
PHYSICAL REVIEW D VOLUME 40, NUMBER 8 15 OCTOBER 1989

Constraints on unstable neutrinos from cosmology
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We present a. detailed numerical calculation of the cosmological limits on the lifetime of Dirac
and Majorana neutrinos decaying into invisible modes.

I. INTRODUCTION II. EVOLUTION AND DECOUPLING
OF HEAVY NEUTRINOS

The possibility that neutrinos account for the missing
mass in the Universe has been considered seriously dur-
ing the last two decades. ' Stable neutrinos would be of
cosmological relevance if their mass is either in the range
40—100 eV or 1 —10 GeV. Stated in other words, the lim-
its on stable neutrino masses that follow from cosmology
imply that a neutrino must weigh less than 40—100 eV or
its mass must be bigger than 1 —10 GeV. (This last limit
is known as the Lee-Weinberg bound. ) A massive neu-
trino, however, can decay. If it decays, the limits on the
mass will obviously depend on the neutrino lifetime. This
more general case of neutrinos decaying into invisible
modes has been discussed in Ref. 3. The evaluation of
the limits in Ref. 3 was, however, done using some sim-
plifying assumptions. Because of the importance of these
limits, we have carried a detailed calculation of the limits
on the neutrino lifetime as a function of its mass, which
we shall present in this paper. Our results are somewhat
different than those of Ref. 3. The origin of the discrep-
ancy is that we have dropped some of their simplifying
assumptions. We discuss this in detail at the end of the
paper. A similar analysis corresponding to the case of a
heavy stable neutrino has been performed recently in Ref.

We shall consider a massive sequential neutrino —a
neutral lepton of a SU(2)I XU(1)r doublet —and investi-
gate its contribution to the Universe energy density. The
contribution contains a piece coming from the neutrino
itself and pieces related to the decay products. Our limits
follow from the requirement that this contribution does
not exceed the total energy density of the Universe. We
wi11 restrict ourselves to the case that the neutrino can
decay only into invisible modes, e.g. , three lighter neutri-
nos, a light neutrino plus a stable boson, etc. If it decays
into photons and/or charged particles, other constraints
(as the data on the microwave background) would apply
and, usually, this leads to more strict restrictions. We
will consider the case that the neutral lepton is a Dirac
neutrino as well as the case that it is a Majorana neutri-
no.

The paper is organized as follows. In Sec. II we study
the case of heavy neutrinos and in Sec. III we complete
the discussion with the consideration of light neutrinos.
In Sec. IV we present our results.

We consider first the case of a heavy neutrino, which
by definition is nonrelativistic by the time of decoupling.
We shall use the rate equation

"
=(crau~ &(n' —n,')—3IIn,

dt

which can be deduced from the Boltzmann equation pro-
vided some hypotheses are made. In Eq. (1), n is the
neutrino number density, no is the corresponding equilib-
rium value,

2 d pno(T)= 3f, (2)
(2') exp(Vm +p /T)+1

and ( cr
~

U
~

& is the average value of the annihilation cross
section times the modulus of the relative initial velocity
(the average is defined precisely in Ref. 5). The Hubble
parameter H in Eq. (1) is the Universe expansion rate at
time t and is given by

1/2
8~pG

3

where, in a radiation-dominated Universe with photon
temperature T, the energy density can be written as

p= g T

Here g, is the total number of effective degrees of free-
dom. At a given temperature of the radiation-dominated
Universe, the main contribution to g~ is due to relativis-
tic particles with m & T~. The values of g, would then
be approximated by a series of step functions. The con-
tribution of nonrelativistic particles to g, is suppressed
by the Boltzmann factor, but the existence of a large
number of such particles, e.g. , strong resonances, makes
it non-negligible. In our analysis we shall borrow the
realistic evaluation of g~ performed in Ref. 7, where rela-
tivistic as well as nonrelativistic particles are considered.

The rate equation (1) can be cast in a more convenient
form by defining

nY=—,
S
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We are interested in the case that the neutrino energy
density is an important fraction of the total energy densi-
ty of the Universe. After the decoupling of the massive
neutrinos, the Universe is still radiation dominated. The
energy density of radiation dilutes as T, compared to the
neutrino energy density which goes as T . It follows
that, as the Universe cools, there will be a temperature
T3 at which the contribution of the neutrinos to the ener-

gy density equals the radiation contribution. However,
the neutrinos will decay into invisible modes, and the de-
cay products will dominate the energy density. Thus, the
Universe will be again radiation dominated for tempera-
tures less than a certain T4. In our numerical analysis,
the consideration of these di6'erent epochs in the
Universe evolution will be important.

III. THE CASK OF LIGHT NEUTRINOS

For heavy neutrinos, we have used the rate equation
(8). If the neutrino is not heavy, this equation is no
longer valid since now the neutrinos are relativistic at
decoupling and we have to rely on other methods.

To evaluate the number density of light neutrinos after
decoupling we follow a standard procedure. ' We cal-
culate the decoupling temperature TD by equating the
rate of expansion of the Universe with the rate of interac-
tion of neutrinos:"

—(& —&D)l~ To dt
PD =m YTS e

tD T 7.

where Tp is today's neutrino temperature.
Our limits follow from the requirement

(16)

PND +PD —Pmax (17)

1P20
I

with p ax the upper bound on the energy density of the
Universe, which we discuss below. For each neutrino
mass, Eq. (17) determines the upper bound on the lifetime
~. We describe now the way we get this upper bound.

To use Eq. (17) we have to evaluate the integral in Eq.
(16). A complication is due to the fact that to calculate
that integral we need to know for each temperature
whether we are in a radiation- or matter-dominated
universe. This depends on the values of the transition
temperatures T3 and T4. However, these temperatures
depend in turn on the precise value of ~. To extract our
limits we have solved three coupled equations. One of
them is Eq. (17), while the other two are the equations
that define T3 and T4.

Our results are presented in Fig. 2. The limits depend
on T~(today). We take T~(today)=2. 7 K. We also need

&cr~u~nn &

&n&
(14)
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The knowledge of TD (Ref. 12) allows us to get the
number density at decoupling n (TD ) and the correspond-
ing value of Y, as defined in Eq. (5).

The method of obtaining TD using Eq. (14) might seem
inaccurate. To gain confidence in it we have performed
the following check on the method. We calculate the
decoupling temperature of heauy neutrinos using Eq. (14).
Independently, we also evaluate this temperature using
Eq. (8), defining TD as the temperature at which Y
departs from Yz. The two results are very similar and we
find this encouraging.
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IV. RESULTS AND DISCUSSION

In Secs. II and III we have shown our strategy to cal-
culate Y after decoupling and to evolve it until the
present Y(today). If the neutrino were stable the
present-day energy density would simply be given by
p=m YTs, where YT is Y(today) times the degrees of free-
dom of the neutrinos species (this has to include the an-
tineutrino contribution when the neutral lepton is of the
Dirac type), and s is the present entropy density.

The present-day contribution of unstable neutrinos to
the energy density contains two pieces. First, neutrinos
that have not decayed contribute as

1020
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where to is the Universe lifetime, ~ the neutrino lifetime,
and tD the decoupling time. The second contribution is
due to the decay products of the neutrino disintegration.
This can be written as

FIG. 2. Limits on the neutrino lifetime as a function of the
neutrino mass, for the (a) Dirac and (b) Majorana case. We
show the limits corresponding to Qh =2 (dashed-dotted curve),
Qh = 1 (solid curve), and Qh =

4 (dashed curve).
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to specify a value for p,„. We have set, as usual, '

p „=1 05 X ]0 QP MeV/cm

where

Pc

Ho

100 km s 'Mpc

Here, po and Ho are the present-day values of the energy
density and Hubble parameter and p, is the critical densi-
ty.

The observational limits on 0 and h are'

(20)

It follows that a conservative limit on the neutrino life-
time is obtained by using Qh =2. Given the large uncer-
tainties in 0 and h, we also display in Fig. 2 the bound
obtained assuming Qh =1 and —,'.

Dicus, Kolb, and Teplitz were the first to evaluate the
contribution of unstable neutrinos to the Universe energy
density. We have introduced the following improvements
in our work: (i) we make use of the precise calculation of
g„ in Ref. 7 (Dicus, Kolb, and Teplitz use a constant g, );
(ii) we use the Boltzmann equation when treating heavy
neutrinos, and this allows us to take into account quanti-
tatively that freeze-out is not instantaneous; (iii) we use
the exact cross sections and consider all open channels
(Dicus, Kolb, and Teplitz consider only the v, v, chan-
nel); (iv) we consider the different eras of the Universe
that arise in the presence of neutrinos and take this into
account in our calculations, solving the three coupled
equations we mention above. All these points introduce
numerical difFerences in the final results. For exam-
ple, the minimum lifetime obtained in Dicus, Kolb, and
Teplitz is (2.4 X 10 s, using t„=3. 15 X 10' s
(Qh = —,

' ). This has to be compared to our results
r(2.5X10 s (for Qh =1) and r~3.3X10 s (for
Qh =

—,'). We see that there is almost 1 order of magni-
tude of difference among the lifetimes. This minimum
lifetime corresponds to neutrino masses of a few MeV.
For greater masses, we notice that the difFerences are
even greater. When m =1 GeV, the bound on the neutri-
no lifetime in Dicus, Kolb, and Teplitz is ~(6.7X10' s
while our limits are r(4.3X10' s (Qh =1) and
r(5.5X10' s (Qh =—')

Binetruy, Girardi, and Salati . calculated the contribu-

tion of unstable neutrinos to the Universe energy density
taking into account that the freezing phenomenon is not
instantaneous. Compared to this work, the improve-
rnents we have introduced are essentially points (i), (iii),
and (iv) above. These authors present, in fact, two limits,
corresponding to a radiation- and to a rnatter-dominated
universe. As we discuss in point (iv) above, we consider
the evolution of the Universe in the presence of neutrinos
and end up with only one limit. Numerical differences
are also important. For m=1 GeV, the bound on the
neutrino lifetime in Binetruy, Girardi, and Salati, for
h =

—,', is r(1.7X10' s (radiation-dominated universe)
and r (2. 7 X 10' s (matter-dominated universe).

We have compared the TD obtained with the
Boltzmann equation to TD coming from the method used
by Dicus, Kolb, and Teplitz, i.e., by equating the interac-
tion time with the expanding time of the Universe. We
have shown they agree.

In the present paper, the cosmological limits on the
lifetime of a Majorana neutrino are also presented. The
differences among the two types of neutrinos are more
significant for heavy neutrinos, as it should be. The
minimum lifetime, corresponding to neutrino masses of a
few MeV, is ~ ~ 2. 5 X 10 s for Dirac neutrinos and
&~4.3X10 s for Majorana neutrinos. For m=1 GeV
and Qh =1, we get the limits r(4. 3X10' s (Dirac) and
r ( 1.4 X 10' s (Majorana). The asymptotic mass limit
for a heavy stable neutrino is rn )2.5 GeV (Dirac) and
m )3.5 GeV (Majorana) for Qh =1. The limit on heavy
stable neutrino masses was considered in Ref. 4. Besides
the fact that our work considers stable and unstable neu-
trinos and that smooth transition from unstable to stable
is shown in our plots, we also have some difFerences with
Ref. 4. Indeed, we distinguish among T and T and
among g, and g~, in the Boltzmann equation.

In conclusion, we have performed a very detailed cal-
culation of unstable neutrinos to the Universe energy
density. Compared to previous work on this subject, we
have made several improvements and have obtained
somewhat different results.
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