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Some comments on fiipped SU(5) X U(1) and fiipped unification in general
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A general group-theoretical discussion of flipped embeddings is given. In addition to the well-
known flipped SU(5) and flipped SO(10), the existence of flipped E6 and E7 is shown, as well as
several families and special cases of flipped embeddings. A possible physical reason, essentially
based on the group theory of flipped embeddings, why nature prefers the low-energy group
SU{3)X SU{2)XU(1) to alternatives such as SU(4) X U(1) and SU(5) is pointed out.

There has been much recent interest in the so-called
"Aipped SU(5)" as a unification group in the context of
superstring theory. The existence of this group structure
was first mentioned in the literature in a paper of De
Rujula, Georgi, and Glashow. ' It was independently
rediscovered in Ref. 2, where it was given the name
presently attached to it and where it was first explicitly
studied in detail. In Refs. 2 and 3 the group and Higgs
structure of Aipped SU(5) unification were worked out as
well as the implications for sin 0, the proton-decay life-
time, and proton-decay branching ratios. The natural
generalization to "Aipped SO(10)" was first made in the
literature by Kephart and Nakagawa (although already
known to the authors of Ref. 1). In the context of ordi-
nary, that is, nonsupersymmetric, grand unified theories
there was no reason to regard flipped SU(5) or Aipped
SO(10) as having any superiority over other unified
schemes. However in the context of subsequent develop-
ments certain features of Aipped unification have been
found to be advantageous. The most significant break-
through in that regard was the observation of Ref. 6 that
the "missing-partner mechanism" can be implemented
much less artificially in Aipped than in standard SU(5).
This mechanism for explaining the splitting of the funda-
mental Higgs multiplet into a superheavy color triplet
and a light weak doublet requires introducing a 75 and
(50+50) of Higgs field (in addition to the 5+5) in ordi-
nary SU(5), whereas in flipped SU(5) only a 10+10 is
needed. A second key advantage only arises in the con-
text of superstring unification. The breaking of
SU(5) XU(1) down to the standard model in the flipped
way requires (again) only an SU(5) 10 of Higgs fields ' '

whereas to break in the standard way requires an adjoint
(24) of Higgs fields (or a larger representation) which
would not be present in the matter content of a super-
string model. It has also been found that "Aipping" al-
lows one to overcome some of the difficulties associated
with giving neutrinos acceptable masses in superstring-
inspired models.

In this paper we would like to make two points —one
group theoretical and one physical. The group-
theoretical point is that the phenomenon of Aipped
embeddings generalizes to many groups. For example,
we shall show that Aipped E6 and Aipped E7 also exist.

Moreover, we point out that a Aipped embedding
sequence SO(2N)~SU(N) XU(1)~SU(N —p) XSU(p)
X U(1) exists for all N and p. This is interesting because
it means that in flipped SU(5) models one can end up with
a low-energy group of SU(5) or SU(4) XU(1) as well as
SU(3) XSU(2) XU(1) just as in standard SU(5). This will
bring us to our physical point which is that flipped
unification may provide a key to understanding why the
low-energy group SU(3) X SU(2) XU(1) is preferred. We
say "may" provide such a key because the ideas involved
are quite speculative and involve several assumptions.

The idea of a Aipped embedding arises in the following
group-theoretical context. Consider the sequence of sub-
gfoups

G DH XU(1)x D [K X U(1)z] XU(1)x,

where G is a simple group, H and E are simple or
semisimple, and (rank K)=(rank H) 1=(rank G—)

—2.
The generators of U(1)x and U(1)z are X and Z, respec-
tively. What we will call the standard breaking chain is

G~H~K XU(1)z .

What we call the fhpped breaking chain is

G~H XU(1)~~K XU( l)z,
where the generator Z of U(l )z is given by

Z =aZ+PX, P&0

and where the representations of G decompose under
IC XU(1)z into the same representations with the same
charges as under K XU(1)z.

When the sequence is SO(10)D SU(5) X (1)z D SU(3)
X SU(2) X U(1 )z XU(1)x that Aipped breaking chain is
what has been called "Aipped SU(5)." In a way this is a
misnomer since the Aipped is distinguished from the stan-
dard embedding at the point when H XU(1) breaks to
KXU(1). In a way, a better term would be "Aipped
SU(3) X SU(2) X U(1)." Nevertheless, the name Aipped
SU(5) has stuck and is justified to the extent that one can
get the correct "flipped" SU(5) multiplets from the "stan-
dard" SU(5) multiplets by interchanging or flipping v~e
and u~d. For this flipped sequence a= —

—,'. (This is of
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10,0

13,1

1
—3, 1

1+3,—1

Under both E8—+E6XU(1)z and E8~E6XU(l)z where
Z = —

—,'Z ——', X one gets the same set of representations.
In this case the pairs that fiip are [27,27"],[1' 1 ' '] [1 ' 1' ] and [1' ', 1' ] There is
also an equivalent flipping Z = —

—,'Z+ —', X. [It should be
noted that in this sequence E7XU(1)» is not a maximal
subgroup of Es. Rather Es&E7XSU(2)DE7XU(1)». ]
To take a second example, consider the same exceptional
sequence with N=7. Under E7DE6XU(l)»V[SO(10)
XU(l)z]XU(l)» the fundamental representation of E7
decomposes as follows:

56~1 +1 + 27' +27

10,3 10,—3 161,1

10
—2, 1

+
14, 1

10+

1
—4, —1

E7~SO(10)XU(1)z and E7~SO(10)XU(1)z with Z
= —

—,'Z+ 3X give the same representations with the fol-
lowing pairs being fiipped: [10 ', 10+ ' '], [1 ', 1 '],
[10,—3 1

—4, —i]
A second generalization is to the orthogonal series.

Consider the sequence of subgroups SO(2N) D SU(N)
X U(1)» D SU(N —p) X SU(p) XU(1)z XU(l )». Here for
all N (odd and even) and all p =0, . . . , N there are both
standard and flipped embeddings. [Here SU(0) and SU(1)
are defined to be trivial. ] For these cases
a=+(2p/N —1). The spinors of SO(2N) are 2 ' di-
mensional. For X odd we have conjugate complex spi-

course enough to determine P once the relative normali-
zation of the generators Z and X is defined. ) The other
flipped embedding that is well known is G=E6,
H=SO(10), IC=SU(5) which is called usually "flipped
SO(10)." For this a= —

—,'. Both of these are instances of
the general case 6=Ex 0=Ex—1 and %=Ex—2

which both standard and flipped breaking always
exist. [Ez —=SO(10), E&=SU(5), E3=SU(3) X SU(2),
E2=SU(2) XSU(2), E, —=SU(2). These identifications are
based on isomorphisms of the Lie algebras. ] For these
a(N) is given by a(8) = —

—,', a(7) = —
—,', a(6) = —

—,',
a(5) = —

—,', a(4) =
—,', a(3) =

—,'. To illustrate let us consid-
er N =8. Under the subgroups E8 D E7 X U(1)»
&[E6XU(1)z]XU(1)» the fundamental (adjoint) decom-
poses as (in obvious notation)

248~ 133 + 56' + 56 ' + 12 + 10 +1-2

78 27 27 10,2 10,0 10,—2

+ + +
27 " 27 " 27

nors 2 ' and 2 ' with

(N —1)/2
2x —i y [2k](N —4k)

k=0

under SO(2N)~SU(N) XU(1)». (Here [p] means a ten-
sor representation with p antisymmetric indices. [p]q
refers to such a representation with charge q under
U(1)». ) If one component of a Higgs field in the
[p]~ ~~ representation develops a superlarge expecta-
tion value then the group SU(N) XU(1)» will break to
the group SU(N —p) XSU(p) XU(1)z in the fhpped way.
To get the standard breaking to SU(N —p)XSU(p)
XU(1)z one needs an adjoint Higgs field (or larger).
Since all [p] (or their conjugates [N —p]=[+]) are con-
tained in the spinor 2 ', in a grand-unified-theory
(GUT) model all such flipped breakings are achievable in
an equally simple way. For SO(2N) with N even the same
situation obtains.

Not all sequences give flipped embeddings. In Table I
we present certain families of cases 6 DH XU(l)»
DK XU(1)z XU(1)» some of which have fiipped embed-
dings and some of which do not. These comprise all the
families of cases involving the phenomenologically in-
teresting U, SO, and E series. Note that SO(2N) always
has two subgroups of the form H X U(1) with rank
H =N —1: SO(2N) ~SO(2N —2) X O(2) and SO(2N)
~SU(N) XU(l). Similarly SU(N) has the subgroups
SU(N —1)XU(1) and SU(N —p)XSU(p)XU(1). Ez al-

ways contains Ez, XU(1). Putting these together in all
possible ways gives the cases in Table I.

Certain groups can give a U(1) factor in a different
way. For example, E6 contains the maximal subgroups
SU(6) X SU(2) and SU(3) XSU(3) XSU(3) from which one
can consider various cases like 6=E6, H= SU(5) X SU(2),
K= SU(3) X SU(2) X SU(2). In Table II we present a selec-
tion of various special cases of this sort that do not fall
into families. Again, some of these approaches have
flipped embeddings and some do not.

At first glance it appears v' ery remarkable, almost mira-
culous, that flipped embeddings exist at all. One is solv-
ing a set of simultaneous linear equations of the form
Z; =aZ; +PX; where i refers to a multiplet of
K XU(1)z XU(1)». There is only one unknown (once we
normalize X and Z, P is determined up to a sign by a ),
but as many equations as there are multiplets. The prob-
lem is very overdetermined and one would expect only
the trivial (i.e., standard) solution a = 1,P=O.

At second glance it appears almost trivial that flipped
embeddings exist since they correspond to symmetries of
the Dynkin diagrams. Consider the Dynkin diagram for
SO(10). It contains the Dynkin diagram of SU(5) in two
ways. If we call these two SU(5) subgroups SU(5)„and
SU(5 )2 then SO(10) contains the subgroups SO(10)
& SU(5 ) i & SU(3 ) i X SU(2 ) i X U(1 ) i and SO(10) D SU(5 )2

&SU(3)2XSU(2)2XU(1)2. A representation of SO(10) is
guaranteed to give the same set of charges when decom-
posed under U(1), and U(1)2 since these are automorphic
to each other. Thus it seems obvious that SO(10) will
contain a standard embedding SU(3), X SU(2), X U(1),
and an inequivalent fiipped embedding SU(3), XSU(2),
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TABLE I. Families of fiipped embeddings. a defines the embedding through Z =aZ+PX; see Eq.
(1) of text. An X in last column means that no fiipped embedding exists for that sequence. [Note that
"flipped SU(5)" corresponds both to the first family with X= 5, and to the third with N =S,p =2.]

E EN —1

SU(N)

SO(2N)

SU(N —1)

SU(N)

SO(2N)
SU{N)
SO(2N)

SO(2N —2)
SU(N —p) X SU(p)
SO(2N —2)

SO(2N + 1) SU(N)

EN —2

SU{N —2)

SU(N —p) X SU(p)

SU(N —p) X SU(p)

SO(2N —4)
SU(N —p) X SU(q) X SU(p —q)
SU(N —1)

a(8) = —-' a(7)=
a(6) = —

4 a(5) =
a(4) —— a(3)——
a = 1/(N —1)

a=+ 2p
N

Reduces trivially
to previous case
a=O
X
X

1

3
1

5

XU(1)2. However, this argument is a bit too superficial.
A key question is whether U(1)2 commutes with
SU(3), XSU(2), . If so, as indeed is the case, then the ar-
gument for the existence of a Hipped embedding is valid.
In all of the cases in Table I where there is a Qipped
embedding, it can be attributed to such a symmetry of
the Dynkin diagram. The cases where this argument fails
are those where U(l )2 and Ki do not commute. Thus the
existence of Hipped embeddings, while not a miracle or
Auke in any sense, is not a complete triviality either.

It could turn out eventually that any of the Aipped
embeddings in Tables I and II could have relevance to
the real world. But if we restrict ourselves to the super-
string framework then probably only "flipped SU(5)" has
any hkelihood of being relevant. Suppose we consider the
possibility that the world in four dimensions is described
by a supersymmetric SU(5) XU(1) unified model with the
following characteristics. We assume the matter multi-
plets are in SU(5) XU(l) representations that would come
from the decomposition of a 16, 16, 10, or 1 of SO(10)
that in turn would come from the decomposition of a 27
or 27 of E6. Suppose further that supersymmetry is bro-

ken softly at low energies as in hidden sector models. We
can imagine all this as emerging from superstring theory
or not. Can we hope to understand why the low-energy
theory is SU(3) X SU(2) XU(1) rather than SU(4) XU(1) or
SU(5) which are also rank 4? We will now present a
speculative answer to that question which involves
several assumptions, of course, and that uses in an essen-
tial way the group-theoretical features of Aipped
unification. Among the possible Higgs fields available to
do symmetry breaking in the situation we describe are
(10'+10 '), (5 +5+ ), and (1 +1 ) representations
of SU(5) XU(l). Not all of these representations of
SU(5) XU(1) are necessarily present in the sub-Planck-
scale world, but a priori there is no reason to expect the
5+3 to be less likely to be present than the 10 ', say. [If
we did have some argument why this would be so, it
would be a simpler reason for SU(3) X SU(2) XU(1) rather
than SU(4)XU(1) being the low-energy group. But we
are not aware of any such argument at the present time. ]
Let us say then that Higgs fields in all these representa-
tions are present in the four-dimensional theory. Then
we have three possibilities for a rank-4 low-energy group:

TABLE II. A sample of special cases that do not fall into the families of Table I. X in last column
means that no Aipped embedding exists, or that only a trivial one with a = —.1 exists.

E6

E6

E6

E6
E6

E7

Es
E7
E6
E6
E6
E6
E6
E7

SU{6)
SU(5) X SU(2)
SU(5) x SU(2)
SU(3) X SU(3) X SU(2)
SU(3) X SU(3) X SU(2)
SO(12)
E7
SO(12)
SU(6)
SU(6)
SU(S) x SU(2)
[SU(4) X SU(2)] X SU(2)
[SU(4) X SU(2)] X SU(2)
E6

SU(3) x SU(3)
SU(3) x SU(2) x SU{2)
SU(4) x SU(2)

SU(3) x SU(2) x SU(2)
SU{3)X SU(3)
SU(6)
SO(12)
SO(10)
SU(5)
SU(4) X SU(2)
SU(5)
[SU(4)]X SU(2)
[SU(4) X SU(2)]
SU(6)

1a=
2

4a=—
5
1

5

a=O
—1a=—

2

a= ——1

2

a=O
X
X
X
X
X
X
X
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if ( 10 + 10 ' )%0, then SU(3) X SU(2) X U(1), if
(5 3+53)%0, then SU(4)XU(1), and if (1 +1 )%0
then SU(5). These are all fiipped breakings in the
sequence SO(2N) D SU(N) X U(1) D SU(N —p) X SU(p)
XU(1) of Table I. Which is to be preferred?

The (10'+10 '), (5 +5 ), (1 +1 ) all have D-fiat
directions. We suppose that these are also F-Hat,
with the tree-level potential arising from the soft
supersymmetry- (SUSY-)breaking terms m, p IH, p I

+ m'—„IH—„I'+m'IH I'+ m';IH-, I'+ m'IH I'+
Following the scenario of Ref. 7 we imagine that the
effective potential turns over at very large values of the
classical field due to radiative effects. The one-loop con-
tribution to V,z is

V, )„= Str[M (H; )lnM (H; ) /Q ],1

64m

where Q is a renormalization scale. This supertrace
must be taken over all species of particles and to evaluate
it we must know, among other things, the fuH superpo-
tential. We do not know this, of course, indeed we do not
even know how many of each type of multiplet there are.
The most well-known part of the model is the gauge sec-
tor, where we know the particle content exactly to be a
massive vector supermultiplet in the adjoint of
SU(5) XU(1). The masses of these gauge particles will de-
pend on four parameters: g5 and g, (the gauge cou-
plings), and p~ and p& (the SUSY-breaking gaugino
masses), where the subscripts refer to SU(5) and U(1).
We will take g5=g1=—g and p5=p1—=p for reasons of
simplicity. Actually, as will be apparent, the one-loop
potential is much less sensitive to the values of g1 and p1
than to g5 and pz, so our qualitative conclusion does not
depend much on this simplifying assumption. (We expect
g~=g, at the Planck scale anyway. ) A much more seri-
ous simplifying assumption we will make is to ignore
completely the contributions from the other sectors,
about which we know less. One could justify this if the
dominant source of SUSY breaking were gaugino masses
as assumed in Ref. 7. Moreover those of the Yukawa
couplings that we do know experimentally are quite small
compared to the gauge couplings. If that is assumed to
be a general feature of the couplings in the superpotential
then the matter contributions to V»„(which go as the
square of these couplings) will be much smaller than the
gauge contributions (which go as g ). What we find if we
make this assumption is that the one-loop effective poten-
tial is more negative in the SU(3) X SU(2) XU(1) direction
than the SU(4) XU(1) direction, and more negative in the
SU(4) X U(1) direction than in the SU(5) direction.

The SU(3) X SU(2) X U(1) direction corresponds to
(10'+10 ') getting a vacuum expectation value (VEV)
(which we will call V,p) and (5 ) =(5 ) =(1 )
=(1 ) =0. Thirteen gauge bosons get mass, twelve of
them a mass of g5 I V,o I =gl V,p I, and one a mass of

1

&10
(24g', +g', )'"Iv„l =—&5/2gl v„l .

(Note the weak dependence on g, we mentioned above. )

The scalar partners of these get mass

2 2 1/2
m 10+m 10g2+2 +10 2

ancl

1/2
m 1o+m105g2p2 +

2 2

respectively. And the gauginos get mass
1/2

2

g Vfo+ +gPI V&ol2

and
1/2

—,'g Vfp+ +&5/2gpl V,pl2

respectively. A little arithmetic gives

V& &„(V&p) = —12f(g, m &p+m &z,p, V&p )

2 2 2 2 2f ( ,g, m, o
—+ m——,p, p, , V,o ), (2a)

f (g 2m 2p2V2)g2V21

64m

g2 p2——' —ln m2 Q2

2 p'2
+ 8+8 1n

2 p

V) )„p(v, )= —8f(g', (m', +m-', ),p2, V', )

—f(—', g, (m~+m5), p, V5), (3)

where here the 8 is just the dimension of
SU(5)/SU(4) XU(l), i.e., again the number of broken
SU(5) generators. Finally, for a Higgs-singlet VEV, V„
which breaks SU(5) X U(1) to SU(5) we find

V) („p(v, )= —f( —',g, m, +m-, ,p, Vf ) . (4)

Ifp' & m; as assumed in Ref. 7, or if m, +m-. are approx-
imately equal for i = 10,5, 1, then we see that the potential
is steepest in the SU(3) X SU(2) X U(1) direction and least
steep in the SU(5) direction, and that this efFect comes
from counting the number of broken generators of SU(5).
Now, in fact, the one-loop effective potential is unbound-
ed below. One presumes that higher-order or nonpertur-
bative effects will cure this, but unless one can compute
these effects one cannot make any assertions about the
direction in which the absolute minimum lies. However,
in the spirit of MAC (most attractive channel) arguments,
it seems reasonable to take the one-loop result as indica-

(2b)

Note that the dominant contribution which is the first
term in Eq. (2a) is just proportional to the number of bro-
ken generators of SU(5), i.e., the dimension of SU(5)/
SU(3) X SU(2) X U(1), which is twelve.

Now consider the SU(4) XU(1) direction which corre-
sponds to (5 +5 ) getting a VEV which we denote V5.
We find
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tive. In any event we can say that there is a physical
effect which favors the SU(3) XSU(2) XU(1) channel but
that other higher-order effects conceivably could coun-
teract this tendency.

This mechanism makes essential use of Hipped break-
ing. Suppose instead we had considered an adjoint Higgs
field of SU(5) (which would not be allowed in the frame-
work of superstrings). The directions that break to
SU(3) X SU(2) X U(1) and SU(4) XU(1) are, respectively,

1—diag(2 2 2 —3 —3 )
&60

1

v'40
—diag(1 1 1 1 —4) .

The coe%cient in front of the gauge contribution to the
one-loop effective potential will be proportional to
12[[2—( —3)]/&60I for the SU(3)XSU(2)XU(l) direc-

tion and 8I[ 1 —
(
—4)]/+401 for the SU(4) XU(l) direc-

tion. [The first factor being in each case the number of
broken generators, and the second coming from normal-
izing the SU(5) generators consistently. ] Thus the one-
loop potential does not prefer either direction. It is easy
to see that this pattern remains true for SU(N)

SU(N —p) X SU(p) XU(1). The normalized generator
that commutes with the unbroken group is

p(N p»)
—.

&2Np (N —p)
N —p p

and the number of broken generators is 2p(N —p). Thus
the gauge contribution to V»„(gauge) is proportional to
2p (N p)[N—/&2Np (N —p)] =independent of p. On
the other hand, for the Aipped case SU(N) X U(l)
~SU(N —p) X SU(p) X U(1) the SU(N) part of the gauge
contribution to V»„ is just proportional to —2p (N —p)
and so will be deepest for p = [N/2].
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