
PHYSICAL REVIEW D VOLUME 40, NUMBER 7

Four-generation model based on an S4 permutation symmetry
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We consider an S4 family-symmetry model with four generations of leptons and quarks. A mass
relation of the form ml /m, =m, /mb =m, /I, is obtained. The predicted values of individual
4X4 Kobayashi-Maskawa matrix elements are within recent experimental data. If the charged-
lepton mass of the fourth generation is at 30 GeV and the t-quark mass is at 35 GeV, the masses of
the d- and u-type quarks of the fourth generation are predicted to be 73+2 GeV and 523+3 GeV,
respectively, taking account of the renormalization-group effect.

I. INTRODUCTION

One of the problems in the standard model' is the so-
called generation problem: why leptons and quarks ap-
pear repeatedly in the same manner. To answer this
question some ideas have been proposed: leptons and
quarks have substructures which realize the family repli-
cation; there is a symmetry between generations in addi-
tion to the SU(2) XU(l) symmetry. The first idea is called
a composite model and the second idea is divided mainly
into two types of models: one is a horizontal-gauged-
symmetry model and the other is a discrete-symmetry
model. The composite model needs new fundamental
constituents and the horizontal-gauged-symmetry model
needs extra gauge bosons to avoid the appearance of
Nambu-Goldstone bosons after the spontaneous breaking
of the family symmetry.

On the other hand the discrete-symmetry model does
not need any new fields that are not contained in the stan-
dard model. If one does not want to introduce any new
fields, the discrete model seems to be a minimal extension
of the original unified theory of weak and electromagnet-
ic interactions to settle the generation problem. For this
reason the discrete model has been studied by many au-
thors. However, .in general, we are obliged to proliferate
Higgs sectors if we introduce such a discrete symmetry.
As a natural consequence, the Aavor-changing neutral
current (FCNC) will arise from neutral-Higgs-boson cou-
plings. This is the price to be paid for adopting the
discrete symmetry. If we want to forbid the appearance
of the FCNC at any cost, it is possible to do that in a
discrete model, but it is impossible to get the fermion
mixings to be in agreement with experimental data. On
the other hand if we admit the appearance of the FCNC
by neutral Higgs bosons, ' the fermion mixings which do
not contradict with experimental data can be obtained.
Even if we adopt such a model, we do not want the
FCNC to appear in the low-energy region because the
processes KL ~pp, pe, etc. , are known from experiment
to have rates too small. So we usually assume heavy neu-
tral Higgs bosons to suppress such rare processes.

Thus we can construct two kinds of discrete models:
one forbids the FCNC and the other admits the FCNC.

If we attach importance to correct prediction of the fer-
mion mixings rather than the appearance of the FCNC,
we should adopt the latter discrete model rather than the
former one. Some years ago the latter discrete model was
proposed by Pakvasa and Sugawara. They constructed a
three-generation model of leptons and quarks based on
the permutation symmetry S4, which is a discrete group
of degree 4. At that time they concentrated on a problem
of fermion masses and predicted the t-quark mass I, to
lie in 26 GeV~m, ~35 GeV. A few years later, Yamana-
ka, Sugawara, and Pakvasa (YSP) determined the
Kobayashi-Maskawa (KM) matrix in their model. It is
remarkable that their prediction for the KM matrix was
in agreement with experimental data well. Thus YSP's
model is one of the hopeful candidates to settle the gen-
eration problem.

In these family-symmetry models, there still remains
an important question how many generations there are in
nature. Unfortunately, not only YSP's model but also
family-symmetry models have not yet answered the ques-
tion. Therefore if we want to get some information about
the number of generations N, we are forced to rely on
another theoretical reasoning or experimental results at
present. There are two kinds of theoretical constraint on
the number of the generations. The one is N ~3 which
comes from the CP-violation mechanism suggested by
Kobayashi and Maskawa. The other is N & —", which
comes from asymptotic freedom' in QCD. On the other
hand, there is an astrophysical constraint" that suggests
the existence of a fourth neutrino being almost on the
verge of exclusion. In the near future the precise mea-
surement of e+e —+vvy (Ref. 12) and the decay width of
Z will provide us the number of neutrinos. Since the
number of neutrinos will be equal to the number of gen-
erations, they are the most promising experiments to
determine the number of generations of leptons and
quarks. Additional information about the number of
generations may be obtained from the large Bd-Bd mixing
found recently by the ARGUS Collaboration, ' which
may suggest the existence of fourth-generation quarks. '

We have generally believed that the number of genera-
tions is 3, but, as stated above, there is no reason that we
must not suppose more than three generations. Then it
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might be interesting to extend YSP's three-generation
model to the four-generation one.

In this paper we construct the four-generation model
based on an S4 permutation symmetry. Before dealing
with the S& permutation symmetry, we discuss the gen-
eral permutation symmetry S„ in the next section. A
more specific model based on an S4 symmetry for four
generations of leptons and quarks is analyzed in detail in
Sec. III. In Sec. IV an additional reAection symmetry is
introduced. It is remarkable that the fermions of the first
and second generations do not acquire masses by the
symmetry. The resulting mass formula for the fermions
of the third and fourth generations enables us to estimate
the quark masses of the fourth generation. We estimate
the masses taking account of the renormalization-group
effect. In Sec. V we show that the reflection symmetry
leads to the symmetric KM matrix. We also show the
values of individual matrix elements. We need to give
masses to the fermions of the first and second generations
since those fermions are forced to be massless by the
reflection symmetry. In Sec. VI we give them masses by
breaking the reflection symmetry. It is shown that the
KM matrix elements are modified slightly as the fermions
of the first and second generations acquire masses. In the
final section we summarize the prediction of the model.
Throughout this paper, (a, U)' denotes the fourth-
generation quarks with electric charges ( —', , ——,')e and

(vr, L ) denotes the fourth-generation leptons with
(0, —1)e.

(2.2)

where M&, M, and M+ represent charged lepton,
down-quark, and up-quark mass matrices. Note that the
up-quark matrix has an asterisk because u-type quarks
couple to P . The proportional relation (2.2) gives the
mass re1ation

m, :m„:m:m&. . . =md. m, :mb.m, : .

=m ~
'. m~ '. m t '. m g . ' ' (2.3)

This relation is, however, in contradiction with the ob-
served ratio, i.e.,

the symmetry between u- and d-type quarks, we should
also take D(uz ) =D(dz ). In addition, assuming the sym-
metry between leptons and quarks, we should also take
D(lz ) =D(ur ) =D(dr ), and D(lz ) =D(u~ ) =D(d~ ).
Such an assignment gives a proportional relation between
f,jk, gjk, and h;jk in each element. Therefore the fermion
mass matrices of the charged lepton and the u- and d-
type quarks form the same structure.

Let us show that the representation D should not be ir-
reducible, but reducible. If each field is assigned to one
irreducible representation, each charge sector has only
one coupling constant, so the fermion mass matrices are
proportional to one another:

II. THE S„FAMILY SYMMETRY

V

Ik
L d~ ~ Q)t& d)t& 4k ao

L Yk

In this section we discuss the assignment of the fer-
mions to the representation of S„. We shall denote the
left-handed (LH) doublets, right-handed (RH) singlets,
and Higgs scalars doublets by

m e:m p W m d .' m s

Therefore each of the LH and RH fermions should not be
assigned to one irreducible representation of S„;at least
either the LH or RH fermion should be assigned to some
reducible representation of S„. If we take such an assign-
ment, we may get a more realistic mass relation. We will
show an example with a reducible representation in the
next section.

where i,j =1—X for N generations and k =1—K for K
Higgs doublets. We then have the Yukawa couplings of
the general form

III. THE S4 FAMILY SYMMETRY
FOR FOUR GENERATIONS

+Y g fijk(v't')ikkIR + X gijk(& 'd')r. bkA
i,j,k i,j,k

+ g h; k(u'd')~Pku$+H. c. ,
i,j,k

(2.1)

where pk =ir2pk. The coupling constants in each charge
sector are complex numbers in general. '

Let us impose the S„permutation symmetry on the
Yukawa couplings (2.1). LH fermions lr, ur, and dr are
assigned to the representations D(lr ), D(ur ), and D(dr ),
respectively, ' RH fermions I„,u~, and d~ are assigned to
the representations D(lj, ), D(u„), and D(d~ ), respective-
ly. The representation D may be irreducible or reducible
at the present stage. Since LH quarks form doublets of
SU(2), we must have D(uz )=D(dr ). Then, assuming

In the preceding section we set up a general scheme for
N generations of leptons and quarks based on the permu-
tation symmetry S„. We shall here apply this scheme to
the case of four generations: X=4. Although there is
uncertainty about the degree of the permutation group,
we take here the permutation group of degree 4, S4. The
permutation group S4 has irreducible representations of
dimensions 3, 3', 2, 1, and 1' (the prime means antisym-
metric representation). Since the group S4 does not have
an irreducible representation of dimension 4, we can-
not assign four-generation fermions to one irreducible
representation. The Higgs doublets also must be assigned
to more than one irreducible representation. Although
there are some assignments, we shall here deal with one
of them. The LH doublets and the RH singlets of fer-
mions, and Higgs doublets are assigned as follows
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V2 V3

l2 L' l3 L l4

3

11R & 12R & [13R~14R }

1 1 2

Q)

L'

Q2 Q3 Q4

L 3 L 4

d, R, d2R) [d3„,d4R }

u1R ~ u2R i [u3R &u4R } Xr [$0~$1&$2}

1 1 2 1 3

(3.l)

When we assign the LH doublets and RH singlets as 1+3, 1 12, respectively, there are some assignments of Higgs
doublets to get S4-singlet Yukawa couplings. Only when Higgs doublets are assigned to 13 do all fermions acquire
masses. This is why we introduce four Higgs doublets. The general Higgs potential invariant under SU(2) XU(l) XS4
by this assignment is'

Po(4040+4141+0242)+~(0000+4101+4242) +1 [ p(0001+0140) + 6(4040+0101 4202) 1

+) [ (4042+4240) + (4142+4241) + (4040 0141) 1

2

+~[ (4041 0100) +— (0102 4201) + (0'24'0 004'2) 1+1'rXX+~XXg (4i( ')+b(XX)
i=0

(3.2)

As shown in Appendix A, the vacuum expectation values (VEV's) of neutral members of the four Higgs doublets are
given by

(3.3)

the potential is minimized when
2

@+5
p+5

The minimum is stable if

b &o, ly+&I & Ip+&I,

The Higgs-boson Yukawa coupling invariant under SU(2) X U(l) X S4 is

I-r = A (v, l, )LX11R +B(v, lL )LX12R

+C[(v212 )L 00+ (v313 )L 41+ (v414 )L 02]11R +D [(v212 )L 00+ (v313 )L01+ ( 414v)L4'2 }12R

1 1+ [(v212 )L 01+(v313 )L 4'2113R + —[(v212 )L 00+ ( v313 )Ldl 2( v414 )L 42}14R
2 6

A+, 8 A, B
+ similar terms for quarks with '

C D &
' —+ '

C +~ +~ +~

(3.4)

(3.5)

1L~qL, 1/R~(uR, d/R); (X,y;)~(X,y;;X,y;) +H c (3.6)

where
0

At the tree level the mass matrices of leptons and quarks are obtained from (3.3) and (3.6):

l, Q)

Q2

(1,121314)LM' 1
+(d, d2d3d4)LM d3 2

l4 d4

+(u, u2u3u4)I M+
Q3

+H. c. ,
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where

0

e31e'& e e'& e41
EM1=

e e '& e e '& e'
31 41

0

1 ip
v'3

(3.7)

6'41K 0
—2
v'3

Here lr =&2(2/g, co =v 2U /g, e» =v 2 A /E, ezr =v 2B /E, e» =v 2C /E, and @4&
=v 2D/E. M+ have the same form

as M& with E+ replacing E, and P~+P. We find explicitly that the relation M& ~M ~M+ is broken. The Lagrang-
ian (3.6) and the corresponding mass matrix (3.7) are the general form for the assignment (3.1). However, there are too
many coupling constants in (3.6) to predict the fermion masses and the fermion mixings. Therefore, as a first approxi-
mation, we impose on the Lagrangian a reAection symmetry which reduces the number of parameters and increases the
predictability. In addition, it explains naturally why the fermions of the first and second generations are much lighter
than those of the third and fourth ones. In Sec. VI, we will reintroduce those Yukawa couplings dropped out by the
reAection symmetry as a perturbation to give masses to the fermions of the first and second generations.

IV. THE MASSES OF THE FOURTH-GENERATION QUARKS

In this section we study the model with a refiection symmetry (R) and predict the masses of the fourth-generation
quark s.

We require the Lagrangian (3.6) to be invariant under the sign changes of S4-singlet fields. The remaining couplings
are then

1 1I.y=E —[(v&lq)1 P&+(v3l3 )I Pp]l3g + —[(vql2 )~Pp+(v3l3 )I P~ 2(v4l4)I Pz]l4&—
2 v'6

+[similar terms for quarks with E +(E+,E ), —l I +qL, lz ~—(u~, d~ ), P, +(P;,P; )]+—H. c. (4 1)

0

0 0 e-'~ 1 i

v'3

Of course the reduced Lagrangian also preserves
SU(2) X U(1) X S~ invariance. The corresponding
charged-lepton mass matrix is then

0 0 0

UiMt Vt =diag(m„m„, m„ml ),
U M V =diag(md, m„mb, m, ),
U+M+ V+ =diag(m„, m„m„m, ),

the fermion mass eigenvalues are given by

(4.4)

1

0 0 e'~

0 0 0

1 —i

v'3
—2
v'3

(4.2) m, =O,

md=0,

m„=O,

m, =O,

m, =O,

m ~
—p(QA, 3,

mb=p QX„
m) —p+'1/ A3,

ml =pi '1/ A g,

mU —p

m~ —p+QA4,
(4.5)

M, ~M ~M+ . (4.3)

The quark mass matrices M+ are gotten by the replace-
ment of parameters as explained in Sec. III. We will find
that the matrices are proportional to one another:

where

glE. I

2

The relation (4.3) is in agreement with (2.2) in Sec. II, but
it should be noticed that the mass relation (2.3) is not ob-
tained in this case because all the fermions are not as-
signed to one irreducible representation. When these
mass matrices are diagonalized by biunitary transforma-
tions,

and

A&= —', [(2+v )+ [(2+a ) —3(2a +sin 2P)]'

It should be noticed that two fermions are massless, and
two fermions are massive in each charge sector. We re-
gard the massless fermions as those of the first and
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TABLE I. The v-quark mass with respect to the mass of the
fourth-generation charged lepton. Inputs in the calculations are
m, =1.7842 GeV, 2Mb =M(Y(4S))=10.575 GeV, and a, (Q )

at Q =34 GeV; see Ref. 23. m,
(4.6)

Thus we get a mass relation between the fermions of
the third and fourth generations:

a, (Q'=34' GeV ) A—
s (GeV) mL, (GeV) M, (GeV)

mg

0.151 0.36 30
40
50

74.3
97.5

120

0.156 0.42 30
40
50

73.7
96.6

119

0.161 0.48 30
40
50

73.2
95.9

118

second generations, the massive ones as those of the third
and fourth generations. We remove the degeneracy of
the mass for the first and second generations and give
them masses in Sec. VI.

The mass relation (4.6) is somewhat diff'erent from the re-
sult that was obtained by YSP. They got a mass relation
between the masses of the second- and third-generation
fermions and predicted the t-quark mass. However, in
our model with R, the quark masses of the third genera-
tions are not related to those of the second generations,
so the t-quark mass remains an unknown parameter, as
well as the masses of the v and a quarks.

We shall estimate the masses of the fourth-generation
quarks using (4.6). The mass relation (4.6) will hold at
some high-energy scale po)& 10 GeV. Regarding (4.6) as
the relation between effective masses, the naive prediction
of quark masses will be reduced by the QCD
renormalization-group effect. We give a detail of this
subject below. To interpret the quark mass for a confined
quark it seems that the most reasonable definition is due
to Georgi and Politzer. However, their prescription is

TABLE II. The a-quark mass with respect to the mass of the fourth-generation charged lepton. Inputs in the calculations are
M, =35, 40, 50, 100, 180 GeV, m„= 1.7842 GeV, and a, (Q ) at Q =34' GeV2; see Ref. 23.

a, (Q =34' GeV')

0.151
M, =35 GeV

0.36 30
40
50

525
690
853

A—(GeV) m (GeV) M, (GeV) a, (Q =34 GeV')

0.156 0.42 30
40
50

755
992

1226

A~~ (GeV) mL (GeV) M, (GeV)

0.156

0.161

0.151

0.156

0.161

0.151

0.42

0.48

M, =40 GeV
0.36

0.42

0.48

M, =50 GeV
0.36

30
40
50

30
40
50

30
40
50

30
40
50

30
40
50

30
40
50

523
686
848

520
683
845

603
792
979

600
788
974

598
785
970

758
996

1232

0.161

0.151

0.156

0.161

0.151

0.156

0.161

0.48

M, =100 GeV
0.36

0.42

0.48

M, = 180 GeV
0.36

0.42

0.48

30
40
50

30
40
50

30
40
50

30
40
50

30
40
50

30
40
50

30
40
50

752
988

1221

1542
2029
2510

1536
2021
2501

1532
2014
2492

2810
3700
4580

2801
2388
4565

2794
3677
4551
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gauge dependent, so it renders the result ambiguous. To
remove this gauge dependence Kanaya, Sugawara,
Pakvasa, and Tuan ' (KSPT) introduced a gauge-
independent quark propagator, and with the aid of result-
ing mass anomalous dimension, they discussed the
threshold effects in a gauge-independent manner. After
we review their prescription brieAy, we shall apply
KSPT's method to predict the masses of the v and a
quar ks.

First of all, the confined mass is defined at the thresh-
old for pair production in accordance with Georgi and
Politzer. The mass anomalous dimension y derived
from KSPT is given by

p 0pl

f71 Bp

3772
——', +3g —3g ln 1+—, (4.7)

'I .
where g is the renormalized gauge coupling constant and
g=(m /p); p is a renormalization point and m is a run-
ning mass of a quark. Since g also depends on p, one
needs to know how g behaves and the value of g at some
point. The p dependence is given by a P function (which
is gauge independent to this order ):

where g;=(1+4';)'~ and the summation is over quark
ilavors. We may solve these equations for m(p) and g(p)
using y and P. Now we are ready to apply this pro-
cedure to the mass formula given by Eq. (4.6):

II IL
m, (p)= mb(p), m, (p)= m, (p) . (4.9)

V. NUMERICAI. ESTIMATION
FOR THE 4X4 KM MATRIX

Starting from the threshold 2Mb, 2M, we look for M„
M, at the threshold such that m, ( 2M, ) = ( mI /
m, )m „(2M, ) =M„m, (2M, ) = (ml /m, )m, ( 2M, ) =M,
are satisfied. The results for the quark masses are shown
in Tables I and II for different values of mz. We have
used ' rn = 1 7842 GeV, 2Mb = 10 575 GeV and
values of a(Q =34 CxeV ) =0.156+0.005, AMs
=0.42+0.06 GeV, where MS denotes the modified
minimal subtraction scheme.

(4.8)

We will now calculate numerically all the KM matrix
elements corresponding to the matrix of the form (4.2) as
a first approximation. When we diagonalize the quark
mass matrices, the following matrices U and V are
obtained after absorbing some phases into quark fields:

e lcP

Rc —i s&
2

e'(4'+0') e'v'
0

K le
Cg

N
Sg

K'e'& ie'&
cO

N g+ S
K e '~ ie'~

3

N3

X3

N3

4

N4

X4
(5.1)

~ KS s ~ KS i s 2K 2K
i e'&c —— s t e'~s — c (A, —2) (A, —2)

KN2 N
&

KN2 N3 N4

0 0

0 0

Co Sg

so co 0

2c
K3

&3(2—A3)

K3

0

2c
K4

&3(2—
A,~)

K4

(5.2)

where
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&=2~ +sin 2P, cs=cosO, se=sinO, c=cos2$, s=sin2$,

N, =(2x +sin 2P)(3v +sin 2P), Nz =3+ sin 24
K

X~. =—,'I [(2+a )A, —(2v +sin 2$)](1+2m ) —3(A, —1)(21r~+sin 2P) ),
K =4cos 2/+3(2 —

A, ), X =e'~[e '~+(A,, —1)e '~] (j=3,4) .

Here 0 is a mixing parameter between two degenerate mass eigenstates belonging to the same mass eigenvalue of zero,
and y is a relative phase between eigenstates of S4-singlet and -triplet LH fermions. It should be noticed that y in (5.1)
is not eliminated by the redefinition of quark phases. As shown in Appendix 8, the KM matrix UKM is symmetric and
each element of the 4X4 KM matrix consists of four dimensionless independent real parameters. The full expressions
of our KM matrix elements are given as follows with the help of (B4) and (5.1):

cos 8f ( p )+ 2 cosO sinO
( ~ )

sin 8
& (

1

cos 8f ( p ) + 2 cosO smO
( ~ )

sm 8

1

cosOsinOf
(p )+ cos 8—sin 8

)
cosOsinO&

1

cosO sinO cos 8—sin 8 cosO sinO

1 1 2 a Nz

1 22+ (2cos2$+2 —
A, )sin2$singcosO+ (2cos2$+2 —

A, )sin2$sinO
2

1 j J

+ 21' (2cos2$+2 —
A, . )sin2$ cosP cosO,

N1N J

sin 8f ( y )
2 cosO sinO

( ~ )
cos 8

& (
1

U -=—
1j

+22

+. sin Of (p )
2cosOsinO

(~ )
cos 8

1

U&
= [(2cos2$+4v )A, —16m A, +8(21' —sin 2$cos2$)],1

J

Uz = 21~ (2cos2$+2 —A, )sin2$sintI)sinO+ (2cos2$+2 —
A, )sin2gcosO

1 2
N N J

21' (2 cos2$+2 —
A, )sin2$ cosP sinO,

1 j
1 16

U34= [(I~ —sin 2$)cos2$ —I~ cos 2P],
3 4

(5.3)

where j=3,4, and

f, (p, y, a)=( a2. +sin 2p) cos2(p+y)+2~ cos 2p —~ sin 2pcos2$,

fz(P, y, v) =(2a +sin 2P) sin2(P+y)+2' sin2$ cos2$ —lr sin 2P,

g &(P, q&, lr) = —(21' +sin 2$)sin(P+2p)+(2z cos2$ —sin 2$)sing,

gz(g, p, l~)=(2a +sin 2$)cos(P+2y) —(2~ cos2$ —sin 2$)cosg,

h&(g, y, a)=21' cos2$ —sin 2/+a cos2qr .
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Now we need to give the suitable values for the four in-
dependent real parameters to determine the magnitude of
the KM matrix elements. We should remember that P is
related to the ratio of the fermion masses of the third and
fourth generations. Taking account of this fact, it is
more convenient to introduce the following mass ratio P
defined by

0.0 14

0.0 1 0

4 m, mL
2 2

P=—
3(m +m )

(5.4)

0.0 0 5

instead of P. Of course it is also possible to parametrize
P with the masses of the third- and fourth-generation
quarks in the same charge sectors instead of with those of
leptons. We will here give the suitable values of mL to
get the first parameter P.

We will notice that the second parameter 0 is con-
strained by a ratio of the KM matrix elements

~ U„b ~

and
~ U,b ~. According to the recent experimental results from
the ARGUS and CLEO Collaborations,

0.07 (
~ U„b / U,q ~

(0. 19,

0.0 0 2

0.0 2 0.0 5 0.0 7

cb

FIG. 1. The correlation of
~ U„~ ~

and
~ U, & ~

for different
values of cosO at 0.983, 0.990, 0.995, 0.998, and constraints set
by B-hadron lifetime ~z measurement, which is related to

~ U„„~'+ 0.48
~ U,b ~

= (0.90+0.24) X 10 ', see Ref. 23.

the corresponding upper and lower bounds on cosO are
0.998 and 0.983, respectively. In Fig. 1 the correlation of
~U„b~ and U,b~ is shown for different choices of the
relevant parameter I9. It was found that the ratio

~ U„b/U, b ~
has little effect on the quark masses of the

fourth generation by numerical estimation.
Finally we determine the residual two parameters ~

and cp so that the magnitude of the KM matrix element
U„d equals 0.97420. Thus we obtain all the KM matrix
elements numerically under the suitable choices of values
for P, t9, ~, and cp. The magnitude of the individual KM
matrix elements for cosO =0.99 associated with

~ U„& /U, b
-0. 14 is shown in Table III for different

values of mL. The results do not contradict experimental
data. 22

VI. THE LIGHT FERMION MASSES AND MIXINGS

Our work from Sec. III onwards has all been con-
cerned with R in addition to the SU(2) X U(1) X S4 sym-
metry. Since the fermions of the first and second genera-
tions became massless by R, the reason why the fermions
of the third and fourth generations are much heavier
than those of the first and second ones was naturally ex-
plained. Therefore R is a good symmetry as a first ap-
proximation. As a second approximation, we must give
those massless fermions masses keeping the mass hierar-
chy m„m2«m3, m4. We should break R in order to
carry it out. R is broken if the Yukawa couplings, which
were dropped out by the symmetry, were reintroduced.
Since we want to preserve the mass hierarchy derived

TABLE III. The 4X4 Kobayashi-Maskawa matrix (no-perturbation calculation) for different values
of the mass of the fourth-generation charged lepton. Inputs in the calculations are m, =1.7842 GeV,
cosO= 0.99, sgn( cos2$ ) = sgn(sing) = 1, and sgn(sin2$ ) = sgn(cosP) = —1.

m& (GeV)

30 2.3310X 10

cos2+

—0.40

0.974 20
0.225 58
0.006 76
0.000 23

0.225 58
0.973 06
0.047 53
0.001 64

I

&HAMI

0.006 76
0.047 53
0.996 46
0.068 87

0.000 23
0.001 64
0.068 87
0.997 62

40

50

1.5193X 10

1.2270 X 10-'

—0.40

0.00

0.974 20
0.225 60
0.005 88
0.000 15

0.974 20
0.225 60
0.005 99
0.000 12

0.225 60
0.973 34
0.041 30
0.001 06

0.225 60
0.973 32
0.041 68
0.000 86

0.005 88
0.041 30
0.997 79
0.051 58

0.005 99
0.041 68
0.998 26
0.041 23

0.000 15
0.001 06
0.051 58
0.998 66

0.00012 t

0.00086
0.041 23
0.991 48
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0 0 0

from R, we assume that the couplings are sufBciently
small to break R slightly. Then it is possible to deal with
the couplings as the perturbation and to give masses to
the fermions of the first and second generations.

We have already shown in Sec. III that the original
Yukawa couplings make the mass matrices M1, M, and
M+ of the form (3.7). Let us form MIM& by the
charged-lepton mass matrix M1 ..

M1M1~=M +5M ' (6.1)

where
i(P+y) 2 2 2ig . KS

N)

Here co = /2v /g, r» =
e&& + eel, rzI =e, &e3[+e2I eg/ and

T31 631 + 641' M + M + have the same form as M1M12 2

with E+ replacing E, r;+ replacing rI, and P ++—P. We
regard the first term as the unperturbed matrix and the
second one as a perturbation on the first term. Each un-
perturbed matrix has two eigenvalues of zero as shown in
Sec. III. The two eigenstates, for M1 and M, belonging
to the eigenvalue of zero, are

1 4

4
3

0 ] —2ig+ 2ig
3

4
3

—-'Ke
3

2ig+ —2ig
3 3 e lg

l
, e '& ie'&
l

N2 N2

S

KN2

and

0 —-'Ke
3

27 )1' 7 21Q)e 7 21 Qje

~me '& ~e21 31

31
2ig

&31e

31

7 21K' 7 31Ke '~ 7 31Ke

7 2JCOe
ip

5M =
I 4

4 2
3

7 21K'

~31Ke'&

'731Ke

2
7 31K

where a superscript T means taking the transpose of the
matrix. For M+ the eigenstates have the form P~ —P.
We denote these eigenstates by I

ll ) and I2l ), I1 —) and
I2 —), and

I
1+ ) and I2+ ), respectively. The perturba-

tions 5M1, 5M, and 5M+ remove the degeneracy in the
first-order calculation and make the massless fermion
massive. We get the masses of the fermions as the solu-
tions of a quadratic equation:

W( —(&1ll5M( I1l )+ & 1ll5M( I2l ) )W(+ &1ll5M( Ill ) &2ll5MI I21) —
I &1ll5M( I2l ) I =0,

~' —(&1—15M' I1 —&+ &2 —15M' I2 —&)~ + &1 —15M' I1 —
& &2 —I5M' I2 —

&
—

I &1 —I5M' I2 —
& I'=o (6.21

~2+ —( & 1+
I
5M2+ I1+ &+ & 2+ I5M2+

I
2+ & ) ~+ + & 1+ I5M ~~

I
1+ & & 2+ I5M~~

I
2+ &

—
I & 1+

I
5M2+

I
2+ &

I'= o .

Fj.1F F11 21+ +
N) N

F, F2+ +
N N

N2
1

L

F 4IF3+
N2 N2N2

4IF+

d2 p
S N2

„2 P+ &+ 2+
2 F F

N2 N2
Fi+
N2

We shall identify these solutions as the squared fermion masses of the first and second generations:

41F3( I'
m' +

2 N N

(6.3)

where

F, =w, co(2x +sin 2P) +6&2&cote (2' +sin 2$)sin2$siny+9r3. v sin 2P,

F2~ =r,jco 6~2~co sin2—$ sing+ 9r3~ sin 2P,

F3~ =ir, jco (2~ +sin 2$)e '~+3~2.co[(2a. +sin 2$)e '~+~ sin2qre'~]e

—ix. (2+sin P)e '~ ~(2i sin —2$ —2sin4$)e

The corresponding eigenstates are given by

Ie ) =cosOI1l )+sinOI2l ), Ip) = —sinOI1l )+cosOI2l ),
ld ) =cosO I1 —)+sinO I2 —), ls) = —sinO I1 —)+cosO I2 —),
I
u ) =cosO+

I
1+ ) +sinO+ I2+ ), Ic ) = —sinO+ 1+ ) +cosO+ I2+ ),

where
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2
J 2 2 2 2cosO = Q(m z, m „,F, , Fz ), Q(m z, m ...F, , Fz~ ) =

m2 m

FjLF2J +
N2j

2 2I2j m 1j

PJ.

2 2
fPZ 2J I LJ

PJ
F . F
N2 N2

(6.4)

If there were not 5M s, the diagonalizing matrices of the d- and u-type quark mass matrices would be related to each
other: U = U+, and V = V+, from which it follows that O is equal to O+. The perturbation, however, causes the
equality to break. For 8 WO+, most of the KM matrix elements are modified as follows:

cosO+ cosO cosO+ sinO +cosO sinO+ sinO+ sinO
U~~ =

z f, (P, y, ~)+ g, ((t), y, ~)— h, (g, q&, ir)
N2

1 2

cosO+ cosO
+i f~(g, y, ir)+

N2

cosO+ sinO +cosO sinO+ sinO+ sinO
sin 2(p

vN2

cosO+ sinO
U, ~= —

~ f, (P, V, ~) +
1

cosO+ cosO —sinO+ sinO

N, N2

cosO sinO+
g, (P, y, 1~)— h, (P, (p, ~)

~N2

cosO+sinO
+l

cosO+cosO —sinO+sinO cosO sinO+
f~(0 v»~)+ gz(P, y, x ) — sin2y

NLN2 ~N2

cos0 sinO+ cosO cosO+ —sinO sinO+ cosO+ sinO
f, (P, @,ir)+ g, (P, q, ~) »— h, (f,y, i~)

N2 NLN2

1
2v (2 cos2$+2 —k )sin2$ sing cosO++ (2 cos2$+2 —

A, )sin2$ sinO+
2

N, N.

+ 2~ (2 cos2$+ 2 —k~. )sin2$ cosP cosO+,
NLN.

1
2v (2 cos2$+ 2 —

A, )sin2$ sing cosO + (2 cos2$+ 2 —
A, )sin2$ sinO

2

2 J

U 1j

U. =—
j1

cosO sinO+ cosO cosO+ —sinO sinO+ cosO+ sinO
+i —

z f~(P, y, ~)+ gz(P, y, ~) —
z z sin2@

NL NLN2 ~N2

(6.5)

+ 2~ (2 cos2$+ 2 —
A, )sin2$ cosP cosO

NLN J

sinO+ sinO cosO+ sinO —cosO sinO+ cosO+ cosO

N2
1 2

sin O+ sinO+i, f, (y, q, ~)
N2

cosO+ sinO —cosO sinO+

NLN2

cosO+ cosO
2 2 sln2cp

Uz = 21' (Zcos2$+2 —
A, )sin2$singsinO++ (2cos2$+2 —

A, )sin2$cosO+
1 2

J NLN

N N
2a (2cos2$+2 —2 )sin2$cosgsinOJ +

1 j
U z

= 2x (2 cos2$+ 2 —Xi )sin2$ sing sinO + (2 cos2$+ 2 —A J )sin2$ cosO
1 2 2

2 J

NLN.
21' (2 cos2$+ 2 —

A, )sin2$ cosP sinOJ

Only the elements U3~ and U, (j=3,4) are not changed
by the perturbation. An example of the magnitudes of
the KM matrix elements based on Eqs. (6.4) is given in
Table IV. In the calculation the parameters 8+ ( =8), P,

y, and ~ were taken to be equal to the values used in Sec.
V, but O was so determined that U» would be equal to
0.9760 which is the maximum value given by experiments
assuming more than four generations. %'e will notice
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TABLE IV. The 4X4 Kobayashi-Maskawa matrix (perturbation calculation) for different values of
the mass of the fourth-generation charged lepton. Inputs in the calculations are the same for the pa-
rameter in Table III, except for 8

m, (GeV)

30

40

cosO

0.9913

0.9913

cos2+

—0.40

—0.40

0.976 00
0;217 66
0.006 31
0.000 21

0.976 00
0.217 71
0.005 49
0.000 14

0.217 65
0.974 86
0.047 60
0.001 64

0.217 70
0.975 13
0.041 36
0.001 06

0.006 76
0.047 53
0.996 46
0.068 87

0.005 88
0.041 30
0.997 79
0.051 58

0.000 23
0.001 64
0.068 87
0.997 62

0.000 15
0.001 06
0.051 58
0.998 66

50 0.9915 0.00

0.976 00
0.217 66
0.005 52
0.000 11

0.217 65
0.973 51
0.041 75
0.000 86

0.005 99
0.041 68
0.998 26
0.041 23

0.000 12
0.000 86
0.041 23
0.991 48

that cosO and cosO+ are nearly equal to 0.99 in the case
without perturbation. It is easy to see that the KM ma-
trix becomes symmetric and the numerical values of the
elements shown in Table III are unchanged only when

O+ =O
Note that the fermion masses of the first and second

generations contain ten unknown parameters
(i =l, —,+; j=1,2, 3), and co as shown in Eq. (6.3). If
the value of cu is given, each parameter ~, . is bounded
from both above and below. Especially the allowed re-
gion of ~, 2 is usually much narrower than those of ~;& and
T'3 So, as a typical value, we fix ~;2 at the value where

~r;z~ becomes maximum. Then there remain six undeter-
mined parameters. They can be determined by three
quadratic equations (6.2) for fermion masses of the first
and second generations and three equations (6.4) for mix-
ing angles. In Tables V —VII we have listed examples of
the values ~; . In the derivation of those values we gave
the fermion masses of the first and second generations,
cosO&=cosO =cosO+=0. 990, and co=0.5 as input pa-
rameters.

dict the fermion masses and mixings exactly. Therefore,
as a first approximation, we imposed on the
SU(2) XU(1) XS4 symmetry an additional reAection sym-
metry (R) which means an invariance of the Yukawa cou-
plings between fermions and Higgs bosons under the sign
changes of S4-singlet fields. In this case the fermions of
the first and second generations became massless; those of
the third and fourth ones became massive. Thus the
reason why the fermions of the third and fourth genera-
tions are much heavier than those of the first and second
ones is naturally explained by R. The mass relation for
the fermions of the third and fourth generations,

mL

is particular in our assignment with reAection symmetry.
By taking account of KSPT's renormalization-group
effect, the estimation of M„and M, (defined at threshold
for pair production) has been done for suitable choice of
mL, and M, . If mL, and M, are in the energy range of

VII. CONCLUSION

We have presented a four-generation model based on
the SU(2)XU(1)XS4 symmetry. The assignment of left-
handed fermions, right-handed fermions, and Higgs sca-
lar doublets to representations of S4 are 13, 112,
and 1 3, respectively. There were too many Yukawa
couplings in this assignment, so we were not able to pre-

mL (GeV) M, (GeV)

30
40
50

74.3
97.5

120

1.74 X 10 2.53 X 10 2.82 X 10
1.01 X 10 3.73 X 10 3.89 X 10
6.74X 10 —1.24X 10 3.97X 10

TABLE VI. The perturbation in the d-type quark mass ma-
trix. Inputs in the calculation are m&=0. 01 GeV, m, =0. 1

GeV, ~=0.5, and cos6 =0.990.

m, (GeV) +21 3l

TABLE V. The perturbation in the charged-lepton mass ma-
trix. Inputs in the calculation are m, =5. 11X 10 GeV,
m„=0.1056 GeV, ~=0.5, and cos0=0.990.

30
40
50

73.7
96.6

119

1.77X10 2.49X 10 2.87X 10
1.03 X 10 3.66 X 10 3.96 X 10
6.86X10-' —1.21X10-' 4.03 X10-'

30
40
50

1.19X 10-'
6.75 X 10-'
4.33 X 10

3.37 X 10-'
5.68 X 10

—1.94 X 10

1.29 X 10
1.73X10 '
1.70 X 10

30
40
50

73.2
95.9

118

1.79X10 ' 2.46X10 2.91X10
1.05 X10-' 3.61X10-' 4.02X10-'
6.97X10-' —1.19X10-' 4.10X10-'
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KEK TRISTAN, for example, IL =30 GeV (Ref. 26)
and M, =35 GeV (Ref. 27), then the masses of the U and a
quarks are found to be M, -73+2 GeV, M, -523+3
GeV. The former gives an expectation that the v quark
can be produced in the decay such as 8' ~vc, vu. The
latter gives expectation that some mesons containing the
a quark, for example, au, ac, ad, as, and ab, etc., can be
detected at the Superconducting Super Collider (SSC).

As a second approximation, we broke R slightly to
make massless ferrnions of the first and second genera-
tions massive. We assumed the couplings dropped out by
R to be sufFiciently small since we needed to keep the
mass hierarchy m„m2 &&m3, m4 derived from R. As a
result, we were able to give masses to the fermions of the
first and second generations keeping the mass hierarchy.

We predicted the values of individual 4X4 KM matrix
elements. Good agreement with recent experimental data
has been found. The hierarchy of the fourth column in

the 4X4 KM matrix (U&4, U2&, U34 U44) is obtained in
the form (A, , A, , A,z, 1), where A, is the Cabibbo-angle pa-
rameter A, = Ui2. The hierarchy is naturally caused by
the structure of quark mass matrices M and M+ of the
form (3.7). Recently some quark mass matrices (Fritzsch
type, Stech type, and Gronau-Jonson-Schechter
type ) with four generations of quarks have been investi-
gated. However, many examples have not yet determined
the hierarchy of the KM matrix. Although our quark
mass matrices do not belong to any examples above, they
are also hopeful candidates to provide the phenomenolog-
ical KM matrix. ' There remain the important problems
of Bd-B d mixing, B,-B, mixing, and CP violation in the
four-generation case. These subjects will be discussed in
separate papers in detail.

This model has two serious problems. One is Aavor
changing couplings of neutral Higgs bosons, which also
arose in YSP's model. YSP have avoided this difficulty

TABLE VII. The perturbation in the u-type quark mass matrix. Inputs in the calculation are m„=7.5 X 10 GeV, m, = 1.5 GeV,
co=0.5, and cosO+ =0.990.

mL (GeV) M, {GeV) 73+ mL (GeV) M, {GeV) +2+ 73+

30
40
50

30
40
50

30
40
50

30
40
50

30
40
50

30
40
50

30
40
50

30

525
690
853

523
686
848

520
683
845

603
792
979

600
788
974

598
785
970

758
996

1232

755

Mr =35 GeV
7.84 X 10 5.67 X 10 8.43 X 10
4.57 X 10 8.39 X 10 1.16X 10
3.00 X 10 —2.81 X 10 1.17X 10

7.90X 10 5.63 X 10 8.49 X 10
4.62 X 10 8.29 X 10 1.17X 10
3.07X 10 ' —2.74X10 1.19X10

M, =40 GeV
5.94x 10-'
3.47 x 10-'
2.28 x 10-'

7.49x10-' 6.39x10-'
1.10X 10 8.81 X 10

—3.70 X 10 8.87 X 10

6.00x10-' 7.41x10-' 6.45 x10-'
3.50X10 1.09X10 8.89X10
2.30 X 10 —3.66 X 10 8.97 X 10

6.04X 10 ' 7.36X 10 6.50X 10
3.53x10 ' 1.08x10-' 8.96x10-'
2.32 X 10 —3.63 X 10 9.04 X 10

M, =50 GeV
3.76X10 ' 1.18X10 4.04X10
2.19x10-' 1.74x10-' 5.56x10-'
1.44x10-' —5.86x10-' 5.60x10-'

3.79 x 10-' 1.17X 10 4.07 X 10

7.99X10 ' 5.57X10 8.59X10
4.66X10 ' 8.22X10 1.18X10
3.06x10-' —2.76x10-' 1.19x10-'

40
50

30
40
50

30
40
50

30
40
50

30
40
50

30
40
50

30
40
50

30
40
50

992
1226

752
988

1221

1542
2029
2510

1536
2021
2501

1532
2014
2492

2810
3700
4580

2801
3688
4565

2794
3677
4551

2.21x10-' 1.73 x10-' 5.61x10-'
1.45 x10-' —5.80x 10-' 5.66x10-'

3.82X 10 1.16X 10 4.10X 10
2.23X10 1.72X10 5.65X10
1.46x10-' —5.76x10-' 5.71x10-'

M, =100 GeV
9.09x10-' 4.90x10-' 9.70x10-'
5.28 X 10 7.25 X 10 1.33 X 10
3.46 X 10 —2.43 X 10 1.36 X 10

9.16X 10 4.86 X 10 9.80 X 10
5.33X10 7.20X10 1.34X10
3.49 X 10 —2.41 X 10 1.37 X 10

9.21 X 10 4.83 X 10 9.90X 10
5.36x10-' 7.15x10-' 1.35 x10-'
3.52 X 10 —2.40 X 10 1.38 X 10

M, =180 GeV
2.74 X 10 1.62 X 10 2.61 X 10
1.59X10 2.41X10 3.37X10
1.04x10-' —8.10x10-' 4.30x10-'

2.76X 10 1.61 X 10 2.63X 10
1.60X 10 2.39 X 10 3.40 X 10
1.04x10-' —8.05 x10-' 4.33 x10-'

2.77x10-' 1.60x10-' 2.65 x10-'
1.61 X 10 2.38 X 10 3 43 X 10
1.05 X 10 —8.00 X 10 4.53 X 10
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under an assumption that the neutral members have su-
perheavy masses more than a few TeV (Refs. 8 and 18),
but it will require further investigation because the tree-
level unitarity violation may arise in such a high-energy
region. The other is the large mass difference of M, and
M, which leads to a large deviation of the p parameter
of the standard model from p= 1. If the t-quark mass M,
were lighter than 25 GeV, the a-quark mass M, could be
predicted to be lighter than 370+3 GeV. Unfortunately
recent experimental data on the lower bound of M, (Ref.
27) exclude that region, so we cannot remedy the disturb-
ing fact. From this point, this model is yet regarded as a
toy model. A possible way out would be to construct a
model with another assignment of the representation of
S4. This subject will also be discussed in a forthcoming
paper.

APPENDIX A: THE MINIMUM
OF THE HIGGS POTENTIAL

%'e denote the VEV's of the Higgs potential by

(y )=ue

In terms of the VEV's we have

(A 1)
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p'=po'(x'+y'+z')+a(x'+y'+z')'+ p[2x'y'cos'(80 —6, )+—,'(x'+y' —2z') ]

+y[2x z cos (60—6z)+2y z cos (8,—62)+ —,'(x —y ) ]

—5[2y z sin (6,—62)+2z x sin (82—60)+2x y sin (80—8, )]+pzu +au (x +y +z ) . (A2)

We can immediately obtain the minimization conditions

=(4a+ —', P+2y)x + t2po+[4a+4Pcos (80 6, )+—', P——2y —45sin (80—6, )]y

+[4a——3P+4y cos (Bo—8z) —45 sin (82—80)]z +2av Ix =0, (A3a)

=(4a+ —', P+2y)y + I2po+[4a+4Pcos (80—8, )+—', P—2y —45sin (80—8&)]x

+ [4a——', P+4y cos (8& —82) —45 sin (8,—82)]z +2au ]y =0, (A3b)

=(4a+ —,'P)z + [2po+ [4a ——', P+4y cos (80—82) —45 sin (Bz—60) Ix

+[4a ——', P+4y cos (8,—82) —45 sin (8,—6~)]y +2av Ix =0, (A3c)

av
aU

=2p, +2a(x +y +z )v =0, (A3d)

= —2Px y sin2(60 —8&)—2yx z sin2(80 —82)+25[x z sin2(82 —80)—x y sin2(80 —8&)]=0,
0

(A3e)

= —2Px y sin2(6& —80)—2yy z sin2(8& —82)+25[ —y z sin2(8& —82) —x y sin2(8& —80)]=0,
1

(A3f)

=2@[x z sin2(80 —8z)+y z sin2(6& —82)]+25[y z sin2(8& —82) —z x sin2(82 —80)]=0,
2

(A3g)

av
aa,

(A3h)
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The Eq. (A3h) shows that 83 is an arbitrary phase, so we

may set 83=0. The Eq. (A3g) is not independent of (A3e)
and (A3f); this reflects the fact that V depends only on
two angles; we can set 82=0. When we substitute Eqs.
(A3e) —(A3g) into Eqs. (A3a) —(A3c), we get

(4a —T4P+2y —25)x +(4a+ —,'P —2y —25)y

onal elements are regl mass eigenvalues. Taking the com-
plex conjugate of (83),

+ + + + +

with the help of (Bl) and (82), we get

U+M+V+ ~ U M V

+(4a —4P+2y —25)z +2po+2au =0,
(4a+ —,'/3 —2y —25)x +(4a ——', P+2y —25)y

(A4a) The following relation is induced immediately:

U+ =U*

+ (4a ——', P+ 2y —25 )z +2po+ 2au =0, (A4b) V+ =V* (85)

(4a —T4P+2y —25)x +(4a ——",P+2y —25)y On the other hand the KM matrix is defined by the ma-
trices U and U+.

(y+5)+ 4a+ —'P —2 z +2@&&+2au =0,
p+5 UzM=U+ U— (86)

On substituting (84) in (86) we obtain
A4c

sin2$,

which implies x =y . It should be noticed that
x =y =z is not necessarily satisfied. This relation im-
mediately leads to sin28p+sin28, =0 or 8& = 8p+2mw
(m =0, +1,+2, . . . ) with the help of Eq. (A3g). Thus
there remains only one phase 6p. Substituting
x=y —= (1/&2)g, z—=(2, 8o=——P, and Bz=t)3=0 into
(Al), the VEV's of the Higgs potential are represented as
(3.3). The minimization condition (3.4) can also be ob-
tained if we rewrite Eqs. (A3e) and (A3f) as

'2

sin4$ = —2 p+5 (A5)

TUKM-UKM- (87)

Uk=xk+iyk (j,k=1—N) . (88)

When the unitary matrix is symmetric, there are
N(N+ 1)/2 elements for x's and y's, respectively. On the
other hand, the unitary condition reads

Here we show that the N X¹ymmetric unitary ma-
trix has N dimensionless independent real parameters.
The proof is the following: Let U k be an element of uni-
tary matrix. This element consists of a real and an imagi-
nary part:

and divide it by sin2$%0.
N

[xjkxtk +yjkylk + (yjkx!k xjkytk )] 5jl (89)

U M V =D

U+ M+ V+ =D+,
(82)

(83)

where D and D+ means diagonal matrices whose diag-

APPENDIX B:THE SYMMETRIC KM MATRIX

Let us prove that the N XX KM matrix becomes sym-
metric in a model which has only one Yukawa coupling
constant in each charge sector. We then have quark mass
matrices M and M+ which are related to each other:

(81)

They can be diagonalized by the biunitary transforma-
tion:

For j=l only the real part has N conditions, and for j%1
each real and imaginary part has N (N —1)/2 conditions
in Eq. (89). Therefore we arrive at the number of in-
dependent real parameters

2XN(N+1)/2 —N —2XN (N 1)/2=N '. —

We thus find that if the mass matrices satisfying (81) in
any model with a family symmetry, one can always get a
symmetric KM matrix that has X independent real pa-
rameters. Such a proportional relation (Bl) will not be
derived when we assign u-type quarks to the representa-
tion different from that of d-type quarks, theri the KM
matrix does not become symmetric.
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