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This paper examines the evolution of spherical bubbles in a vacuum for all possible values of the
controlling parameters within the context of the general-relativistic thin-wall approximation. We
propose a general classification of the admissible solutions and a graphical-numerical algorithm for
their explicit construction from any given set of initial data. The different sectors in the space of the
parameters are identified and a map of regions is constructed where single families of solutions can
exist.

I. INTRODUCTION

The dynamics of relativistic bubbles has been investi-
gated by many authors with different applications in
mind. ' ' The evolution of bubbles in the Minkowski
vacuum was analyzed long ago in Refs. 2 —4 in connec-
tion with the bag model of hadrons and a classification of
the admissible solutions of the bubble equation of motion
was obtained. In that approach, gravitational effects on
the evolution of bubbles in a vacuum were considered
later in Ref. 10 within the thin-wall approximation and
under the assumption of spherical symmetry, thus re-
stricting the geometry to be of the Schwarzschild —de Sit-
ter type. Remarkably, it was found that the mechanism
that generates the vacuum pressure in the bag model of
strong interactions can also trigger the mechanism of
vacuum decay envisaged in the inAationary scenario of
the early Universe. The bubble equation of motion can
be derived either from Israel's junction conditions, ' or
from an action functional modeled on the Einstein-
Maxwell system' "" in general relativity. A remark-
able feature of the action functional formulation is that
the interior and exterior cosmological constants are intro-
duced in a natural way through the solutions of the cou-
pled field equations;' moreover, the dynamics encoded
in the action functional selects positive or at most vanish-
ing cosmological constants and excludes negative
values. ' This is not the case when bubble dynamics is
discussed in the framework of a scalar field theory. In
the approach based on general relativity, the potential
complexities of vacuum decay associated with the spon-
taneous symmetry breaking of the underlying grand-
unified theory are reduced, in the thin-wall approxima-
tion, to the specification of just three effective parame-
ters: the surface tension p, assumed a priori to be posi-
tive, and the interior and the exterior vacuum energy

densities A and A+. In this overall picture of bubble
dynamics, the missing link which has eluded us so far is a
well-defined algorithm to construct the solutions of the
equation of motion of the bubble for arbitrary values of
the above parameters. The objective of this paper is to
fill this gap by extending the algorithm of Ref. 3 along
the lines proposed by Blau, Guendelman, and Guth'
(BGG) for the special case of a bubble of false vacuum in
the de Sitter phase separated from an infinite region of
true vacuum with vanishing energy density.

To our mind, the extension of the BGG method is not
only useful but necessary. Indeed, the discussion of the
special solutions of bubble dynamics that we have found
in the literature is somewhat fragmentary and sometimes
controversial; the only papers that we are aware of where
an attempt is made at a systematic classification of the
solutions are those of Refs. 3, 9, and 12. The BGG paper
has the virtue that, given their choice of parameters, it
offers a simple and rather systematic catalog of the possi-
ble solutions. However, the admissible solutions of the
equation of motion can be classified in a large parameter
space and, depending on the specific values of the param-
eters, the solutions can play a role in different physical
situations ranging from particle physics' ' to various
aspects of the large-scale structure of the Universe at the
present epoch. ' '

Against this background, it seems desirable to have an
algorithm capable of determining all possible types of
solutions together with the region in parameter space
where single families of solutions can exist. Thus, in Sec.
II we develop the analogy of the bubble motion with that
of a particle in a potential. ' '" Then, following the for-
mat of the BGG paper, ' we reduce the bubble equation
of motion to a dimensionless form which lends itself to a
straightforward graphical and numerical analysis. In
Sec. III we derive all the necessary formulas in our algo-
rithm and discuss some definite examples.
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(ds+ )z=(ds )z=dsz,
where

dsz =g,,dl'dl~= dr +8—(r)(d8 +sin 8 dP )

represents the intrinsic metric on X. Alternatively, bub-
ble dynamics can be formulated as a gauge theory. " In
this case the equation of motion of the bubble radius can
be derived from an action functional describing the in-
teraction between the bubble and the cosmological
gauge field 3, a differential three-form
3 =

—,
' A„&dx"hdx hdx with field strength I" =dA in-

variant under the gauge transformation 3 ~A +dA.
The details of this formulation and its underlying physi-
cal basis are fully explained in Ref. 11 and will not be re-
peated here. The outcome of either approach is this: un-
der the assumption of spherical symmetry, we can assign
the de Sitter (or anti —de Sitter) metric with cosmological
constant A to M and the Schwarzschild —de Sitter (or
Schwarzschild —anti —de Sitter) metric with cosmological
constant A+ to M+. Here, the "anti" prefix refers to the
case of negative cosmological constants. If one further
prescribes the value of the surface tension p on the bub-
ble, then by the mechanism of the junction conditions or
by the usual variational techniques in the action function-
al formulation, one is led to the equation of motion of the
bubble radius which, in geometrical units, takes the

7, 10—12, 14

2
E A —A+ E2=BR'—1 —— —1 +, (2.1)3k' k2z4 '

II. THE EQUATION OF MOTION

In Israel's approach to bubble dynamics, ' let X
represent the timelike three-dimensional world track of
the bubble which separates the spacetime manifold M
into two distinct four-dimensional manifolds M and
M+, each containing X as its boundary. In this ap-
proach, the key ingredient in deriving the radial equation
of motion of the bubble stems from the following con-
tinuity condition as one approaches X from M or from
M+. Let

ds y =g ~plex +dx +

represent the metrics in M —,so that when approaching X
in M+ or M one has to demand that A —3k —

( —12k A )'i

&A+ &A —3k'+( —12k'A )'" (2.5)

which is represented by the interior of the shaded area in
Fig. 10. The upper right quadrant in Fig. 10 is the pa-
rameter subspace corresponding to the action functional
formulation, ' " while ordinary unified theories corre-
spond to arbitrary points in parameter space according to
the value of the Higgs potential.

The parameter space considered in the BGG paper
consists of the positive axis A &0 (A+=0). It is in-
teresting that the general formulation allows for negative
values of A and A+,' these values correspond to an inte-
rior anti —de Sitter (AdS) phase and an exterior
Schwarzschild —anti —de Sitter (SAdS) phase, respectively.

The boundary of the shaded area in Fig. 10 evidently
corresponds to 8 =0. In this case the equation of motion
is still well defined but degenerates into a difFerent equa-
tion which is not directly relevant to our discussion. Our
main concern here is with the full Eq. (2.1) with k )0,
E &0, and 8%0.

The next step in our algorithm is based on the simple
observation that the equation of motion of the bubble can
be interpreted as the equation of motion of a particle
moving in one dimension under the inAuence of a poten-
tial. ' '" This property is especially clear if we rewrite
the equation of motion in dimensionless form. ' Intro-
ducing the new variables

L2 L2
z = 8 ands'=

2E 2k
(2.6)

where

I. = ,'[i(A +A++3k—)—4A A+~]' (2.7)

mal diagram. ' Equation (2.1) describes a rich variety of
bubble histories ranging from black-hole and wormhole
solutions to bouncing solutions and to monotonically ex-
panding or contracting solutions. The algorithm for their
classification starts with the identification of the di6'erent
regions in parameter space according to the sign of A
and A+. This is illustrated in Fig. 10 below where the
parameters A+ and A are expressed in units of 3k . In
the following discussion we take k )O, E )0 and deduce
from the defining equation (2.2) that 8 )0 when A+ & 0.
When A+ & 0, we must distinguish two cases: (i)

A+ «O, A & 0 then 8 & 0; (ii) A+ & 0, A & 0, then 8 & 0
inside the region of the parameter space defined by

where, by definition,

8 = [(A+ —A —3k ) +12k A+], .

36k

(2.3)
dz =Q —V(z), (2.8)

one finds that the equation of motion takes the simple
form

'2

and E represents the total energy of the bubble, a first in-
tegral of motion, in the form

E =R +8 —[20.(1 ——'A R +R )' —kR ],
A —A+

6 2 3

(2.4)

where o. parametrizes the sign ambiguity related to the
rate of change of the polar angle in the de Sitter confor-

where, by definition,

V(z)= — o~z + +2F 1

0'g =sgn8

(A+ —A )+3k
3 L 2

(2.9)

(2.10)
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4k' &0.
(2E)2/3L 8/3

In addition, we introduce the auxiliary quantity

1 (A+ —A ) —3kY=—
3 I 2

and quote the simple relations

L, 4=4k'I~I,

(2.11)

(2.12)

(2.13)

dz
d7'

A

—4k'A, ~k'A+
Y —1= Y —1=-

3L, ' (2.14)

which we have found useful in the course of our analysis.
For instance, Eq. (2.13) is at the origin of the signature
term in the potential V(z), while the relationships (2.14)
can be used to classify all possible background geometries
according to the values of Y and Y. Indeed, we have
three types of interior bubble geometries: (a) anti —de Sit-
ter (AdS), for which A (0 and Y ) 1, (b) Minkowski
(M), for which A =0 and Y =1, (c) de Sitter (dS), for
which A )0, Y &1. Each of these geometries can be
matched to three kinds of exterior geometries: (a)
Schwarzschild —anti —de Sitter (SAdS), for which A+ (0
and Y ) 1, (P) Schwarzschild (S), for which A+ =0 and
Y ) 1, (y) Schwarzschild —de Sitter (SdS), for which
A+ &0 and Y &1. Thus, we have in principle nine pos-
sible scenarios for the bubble evolution. However, the
e6'ective control parameter is the dimensionless variable
Y defined in (2.10); furthermore, the energy E appears
only in the variable Q. Therefore Q, which is negative by
de6nition, characterizes the di6'erent solutions of bubble
dynamics in the dimensionless formulation.

We will discuss erst the case 8 &0. The important
qualitative features of the solutions can be inferred from
Fig. 1 and are displayed in Fig. 2. Figure 1 represents the
graph of the potential-energy function V(z) for various
preassigned values of Y. The potential has a single max-
imum whose location zM depends on Yas

z =—'[(8+Y )' + Y] (2.15)
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FICx. 1. A graph of the potential-energy function V(z) for in-
teger values of Y. When

~ Y~ (1 the vacuum energy densities
are positive.

FICx. 2. The phase portrait of the vector field representing
the radial equation of motion.

and the corresponding value of the potential is calculated
to be

3
V —= V(z )=—,(z' —1).

zM
(2.16)

For completeness, we also quote the expression of the
critical energy for which Q(E„)=V(zM): using Eqs.
(2.11) and (2.16), this condition gives

1 4k
3&3 L." (z' —1)'" (2.17)

zi = —Y—( Y —1)', z~= —Y+( Y —1)'/ (2.18)

with z, & z2, of course, when Y= —1, z
&
=z2 =zM = + 1.

Note that in the plane of V(z) vs z represented in Fig. 1,
the possible bubble trajectories correspond to straight hor-
izontal lines with constant (negative) Q.

An alternative representation of the three types of solu-
tions is displayed in Fig. 2. Here the trajectories are asso-
ciated with the fiow of a vector field in the (z,z) plane;
the phase portrait of this vector field is a plot of the equa-
tion of motion itself for diFerent values of Q at fixed Y
and VM &0. Trajectories A and B are of type I with

While Eq. {2.16) is identical to that quoted in the BGG
paper, ' the novel feature here is the "overshooting" of
the potential curve over the zero threshold. In this con-
nection we note that 0&zM ~1 and VM ~0 when Y~ —1

and no bubble trajectory can exist in the region where
V(z) &0.

For any given value of Y, the shape of the potential
curve indicates that there are at most three basic types of
solutions; for later reference we shall list them as fol-
lows {i) type-I or "bounded" solutions for which there
exists a maximum radius z implicitly defined by
Q= V(z); (ii) type-II or "bounce" solutions for which
there exists a miniinum radius z defined by Q = V(z ); and
(iii) type-III or "monotonic" solutions for which the ener-
gy of the bubble exceeds the critical value defined by
Q«-)= VM.

Evidently, no monotonic solutions can exist when
Y & —1 and the two positive roots of the equation
V{z)=0 are



2514 ANTONIO AURILIA, MARC PALMER, AND EURO SPALLUCCI

zM =
—,'[ —Y+(Y —8)'i ] . (2.20)

Evidently, if Y & 8 then V'(z) never vanishes in the phys-
ical region z an1

'
z & 0 and V(z) represents a function increas-

(x). us for Y (8ing m onotonically from —Dc to + (x). us, or
finds only type-I or bounded solutions. orone n

a max-and Y'&0 the maximizing equation (2.20) gives a
imum and a minimum in the physical region z & 0. How-
ever, the value of the potential corresponding to the two
extrema is calculated to be

V„=V(z )=, (z'„+l)&0.= 3

zM
(2.21)

The above results are summarized in Fig. 3. Thu,F 3. Thus when
B & 0 a local minimum of V(z) exists but it lies above the
z axis and corresponds to negative-energy solutions which
we have excluded from our present discussion.

III. THE ALGORITHM

Q & VM, trajectories 6 and H are of type II with Q & VM,
and trajectories C, D, E, and I' are of typee III with

Q & VM, C, and I' representing the asymptotic trajec-
tories of monotonic type corresponding to ~ =o ~~ =0. The
two pairs of curves (I,L) and (M, X) are limiting trajec-
tories with Q = VM, the critical point R corresponding to
zM. These trajectories mark the transition from bounded
to monotonic solutions and from bounce to monotonic
solutions, respectively; trajectories I and M take an
infinite proper time to reach the equilibrium point at R.
Moreover, a trajectory initialized at rest at the equilibri-
um point, in principle remains there forever. Thus,
strictly speaking, trajectories L, and N can never be seen.
However, the static bubble configuration of radius z =zM
is unstable in the sense that an arbitrarily small perturba-
tion will cause the bubble to either contract to zero ra-
dius along trajectory I. or to expand indefinitely along
trajectory N.

When 8 (0, the shape of the potential is affected by
the signature term in the defining Eq. (2.9) and one would
expect a local minimum in V(z) and a new class of solu-
tions representing oscillating bubbles. However, these
new solutions correspond to negative-energy bubbles and
must be excluded from our classification. In order to sub-
stantiate this statement we first observe that when 8 (0,
the two roots of the equation V(z) =0 are

z' = Y —( Y'+1)'"&0, z,' = Y+( Y'+ I)'~'&0 (2.19)
1

so that the potential curve intersects the positive z axis at
the single point z2. Next, the two roots of the equ'ation
V'(z) =0 are

8--
Y = -3 Y = -/33/4 Y

Y=1

6--

4

2--

p
N

-2--

-4--

-6--

-8--

FIG. 3. A graph of the potential-energy function V(z), in the
1case 8 &0, for different values of K Notice that the loca

minimum of the function V(z) is always above the z axis, so os-
cillating bubbles are classically forbidden because they would
have negative mass energy.

Q =( Y —1)zds =—V(zds)+ ~ (1+Yzds )
2

zds
(3.1)

To find the analogous equation for the Schwarzchild —de
Sitter horizon is slightly more involved since, in princi-
ple, one could find two, one, or no horizons' according
to the value of the ratio A+/9E . The horizons are
defined as the roots of the algebraic equation

2E
Rsds

A+
3 Rsds =0 (3.2)

wormholes. An extra variable is required to describe the
evolution of the bubble in relation to the cosmological
horizons.

Accordingly, we define a new "landmark" in our
classification as the value of the coordinate z where the
curve representing the de Sitter (or Schwarzschild —de
Sitter) horizon is tangent to the potential curve V(z).
Following the format used by Blau, Guendelman, and
Guth, ' first we have to determine the horizon curves in
terms of our dimensionless variables defined in Eqs.
(2.6)—(2.12). The de Sitter spacetime exhibits a cosmo-
logical event horizon only if A )0, which implies

~ Y~ & 1. In terms of the z coordinate the de Sitter horizon
radius takes the form zds =(L /2E) (3/A )

2 1/3 '". Then
taking into account the first of Eqs. (2.14), it is easy to
derive the de Sitter horizon equation

The results of the previous section show that we can
broadly classify the solutions of Eq. (2.8) according to
their type, i.e., bounded, bounce, or monotonic solutions
and according to the background geometry. As an exam-
ple, dS-SdS-I means a bounded de Sitter bubble in a
Schwarzschild —de Sitter spacetime. Actually, this infor-
mation is not enough to give a full characterization of the
bubble dynamics. For instance, at this stage one cannot
distinguish between solutions evolving into black holes or

Since

and

—2 2 +A
Y —1=—4k

3L, 4 7

2k
Y—Y= I 2

Eq. (3.2) can be written in dimensionless form as

(3.3)

(3.4)
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Q =( Y —1)zsds —2( Y —Y)
zs(IS

Y —1
Vds = V(zds ) Y2/3

(3.1 1)

(3.6)

where Q takes on the value
2/3

(3.7)

or, in terms of E, via Eq. (2.11),

(3.8)

which is just the condition for having a single horizon in
the SdS metric. ' For 3E (QA+ there are two intersec-
tions in the region z) 0 corresponding to two physical
horizon; they coalesce when Eq. (3.8) holds, and no hor-
izon exists in the physical region if 3E )QA+.

On the other hand, for A+ & 0, or Y ) 1, there is a sin-

gle horizon at

= V(zsds )+ (1+Yzsds ) (3.5)
z sds

The advantage of this formulation, which is an extension
of the BGG analysis' for —1 + Y ~ 1 with A+ =0, stems
from our earlier observation that in the V —z plane of
Fig. 1 the bubble trajectories are represented by straight
horizontal lines corresponding to a fixed value of Q. Evi-
dently, in the same V-z plane and for a preassigned value
of the energy, the corresponding values of the horizon ra-
dii are determined by the intersections, if any, between
the bubble trajectory with fixed Q and the horizon curve
(3.5). The analytical basis of our graphical method is as
follows: for A+ )0, or Y & 1 there is a single maximum
in the horizon curve at

1/3
3L
2A+

aIld

Y2 —2YY+1
Vsds = V( Sds ) —2/3Y 2/3

(3.12)

In the above interpretation, the bounded (bounce) trajec-
tory of a bubble for which the maximum (minimum) at-
tainable radius is precisely zsds (zds) acquires a special
status: for this to happen, the energy of the bubble must
be exactly tuned so that either Q = V(zsds ) or Q
= V(zds ). These conditions give

4k Y

L ( Y —2YY+1)
(3.13)

4k Y
L4 (1 Y2)3/2

(3.14)

Pds Psds =kR

where

(3.15)

Having identified the new landmarks (3.9) and (3.10), the
above discussion requires some qualifications. Note first
that zds and zsds are defined for Y & 0 and Y & 0. In addi-
tion, we note that when Y'~ —1 then the value V(zds ) of
the potential V(z) at zds is 0. This property refiects the
fact that Eq. (3.1) has no physical meaning for Y~ —1

since A &0 and the interior "horizon" is undefined for
anti —de Sitter space. When Y ~ —1, the mathematical
curve (3.1) is still tangent to the potential curve but the
tangent point is in the unphysical region where V(z) 0.

Another property of zsds and zds is based on the prov-
en equivalence between the equation of motion (2.1) and
Israel's equation in the form

r =
0

3E i/9E
A2

1/2 1/3
A

P =o. 1 — R +Rds 3

' 1/2

(3.16)

i/ 9E
A+

1

A+

1/2 1/3

and in fact the horizon curve is monotonically increasing
for z) 0; there is no stationary point in the physical re-

gion. Hence, for any assigned value of E there is a single
intersection with the curve (3.5) providing the correct
value of the horizon coordinate.

So, all the complexity pertaining to the global structure
of the SdS spacetime is encoded into the simple Eq. (3.5).

Now we can determine the points where the horizons
are tangent to V(z). In the de Sitter case the contact
point is

A+ 2 2E
P =o 1 — R — +Rsds 3 R

' 1/2

(3.17)

and

p„=IQI-'"
z2

(3.18)

Inspection of the form of pds and psds indicates that they
vanish at the point where the horizon curves are tangent
to the potential-energy curve V(z). Indeed, in terms of
our dimensionless variables Y, z, and Q, we find

1
z = —— —1&Y&03

ds Y&
(3.9) 3= lQI-'"

z2
(3.19)

zsds= ——,—1~ Y&0
Y

(3.10)

The corresponding values of the potential V(z) are

while the Schwarzschild —de Sitter horizon is tangent to
V(z) at Since Psds and Pds are monotonic functions of z, the

switch in sign occurs at

3 = 1
z sds — ( for Psds )

Y
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and (3.20)

r= 0

-0.5

co $0

g -1.5
40

V
+ -2.0

-.Q ds

~r A
D

-2.5—

-3.0
0.5

dS ~$

I I

ZSdS

~+SdS

c0

.og '; C
5ds

l I l I Xl l I 'k l l .

ZdS 2.5

z

FIG. 4. An example of the numerical-graphical method to
determine the admissible solutions for a given point
(A+/3k =3,A /3k =5) in the parameter space of Fig. 10.
The corresponding values of Y and Y are Y= —0.2182,
Y= —0.6547.

It is understood that Eq. (3.20) holds under the same as-
sumptions leading to (3.9) and (3.10).

The physical role of the new landmarks can be better
understood with reference to a specific example. Figure 4
describes de Sitter bubbles in a Schwarzschild —de Sitter
background, with Y= —0.2182, Y= —0.6547. Some
typical trajectories are labeled according to the notation'
of BGG and the corresponding conformal diagrams are
drawn according to the rules discussed by Walker. '

(A) This is a small-mass type-I solution. All along the
trajectory both 13szs and P~s are positive, so that the polar
angle in SdS spacetime is always increasing while it de-
creases in the interior of dS space. Such a behavior is de-
scribed by the Pen rose diagrams in Fig. 5. These
configurations are generalizations of the black-hole solu-
tions of Refs. 7 and 8.

(C) This is a type-II bounce solution. The minimum
radius is larger than zzs and zszs. The bubble crosses
both the dS and SdS horizons but evolves always outside
the black-hole SdS horizon. Both Ps~s and P~s are nega-
tive indicating that the SdS polar angle is decreasing
while the dS polar angle is increasing. See Fig. 6.

(D) This is again a type-II solution, but now the
minimum radius is smaller than z~s and still larger than

So, Pzs changes its sign along this trajectory before
the dS horizon is crossed. For the external observers the
Penrose diagram is the same as in case (C), while for the
internal observers the bubble crosses sector III of, the dS
Penrose diagram rather than sector I. See Fig. 7.

The following cases do not fit into the BGG
classification.

(F) This is a type-III monotonic solution. It dift'ers

FIG. 5. Penrose diagram for a type-I bounded solution.
(Here and in the following the dashed areas have to be removed
and the two diagrams matched along the trajectory. ) The bub-
ble expands up to the maximum radius z, and then collapses
into a SdS black hole.

from the BGG E bubble because Pszs changes sign after
the trajectory has crossed the cosmological SdS horizon,
so that the bubble goes through region I instead of region
III of the SdS Penrose diagram. A static observer in I is
then doomed to crash against the expanding bubble wall.
See Fig. 8. The only way out is to fall through the
cosmological event horizon before the bubble arrival.

(G) This is a limiting type-III solution, in the sense that
the mass E ' of the bubble is fine-tuned to satisfy
Q (E' ) =Q (z ). In this case the two horizons of the SdS
metric degenerate into a single null surface r = I/QA+.
The corresponding Penrose diagram is in Fig. 9. Every-
thing goes like in (F).

(H) This is a type-III solution with Q) Q(E'). The
exterior geometry has no horizons. The corresponding
conformal diagram consists of a horizontal infinite strip
such as the right-hand side of Fig. 9 with the horizon
lines excised, bounded from below by the r =0 singularity
and from above by "script" I+. The actual diagram,
which we do not reproduce here, can be found in Fig.
3(c) of the first paper quoted in Ref. 6. As far as the
internal observer is concerned the bubble evolution is the
same as in (G).

The quoted examples are far from exhausting all possi-
ble physical configurations of the system. A detailed
analysis of the other cases is postponed to a future paper.
Rather, the central question to be addressed now is how
to determine the admissible solutions for a given set of
values of the parameters A+/3k and A /3k . This
brings us to Fig. 10 which is a map of the parameter
space with all the landmarks which are relevant to our
discussion. The shaded area and its boundary were dis-
cussed at the beginning of the paper; we simply add here
that, in order to give a meaning to the solutions with
I.'=0, one must refer to the equation of motion in its
original form (2.1). The meaning of the other landmarks
on the map is as follows: the parallel lines QX and R JY
are defined by the equations Y=O and Y=O, respective-
ly; Q (

—1,0) and R (0, —1) are branching points where Y
and Y are, respectively, undefined; on the vertical axis,

r= 0

r=o

FIG. 6. Penrose diagram for a type-II bounce solution.
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r=O

r=0

r=O

FIG. 7. This is again the Penrose diagram for a bouncing
solution, but now P~s changes sign before the dS horizon curve
is reached. The trajectory crosses region III of the dS manifold
rather than region I as in the previous case.

FIG. 9. This is the extreme SdS case exhibiting a single de-
generate horizon. The bubble is again described by a monotonic
type-III solution.

( Y+1)
V(zsds)= — (0 .

Y 2/3 (3.21)

The set of points where Vsds = V(zsds ) =0 consists of the
line AB in the region where Y & —1 and

Y —2YY+ 1=0 (3.22)

A

3k
= —1, so that zsds =z, . (3.23)

As noted earlier, no monotonic solutions can exist for
Y& —1. Finally, the set of points in parameter space
where zsds =zM consists of the line R Y where

Y= + 1 below point R and Y= —1 above R; on the hor-
izontal axis, Y =+1 to the right of Q; to the left of Q,
Y= —1 and therefore z, =zM =zds =z2 = 1, V(zi )
= V(zM ) = V(zds ) = V(zz ) =0, the interior de Sitter hor-
izon is undefined, and the SdS horizon is tangent to V(z)
at zsds=L /(L +k )(1. Thus, when Y= —1,
zsds zM =zds and

izon curves and the potential-energy curve V(z) are plot-
ted using Eqs. (3.1), (3.5), and (2.9).

The above procedure automatically selects a possible
solution for any allowed value of the bubble energy E or
Q. Figure 4 shows an explicit application of the algo-
rithm (steps 1 —5). Once a value of Q is selected, the loca-
tion of the trajectories relative to the horizon curves and
V(z) gives all the necessary information to reconstruct
the detailed evolution of the bubble.

In conclusion, the algorithm proposed in this paper
shows that the history of a spherical bubble in a vacuum
can be analyzed algebraically in terms of the potential
V(z) and the horizon curves. There are many applica-
tions of the various families of solutions. For instance,
the study of localized inAation in the early Universe dis-
cussed in the BGG paper, ' focuses mostly on monotoni-
cally expanding solutions; in the general formulation we
find that these solutions are not always permitted and we
have specified the domain in parameter space where such
solutions are excluded. In connection with the
confinement mechanism in the bag model, ' where the

A A+=3 —1.
3k 3k

(3.24)

Thus, to the right of the line R Y, ZM &z,D', the value of Y
can be positive or negative but ) —1 so that V(zsds)(V(zM)(0 and monotonic solutions can exist. The de
Sitter horizon and the SdS horizon are both well defined
in this region.

The algorithm to determine the set of admissible solu-
tions proceeds along the following steps: (1) a point
(A+/3k, A /3k ) is assigned in any given region of pa-
rameter space; (2) L, Y, Y are calculated using Eqs. (2.7),
(2.10), and (2.12); (3) zM, zds and zsds are calculated using
Eqs. (2.15), (3.9), and (3.10); (4) VM, Vds, and Vsds are
calculated using Eqs. (2.16), (3.11), and (3.12); (5) the hor-

r=0 r=0

r=O r= 0

FIG. 8. Penrose diagram for a type-III unbounded trajectory.
The world line of any static observer in region I of the SdS man-
ifold is crossed by the bubble trajectory.

A+
3k

FIG. 10. The complete map of parameter space with all the
"landmarks" which are necessary in the classification of the
possible solutions. The interior of the shaded region corre-
sponds to 8 & 0; on the boundary of this region L =0 and the
values of Y and Y are undefined. Any other region on the map
is characterized by a definite value of Y and Y.
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bag constant plays the role of a cosmological constant in
the hadronic vacuum, the interest is mostly on bounded,
or "black-hole" solutions.

Finally, it would appear that "baby-universe" solu-
tions, once included in the Euclidean path integral of
quantum gravity, may bridge the gap between microphy-
sics and the large-scale structure of the Universe, thus
offering a possible solution to the long-standing problem
of the zero value of the cosmological constant. ' In this
connection, we note that the action functional formula-
tion" of bubble dynamics is the natural framework to ex-
tend our results to Euclidean space; this extension is
necessary if one is interested, for instance, in the
classification of the bubble Euclidean trajectories in con-
nection with tunneling processes in false vacuum decay
or in connection with the problem of the cosmological
constant. These interesting problems will have to be the
subject of a separate investigaton.
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