction is that
this transition from the radiation-dominated universe to a
chaotic universe will take place within a few expansion
times. The prediction is confirmed by numerical simula-
tions. In doing the back-reaction efFects (Sec. VI) we
have suppressed any spatial gravitational Auctuations by
replacing p& by its spatial average (p&),z„, in the Ein-
stein equation. In Sec. VII, we take a specific point in
phase space which we predict wi11 lead to tension energy
domination and discuss its evolution in detail. The main
results are as follows: this transition from the radiation
energy domination to the tension energy domination
again takes place within a few Hubble expansion times,
there mill be no inflation in this case because the equation
of state is p/p= —

—,
' (p is the pressure of the matter field

and p is the energy density of the matter field). Finally
(Sec. VIII) we discuss consequences of mode mixing. We
have addressed the question of what happens when we
excited one mode (which belonged to the phase space of
chaotic inflation) in addition to exciting another mode
(which belonged to the phase space for dynamical relaxa-
tion). The conclusion is that the Universe will still evolve
into a chaotic inflationary phase. There will also be a few
initially unexcited modes which will start to grow, but
the will not grow enough to interfere with the onset of
inflation.

We use units in which A=c =kz = 1. mz is the Planck
mass and 6 is Newton's constant.

II. PRKLEMENARIKS

In this paper matter is taken to consist of a scalar field

P plus a. radiation bath. Gravity is treated classically.

Matter inAuences space-time via the Einstein equations

G„=8m GT„, , (2.1)

T„(rad)=diag( —p, +p, +p, +p)

with equation of state

P =3@ ~

The energy density p( T) is given by

p= n (T)T
30

(2.3)

(2.4)

(2.5)

Here n(T)=nb(T)+ ,'n&(T) —and n&(T) [ns(T)] is the
number of fermionic [bosonic] spin degrees of freedom at
temperature T. In the standard model, n (T) can be as
large as 100 in the early Universe. In this paper we keep
n (T) as a free parameter. The energy-momentum tensor
of the scalar field is

(2.6)

I.= ,'g" B~PB P-v(p), —

in particular,

—Too=p(P) = ,'P '+ —,'a (—V'P)'+&(P),
T"=p (P)= ,'P' &(P)+——,'a —'(& P)'

—
—,'a (By/) —

—,'a (B,P)

(2.7)

(2.8)

and similarly for the other diagonal components. We as-
sume that the only eFect of matter on the metric is to
determine the time dependence of the scale factor in the
FRW metric:

dr
ds = dt +a(t)—+r dQ

1 —kr
(2.9)

where k=+1, 0, —1 for a closed, critical, or open
universe, and dQ is the metric on S . In a strict sense
this assumption is only true if the energy-momentum ten-
sor is homogeneous, because in that case the off-diagonal
elements of T" are zero. More will be said about this as-
sumption later.

For a Aat FRW metric, Einstein's equation gives

H'(t) = — = [p„.,(r)+p~(i)] . (2.10)

Since there is no direct coupling between P and the ra-
diation field, it is correct to assume conservation of entro™
py-'

n(T)a(T) T =const . (2.1 1)

In the early Universe (high temperature) before any parti-

where T„ is the energy-momentum tensor. It can be
decomposed as

T„=T„,(P)+ T„(rad) . (2.2)

As usual,
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cle can decouple, n(T) remains constant. We then get
the simple relationship a T=const.

The equation of motion for P(x, t) is

P+3HQ a —V P= —V'(P) . (2.12)

III. INITIAL CONDITIONS

The dynamics of a system does not determine the ini-
tial conditions. Initial conditions are free parameters for
the system. In general, for different initial conditions the
subsequent evolution of the system will be different.
When trying to obtain inAation using a scalar field one is
faced with two kinds of questions. What were the forces
(potential) acting on the scalar field? And given the dy-
namics, what must have been the initial condition in or-
der for the scalar field to have produced an infiationary
period in the early Universe? There are few guides. The
scalar field must interact very weakly with itself and with
other fields. And to agree with the present observed
Hubble expansion of the Universe, the scalar field must
today be localized at a minimum of a potential with a
very small cosmological constant. However, if there was
inflation, then there was a period when the energy density
of the Universe was dominated by an almost constant po-
tential term. Hopefully for some large phase space of ini-
tial conditions, it is possible to gracefully evolve into and
out of an inAationary period without fine-tuning the pa-

Before we proceed to the main subject of this paper we
would hke to briefly describe the mechanisms for dynami-
cal relaxation and chaotic inAation. In dynamical relaxa-
tion, " one starts with an initial plain wave for the scalar
field P(x, t; ) with a double-well potential, e.g. V(P)
= —,'A, &(P

—o ) . Since A.
&

is very small, the nonlinear
force V'(P) is smaller than any other force. Neglecting
this force, the solution to the equation of motion is rather
simple P(x, r) —[1/a(t)]f (x, r). Where r is conformal
time and f (x, r) is oscillatory in x and r. The key prop-
erty of dynamical relaxation is that a erases any inho-
mogeneity which may have existed at the beginning of
the Universe. Therefore as P(x, t) +0 and—V(P)~ V(0),
V(0)= —,'A&a plays the role of a cosmological constant
when p„d falls below V(0).

Dynamical relaxation has been studied numerically in
Refs. 12 and 13. Thermal fluctuations have been incor-
porated' ' in the analysis, and so have gravitational per-
turbations. ' However, back reaction has only been in-
cluded in the numerical study of Ref. 17.

In chaotic inAation one does not require a double-well
potential. One may use a potential of the form
V(P)= —,'m P or V(P)=k&P Howev. er, one' requires a
nearly homogeneous initial scalar field configuration. In
contrast to dynamical relaxation, p(P) = V(P) ))p„d
from the beginning. For a large initial value of P, it turns
out that P(t) is a very slowly varying function of time.
Therefore efFectively the scenario starts in an inAationary
phase. Chaotic inAation has been extensively developed
by Linde and co-workers. ' In particular, it can be
shown that the scenario works even when including small
gravitational perturbations.

rameters of the theory. We proceed with these facts in
mind.

In this part of the paper we explore sets of possible ini-
tial values for P, P, and VP consistent with the restriction

(3.1)

where t, is an initial time corresponding to T;. As stated
previously, there is no justification for taking p&(t, )
~ (1/n)p„d(t; ) since the scalar field is not in a thermal
equilibrium. But we proceed because one of the unex-
pected results is that even within this set of initial condi-
tions there is a region of parameter space for which the
universe will evolve into a chaotic inflationary phase.

For the scalar field potential we take a simple
symmetry-breaking potential

V(Q)= —,'Ap(P —o ) (3.2)

1
2 ~ (7 )

p~&d (3.&)

we get

kPo~ T;

And similarly from the kinetic term we get

4o —~ .

(3.5)

(3.6)

A graphic representation of the allowed values for Po,
and k are given in region D of Fig. 1.

Some comments are in order. Associated with the
largest possible amplitude P,„=A.

&

'~ T, , is a wave vec-
tor k =A,

& T;, which tells us something about the order
of homogeneity of the scalar field. A, —k ' =

k&
' T,

I I I10

8—
2

6-
4

0
1 2 3

k/mp

FICx. 1. Sketch of the phase space for p&(1/n)p„d (region

D) for Po~ T; The region is bounded . by the lines Po~ A, ~
' T;

and k/0~ T,' (n=100, T; =mp, X~=10 ).

We start with a single plane-wave scalar field
configuration P(x, t, )=go.cos(kx +a).

Assuming o. is not too large and imposing
V(P) ~ (1/n)p„d at some initial temperature T, we get

(3.3)

And imposing
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Evaluating this at the Planck temperature (T; - mt) and
using H( T= mt ) =0 (1/mt ) we arrive at the conclusion
that the scalar field is homogeneous on a scale A,

&
'

larger than the size of a causal horizon. This is an
aesthetically displeasing feature about using such a large
initial amplitude of P. Recall that one of the reasons for
introducing the inflationary universe models was to try to
explain in a causal way existence of structures such as
galaxies, clusters, etc. But we have just arrived at the
conclusion that when one uses a plane-wave excitation
with the largest possible amplitude then one is forced by
energy considerations to start with a field configuration
which is dim. cult to reconcile with the usual expectation
from causality. As it will be shown later, this initial con-
dition will evolve into chaotic inAation. We will call this
initial condition I.

One can arrive at a more general class of initial condi-
tions by imposing that p& and not necessarily every term
(i.e., tension, kinetic, and potential energy) be as large as
(1/n)p„d at some initial temperature T, In particular,
the potential term is allowed to be very small but the to-
tal scalar field energy density should be ( I/n)p„d. Then
it is no longer necessary to have such a large amplitude
(go=A,

&

' T, ). But whatever amplitude one chooses one
should impose a relationship kPo & T, . A popular choice
in the literature is" ' ' go= T, and k =T;. Now the
scale of homogeneity for the scalar field is about the size
of an initial causal horizon:

(3.7)

IV. DYNAMICAL RELAXATION,
INITIAL CONDITION III

It is very instructive to look at the range of parameter
space for which one can get dynamical relaxation. As
stated earlier, dynamical relaxation is a mechanism for
localizing P(x, t) close to zero. Such a mechanism is one
possible way of generating infiation because V(/=0) can
act as a cosmological constant when the radiation energy
density falls below it. When dynamical relaxation is tak-
ing place p& «p„d until the onset of inflation. Consider
a plane-wave initial condition, P(x, t; ) =Pocoskx and
P(x, t, )=Posinkx for some yet .unspecified k, Po, and Po.
Assuming V'(P) is negligible in the equation of motion
we get

P(x, ~)="f (x, r)
a(~)

with a(t)-t'/, and

(4.1)

It will be shown later that with this initial condition a
Universe with a large initial number of particles in
thermal equilibrium [i.e., n(T;)))1] will evolve into a
tension energy-dominated Universe within a few expan-
sion times. We will call this initial condition II.

A third set of initial conditions which we have studied
is P &0.1T;, and k & 10T;. It will be shown later that for
these initial conditions (initial condition III) the field will
evolve into an inAationary phase via dynamical relaxa-
tion.

f (x, r)=Posinkx cosk(r r—; )

1+ —(Pocoskx +Ho gosinkx )

X sink (~—r;), (4.2)

where r is conformal time defined by dt =a (t)dr and Ho
is the Hubble parameter at t, :

12(T, ) T;H0=16.6 T; .
100 m p

(4.3)

We have also used the fact that for a fiat (k=0)
radiation-dominated FRW metric, the Ricci scalar van-
ishes. Therefore to arrive at our analytical solution, it
was not necessary to add a conformal coupling of the
form —,'RP . Notice that it was crucial to start the
scenario with the energy density of the radiation field
greater than the energy density of the scalar field by a
factor of n ( T; ). Because in principle both p„d and p& will
contribute to the form of a (t). But if n ( T; ) ))1, one can
neglect any back reaction of P(x, t) on a (t) until the onset
of inAation.

Now we would like to go back and be more quantita-
tive about the values Po, Po, and k for which dynamical
relaxation occurs. We demand that p& be smaller than
(1/n)p„d(t) for several Hubble expansion times. In par-
ticular, V(P) must be smaller than (1/n)p„d(t) After. us-
ing the fact that both P(x, t) and T(t) vary as a (t) ', this
implies that f (x, r) &

A&
'/

T, . Demanding that each
term in f (x, r) obeys this inequality we get

(4.4)

& g
—I/4T

k
(4.5)

and

(t'o

k 16.6

1/2
100 ~—i/4 m

(4.6)

Similarly, we demand that the tension energy be small-
er than (1/n)p„, d(t). This leads to the conditions

and

/ok & T;

0o —T

1/2
100

mp

(4.7)

(4.8)

(4.9)

For the kinetic energy, the algebra is slightly more
messy. But after using P= H(t)/+a(t) f'(r)—and
H(t)= —,'t ' (which is true for a radiation dominated
FRW Universe), we find no new constraints.

The results are plotted in Fig. 2. We can easily see that
only a small fraction of the phase space which satisfied
p&(t;)=(I/n)p„d(t;) obeys all the above conditions to
evolve via dynamical relaxation.

Figure 3 shows the time evolution from a numerical
analysis for initial conditions which lead to dynamical re-
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/Q 1
( 100)1/2p —1/4~m

16.6

(100)1/2
ts

0
I . I

5 10 15 20 0 2000 4000 6000 8000

FIG. 2. Sketch of the phase space for dynamical relaxation
(region C). The region is bounded by the lines

Qo/k ~ (1/16.6)(100/n)'/ A~
'/ mp/T„kgo~ T2, and

Po~(1/16. 6}{100/n}'/ mp (n=100, T; =m/, , A&=10 ").

laxation. It shows P(x, t) oscillating with a gradually de-
creasing amplitude. Figure 4 shows the time evolution of
P(xo) where xo is the location of the crest of the wave.

The rest of the paper deals with the evolution of P in
those parts of phase space for which p&(t; ) ~ (1/n)p„d(t; )

but which do not obey all the initial condition constraints
to evolve by dynamical relaxation.

FIG. 4. The value of the scalar field at the point in space cor-
responding to the maximum of the standing wave as a function
of time (two-dimensional slice of Fig. 3).

///+3H/// a~V P—= —V'(P) . (5.1)

The Hubble damping force initially has the magnitude
' 1/2

T (5.2)3Ho{{}o—50
100

the order of magnitude of various terms in the equation
of motion for P(x, t):

V. CHAOTIC INFLATION, INITIAL CONDITION I

We now consider in detail consequences of starting
with a plane-wave initial condition with go=A,

&

' T;,
k =A.&/ T„and Po ~ T, As stated previously, even
though the initial condition satisfies p&(t; ) =(1/n)p„, d(t; ),
the Universe will quickly evolve into a state with
p(P) = V(d ) ))p„d, which is the initial condition of
chaotic inflation. One can learn a lot by just looking at

—2A, ~go
—10

1/4

T3
10

—12

the tension force is

q2y k 2y ){1/4T3

and the nonlinear force has the strength

(5.3)

(5.4)

&oo

FIG. 3. Three-dimensional plot of the time evolution of {{}{x}
for dynamical relaxation. The initial excitation was

P{x,t; }=/~sin(kx} and P{x,t; }=Pocos{kx). {go=T, /10,
go= T, , k =10T;, n= 100, T; =mp, /{.&=10 '~, o =10m~, and
each time step is At = ~~mp '. ) At the 800th time step the

scale factor is a = 18, and the Hubble parameter is H =0.05m p.

FIG. 5. Three-dimensional plot of the time evolution of P{x}
for chaotic inflation with back reaction included. The initial ex-
citation was P(x, t;}=Posin{kx},and P{x,t;)=0 {Po=kt, ' ."T;,
k =A,

& T;, n=100, T; =mp, A,&=10, cr=0, and each time
step is At =

—,'~m/, '. ) p„d=(V{/}),~„, at approximately the

16th time step. At the 600th time step, the scale factor is
a =3.3 X 10, and the Hubble parameter is H = 1.1m'.
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FIG. 6. The value of the scalar field at the point in space cor-
responding to the maximum of the standing wave as a function
of time (two-dimensional slice of Fig. 5).

Since the nonlinear and tension forces are smaller than
the Hubble damping force by a factor of A,&, one can
neglect them in a first approximation. Then the effective
equation of motion is

/+3 —/=0.
a

(5.5)

And therefore P-a . Figures 5 and 6 show the numer-
ical solution for P(x, t). They show a practically static
configuration. This has the immediate consequence that
V&(t) cannot stay smaller than p„,d(t) for a very long
time.

If we had started with P(t; ) =0, then the initial Hubble
damping force is smaller than the other two forces which
we previously neglected. But our result still holds since
starting with a smaller $0 will not help the system to de-
velop a large enough P(t) which would be necessary to
keep V&(t) ((p„d(t).

Notice that this conclusion was independent of the
choice of o.. In fact, as long as o. is chosen so that the
magnitude of the nonlinear force does not differ
significantly from our previous estimate, then our con-
clusion will remain unchanged. Since A,&-10 ', this
condition is easily satisfied.

We can obtain a rough estimate for the time t* when

p„,d becomes comparable to p&. Initially V&( t; )

=( I/ )p„n(t;d). At the transition time V&(t*)=p„d(t*).
But since P goes to zero rapidly, P remains essentially
constant. Therefore it is a good approximation to set
V&(t*)=V&(t, ), which implies a (t*)=n For n=. 100,
a (t') =3.2. Numerically we obtained a (t*)=4. Using
similar approximations one can show that at t ', the ten-
sion energy T&(t*) is smaller than p„,d(t*) and V&(t*) by
a factor of a (t*) . And from (5.5) it follows that the ki-
netic energy, IC&(t*), is smaller than p„d(t*) by a factor
of a (t*) .

After t* one can no longer neglect p& in the expression
for H. Therefore, back-reaction effects of p& on the evo-
lution of P via H are important. We have numerically
computed the evolution of P(x, t) until t ) r * including an

0.2

0.0

A

v4vvgvv
A R

T
T R

KKKkkkR
I. . . . I

0 20

V V V Y V V V V V V V V V Y V V V V

Isaac
I

40

I III all I ee
~ ~ I ~ a ~ ~ I ~

60 80 100
FIG. 7. Graph of the various energy densities and the scale

and Hubble parameter as a function of time for chaotic
inflation. p„~=R, ( Vig) ),~„,= V, (tension), ~„,= T,
(kinetic), ~„,=K. For reference we have also plotted the scale
factor and the Hubble parameter. (a =

—,'o scale factor, and

H
3

Hubble parameter, with y axes in the unit of nzz . )

approximate treatment of the back reaction (see Sec. VI).
The results for H (t), a (t), p„,d, ( V(P) ),~„„(K&),~„„
and ( T& ),„„,as function of time are shown in Fig. 7,
where "space" means spatial average. We see that p„d
continues to decrease until it becomes smaller than the
tension and kinetic energy. In agreement with the analyt-
ical prediction, V(P) hardly decreases while p„d falls.
Notice that for t ) t' [after ( V(P) ), „,=p„d], the Hub-
ble parameter H(t) remains approximately constant,
which shows that the Universe has entered into an
inAationary phase.

After the energy density of the Universe becomes dom-
inated by the potential energy term, the subsequent evo-
lution of P is as determined by the chaotic inflationary
scenario. Because the factor a in the equation of
motion for P [Eq. (5.1)], the tension force quickly be-
comes negligible for t & t*. For simplicity we shall con-
sider the case of cr =0. Then using H =(4vrGX&/3)'
and V'(P) =2K&/ the equation of motion becomes

3+4m G A,~/3
P+ P'P = —2A, ~P' . (5.6)

An analytical approximation which turns out to be self-
consistent is the slow-rolling approximation, ' i.e.,
neglecting the P term. The solution is

As a check, it can be shown that the acceleration term is
smaller than the other terms (provided that T; is not too
much smaller than

m p ):

' 1/2

P(x, t) =P(x, to)exp — m~(t to) . (5.7)—
3m.
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p(t)
V~(T)

p(t)
3H(t)(t (t)

2 2mz m&~ ]0
P(t)2 TP

1/2

&0-" exp 2

' 1/2

mt(t t—o) (5.8)

Using the Einstein equation for H(t) and (5.7) a straight-
forward calculation gives

a (t) =a (to)exp [(t(to) —(t(t) ]
mp

(5.9)

where to ——t* is the time when the Universe starts to be
potentia1 domination. For sufficient inflation we need the
scale factor to grow by at least e . A simple calculation
gives

(5.10)

I
1

I I

Given this value of tf —
t&& and using (5.7), it is clear that

P will be in a slow-rolling phase for the entire duration of
inflation. Figures 5—7 are numerical results including the
back-reaction effects and without making the slow-rolling
approximation.

So far we have discussed only one special point in
phase space which evolves via chaotic inflation. A simi-
lar analysis shows that for all initial conditions in region
A of Fig. 8 (large value of Po) the time evolution will lead
to chaotic inflation. The argument goes as follows. Ini-
tially, the Universe is dominated by radiation. Then for
general initial conditions, before any back reaction can
cause a(t) and H(t) to deviate from that of a radiation
era, the solution of the equation of motion is known
(4.1)—(4.3) assuming one can neglect the nonlinear force,
which can easily be justified. Previously, to get the pa-
rameter space for dynamical relaxation, we determined
parameters for which the tension, kinetic, and potential

l

energies remained smaller than (1/n)p„d(t) until P has
relaxed to zero. Here we ask what choices of Po, k, and

Po, consistent with p&(t, )=(1/n)p„d(t; ), will lead to an
equation of state dominated by potential energy. A
straightforward calculation gives

' 1/4
(t'o

& 1 i/4 100 mp

58& n T,

1
—,mt, . (5.12)

The subphase space for tension energy domination is
given in region B of Fig. 8. We will comment in Sec. VII
on what happens if both (5.11) and (5.12) are satisfied.

VI. COMMENTS ON BACK REACTION

As the value of p„d falls below p&, it becomes invalid to
take a -t' and H-t '. In our numerical simulation
we have directly integrated

8~6H = (p~+p„d) (6.1)

to obtain a (t). However, this method is only a first step.
Since P is inhomogeneous, the metric should also be inho-
rnogeneous. Its scale of inhomogeneity is the same as
that of the scalar field. Notice that it is. even wrong to
write P+3HQ aV P= ——V'(P), because metric inho-
mogeneities give rise to extra terms. In order to make
(6.1) well defined, we replace p& by its spatial average
(p&),~„,. In this approach, one must be careful when in-
terpreting the results. If the metric enters a de Sitter
phase via chaotic inflation, this should be interpreted as
the region of space where P is large starting to inflate.
This is the standard interpretation of chaotic inflationary
models.

There is also a condition for which the evolution leads to
an equation of state dominated by tension energy. The
criterion is

VII. TENSION ENERGY DOMINATION,
INITIAL CONDITION II

&/m

FIG. 8. Sketch of the phase space for chaotic inflation (re-
gion A) and for the tension energy-dominated universe (region
8). The phase space for chaotic inflation is bounded by
the lines $0+1& '~ T;, kPo~ T;, and Po/k ~(1/5. 8)
( 100/n )

'
A,

&
' "m& /T;. The phase space for the tension-

dominated Universe is bounded by the lines k/0 ~ T, $0 ~
2 mz,

and $0!k ~(1/16.6)(100/n)'~'A& '~ mp/T, (n=100, T; =mp,
k~=10 4).

In this part of the paper we discuss in detail conse-
quences of the initial condition Po=k = T, and Po~ T;
and n (T; ) = 100 (for T, =mp). As stated earlier, this ini-
tial condition will evolve into a tension energy-dominated
Universe. The region of phase space which gives an
equation of state dominated by tension energy is given in
region B of Fig. 8. In this case, there will be no inflation.
Recall that the condition for inflation is p/p & —

—,
' in or-

der for the Hubble radius to contract in cornoving
coordinates. ' Here one should substitute
p~ —,'(p +p +p, ), „, and p~(p), „,. But when
the tension energy domination occurs
p=( —

—,'(Vy)"-')„.„. A d
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3Hogo= 50 (7.1)

the tension force is

+2/ T3

and the nonlinear force has magnitude

(7.2)

V'(Qo) = 10
10

—12 T, maxto', P oI .

Since the nonlinear force is so small, we can neglect it,
at least initially. And since the scenario starts with
p&(t; )=(1/n)p, ~d(t; ), at least initially it is correct to as-
sume that both a and H will evolve as in the radiation-
dominated era. Within this approximation one can solve
the equation of motion exactly as Eqs. (4.1) and (4.2).

%'e just restate the solution with appropriate
coefficients. For P(x, t;)=T,sinT;x, P(x, t;)=T; cosT;x,
and k =T, we get P(x. , r)=[1/a (r)]f(x, r) where

Hof (x, r)=T; sinTx sinT;(r —r;)

+sinT, (x +r r,)— (7.4)

Substituting this solution into the expressions for the

therefore, p/p= —
—,'. This implies that the Hubble ra-

dius, in comoving coordinates, will not contract but will
have a constant size.

Again it is helpful to look into the order of magnitude
of the various forces acting on P. The Hubble damping
force is

' 1/2

various energy densities, one can see that the solution will
soon break down because the tension energy density be-
comes comparable to the radiation energy density.
Therefore the assumption of no back reaction becomes
invalid. This happens because of the large value of

' 1/2
1IIo n=16.6

T; 100
(7.5)

Alp

To estimate the time t when this transition occurs, we
take the case Po =0. The result for Po = T; is similar
since the large Hubble damping force quickly suppresses

t is given by equating T&(t) with~„d(t). Using
/n)p„d(t; ) we ~bta~~ tt (t ) =3/n

After t back-reaction effects are again important via
H. The numerical analysis shows that p„d(t) continues to
fall until it becomes smaller than the kinetic energy of the
scalar field. Graphically the field configuration appears
as a simple strongly damped oscillation (Figs. 9 and 10).
Notice that the conclusion is largely independent of the
value of o.. Our results will stand unchanged as long as o.
is chosen so that our previous conclusion about the small-
ness of the nonlinear force in comparison to the other
forces is not altered. This condition will be satisfied as
long as o. (A,

&
'~ T;. But after P has decreased its ampli-

tude such that P(x, t)((cr and the nonlinear force be-
comes non-negligible, then different choices for o. will
have effects on the evolution of P(x, t).

Some comments are in order . From our simplistic
derivation of different parameter spaces [Fig. 8, Eqs.
(5.11) and (5.12)], it appears as if there is a large region
which satisfies both the criteria for potential-energy dom-
ination and the criteria for tension energy domination. It
turns out that potential-energy domination occurs first.
Granted that the potential domination occurs first so
p&+p„d ——V(P), then because P hardly varies in time, the
potential will act as a cosmological constant. Therefore,
the scale factor will start to grow exponentially. But
since the tension energy is proportional to a, it will de-
crease exponentially and will never be important.

Finally, it should be noted that the region of tension
energy domination can be made to disappear for various
choices of n, and T;.

2 I I I I

0

FICx. 9. Three-dimensional plot of the time evolution of P(x)
for the tension-dominated Universe with back reaction includ-
ed. The initial excitation was P(x, t; ) =t)Iosin(kx) and
P(x t )=0. (Po=T;, k =T;, n=100, T, =mp, A~=10
cT 10Nlp and each time step ls ~t 7o mp ~ The tension en

ergy starts to dominate at approximately the 300th time step.
At the 20000th time step, the scale factor is a=200, and the
Hubble parameter is H = 1.71 X 10 m&.

-2 I I I I . I

0 5000 10 000 15 000 20 000 P5 000 30 000

FICx. 10. The value of the scalar field at the point in space
corresponding to the maximum of the standing wave as a func-
tion of time (two-dimensional slice of Fig. 9).
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VIII. MODE MIXING

it/(x, t) = g P»(t)e'" ", (8.1)

So far the analysis has been limited to initial single-
mode excitations. We would now like to discuss conse-
quences of exciting more than one mode. We are in-
terested in answers to specific questions. How do initially
unexcited modes become excited? How do excited modes
interfere with each other? If we excite one small k (be-
longing to the phase space for chaotic inflation) and one
or more of large k (belonging to the phase space for
dynamical relaxation) will the collective excitations still
cause the Universe to evolve into a chaotic inflationary
phase?

To our knowledge, no analytical analysis for mul-
timode excitations has been given in the literature. We
decompose P (a real scalar field) into its Fourier modes.
For numerical purposes we put our Universe in a box.
Therefore,

It is clear that even the largest term in the nonlinear
force is smaller than the tension force by A,

&
. Therefore

kz will evolve as a free mode. But the evolution of p» 2

will be somewhat different from the dynamical relaxation
case. The reason being that here the Hubble parameter
H will soon be determined by P» in the expression for

1

V(P) in p&, whereas in a dynamical relaxation case,
H (t) —t ' until the onset of inflation.

Were there no nonlinear effects, then initially unexcited
modes would remain unexcited. Modes which will to first
order become excited by nonlinear effects are +3k] +3kp,
+(2k, +k2), +(2k2+k, ). Of these initially unexcited
modes which we anticipate to get excited, the nonlinear
force for +3k, mode is the largest. Therefore, we expect
the growth for $3» to be the largest. The reason is clear

l

The largest nonlinear force term which can appear is
with it/» =A,

& T, The equation of motion for $3»
is

P»+3HP»+a k P»

0k g 0k ) 4»~4'k —k (
—k~

1' 2

(8.3)

Let us consider the case where we have excited two
modes. In particular k, =A,

& T;, P» =A,
&

' T; (belong-

ing to the phase space for chaotic inflation) and
k2=10T;, P» =0.1T; (belonging to the phase space for

dynamical relaxation).
One important fact one should keep in mind is that

since P is real, for every P» excitation there is also an ex-
t

citation p k =it/» The equ. ation of motion for the k,
t t

mode is

4'», +3HP», +&

=2k,&[o p»
—(~pk ~

+ ~/» ~ )/t/» +smaller terms] .

(8.4)
The largest term in the expression for the nonlinear force
is smaller than the tension force by A,

&
. But we know

from Sec. V that with these numbers iI)» will not change
1

very much in the course of time. Therefore, we conclude
that k& mode will again cause the potential energy to
dominate and give rise to chaotic inflation.

The equation of motion for the kz mode is

4», +3H4», +& 'k2it/»,

=2A~[cr it/»
—(~p» ~

+ ~it/k ~ )pk +smaller terms] .

(8.5)

where k can take on the values k L =2m.n„,
n =0, 1,2, . . . , and L is the size of the box. Because P is
real P»=P k. Using

1 ik x ik' xd3— . (8.2)k, k' &

~ ~

we Fourier transform the equation of motion (2.12) and
obtain

43» +3H43k +u 3k 1 43»

43»,
—

( ~ 4», ~'+ lb», ~')43», —
4k, ]

+smaller terms . (8.6)

Since initially $3» and $3» are zero, in a first approxima-
1 1

tion we can neglect all the terms containing them. We
now use a crude upper estimate:

( V(y) &„V($),„=2k.' T,', (8.7)

p3» (x, t) ~ 2A, &~it/» (x, t)
~

~ 2A,
&

"T, (8.8)

The solution with initial conditions ////3» (t; ) =$3» (t; ) =0
is

it/3»(t) ~
Ay "T, (t —t; ) (8.9)

1 I I I I I%J ~ lg %el

10.02—

10.01
E

10.00

9.99-
9.98;

100 200 300 400 500 600
FIG. 11. The value of the scalar field, at the point in space

corresponding to the maximum of the standing wave, as a func-
tion of time for two mode excitations [k, =A,&~ T;, k2=50T;,
P(x, t;)=P» sin(k, x)+P» sin(k2x), it/» =A& ' T;, P» = ,' T;, —
n=100, T; =mr, k&=10, o.=10m', and each time step is
at =

—,
' m,-'].

where ( )» means a Fourier amplitude of the kth mode.
Take the case where k;=3k, . Then the equation of
motion becomes
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m~
/3k (tf ) ~ C X mpT 10

—«2
(8.10)

where C is a constant of the order 1. This is very small
compared to

2

Pk (tf ) =A~ ' "'rexp

Therefore, we can conclude that the /3k mode will not
1

grow enough to interfere with initially excited evolution
of the k«mode.

For the other modes, the growth will be less because
the growth producing nonlinear forces are smaller for
them. The tension force for a large-k mode like 3k2 will

not be any problem because it will quickly be suppressed
by the large a factor. Figure 11 shows the time evolu-
tion from a numerical analysis for two-mode excitation.

To see how large this amplitude will be by the end of
inflation tf, use (5.10) and obtain

«/4

In agreement with the analytical prediction the two
modes essentially evolve independently; hence, their col-
lective evolution appears as a simple superposition.

IX. CONCLUSION

In this paper an analytical numerical study of the evo-
lution of a singlet scalar field has been given. All the ini-
tial conditions studied satisfy p&(t; ) =(1/n)p„d(t; ). It is
shown that even within this regime there is a region of
phase space for which the Universe will enter into chaot-
ic inflation. The results of this paper further quantifies
the phenomenological feasibility of chaotic inAationary
models.
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