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Pion transitions and models of chiral symmetry

John F. Donoghue and Barry R. Holstein
Department of Physics and Astronomy, Uniuersity ofMassachusetts, Amherst, Massachusetts 01003

(Received 15 June 1989)

We describe a set of pion-decay and scattering amplitudes which are described by only two low-

energy parameters in the effective chiral Lagrangian of QCD. After a phenomenological analysis of
the data, we demonstrate how the effective-Lagrangian framework correlates the many predictions
of these reactions which have been made in the literature using a variety of models with chiral sym-
metry. A comparison with the data then also determines which model represents @CD. Not
surprisingly, the winner is a form of vector dominance.

I. INTRODUCTION

One of the common ways to probe quantum chromo-
dynamics (QCD) is by means of very-high-energy scatter-
ing. In this case, because of asymptotic freedom the cou-
pling constant o., is small enough that a perturbative
treatment of hard scattering is possible. There remains,
however, dependence upon noncalculable soft physics
such as structure functions, intrinsic pT distributions, and
fragmentation models, which must be determined phe-
nomenologically. At high energies then, QCD leads to
relations between scattering processes, parametrized by
e, and empirically determined structure functions. '

There exists an analogous program to test QCD at very
low energies. Here one cannot use perturbation theory in
a„but rather one exploits the symmetries and anomalies
of the theory. The symmetries, especially chiral symme-
try, predict the forms of possible reactions at low energy.
There remains, however, dependence on noncalculable
soft physics, such as the pion-decay constant F and
coefficients in an effective chiral Lagrangian, which must
be determined experimentally. At low energies then,
QCD leads to relations between scattering and decay pro-
cesses, parametrized by F and empirically determined
low-energy constants.

In this paper we explore a self-contained set of low-
energy reactions:

~7T 77, 7T f~/AT

~chevy, +~eve+e, m'~yy .

At one level, our motivation is to see how well this low-
energy program, chiral perturbation theory in QCD, is
working. At a deeper level, however, we are interested in
the structure of the chiral Lagrangian that parametrizes
low-energy QCD. There exist in the literature many
differing predictions for these reactions within a variety
of theories, all chirally symmetric. We show how these
simply represent different assumptions for the physics
which determines the chiral Lagrangian. By comparison
with experiment, we demonstrate that nature selects one
version of the physics as being superior.

In the next section then, we present a brief overview of

the chiral perturbative techniques of Gasser and
Leutwyler, while in Sec. III we confront speci6c general
predictions of chiral symmetry with experimental results.
In Sec. IV we examine theoretical prediction for chiral
expansion parameters within various chiral models and
demonstrate how previous (model-dependent) predictions
can be understood. Finally, in Sec. V our findings are
summarized.

II. FORMALISM

In the limit that the u , d-, s-qua-rk masses vanish,
QCD is known to possess an exact global SU(3)L
X SU(3)it chiral symmetry:

8

qL ~exp i+ A, -a qL
=I.qL, —

8

qR ~exp / g AJP& qit ——Rqtt

Here q refers to the three-component column vector

Q

S

(2)

and I,; are the Gell-Mann matrices. Chiral SU(3)I
X SU(3)tt invariance is dynamically broken to SU(3) i, and
Goldstone's theorem requires the existence of eight Gold-
stone bosons which are identified with n, E, and g (Ref.
4). The classical axial U(l) „ transformation

i Oy~
q —+e q (3)

is, however, not a symmetry, and leads to the well-known
QCD anomaly. The inclusion of quark mass introduces
a small explicit breaking of the chiral symmetry, which
can be accounted for via a perturbative expansion in the
energy. In this paper all of the processes that we study
only involve chiral SU(2). Nevertheless, in order to make
contact with other work in the field, we shall use the
language of chiral SU(3). This involves no loss of accura-
cy or generality, as the effects of K or g can be absorbed
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in the low-energy constants and do not modify predic-
tions of chiral SU(2) (Ref. 7).

Since @CD possesses this approximate chiral symme-
try, the symmetry must be manifested somehow in the in-
teractions of the (pseudo-)Goldstone bosons, and this
point has been carefully exploited in recent studies. The
strictures that arise from chiral invariance are most suc-
cinctly described in terms of the nonlinear order parame-
ter

l 8

U=exp g A, .(j)i
m' j-= 1

(4)

where P are the pseudoscalar fields and F =94 MeV is
the pion-decay constant. Under SU(3)I SU(3)z the ma-
trix U is defined to transform as

U —+L UR

where

D„U=B„U—+ie[Q, U]A„
is the covariant derivative and

Including the effects of quark mass, the simplest La-
grangian consistent with chiral, Lorentz, and U(1) gauge
invariance is then

F2 F2
L' '= TrD U D"Dt+ Trm( U+ U") —'F F"',—

P 4 4 pv

(6)

m„o 0

m =2Bo 0 md 0, Q= 0 —
—,
' 0

0 0 m, o o

The first piece of L' ' contains the meson kinetic energy
contribution and is chiral invariant. The second term
transforms as (3L,3+ )+(31,3z ) under chiral rotations
and describes the breaking of chiral invariance by the
quark masses. Comparing with experimental meson
masses yields the normalization

2m~ 2m ~
2BO =

m +md m„+md
6m„

(9)m„+ md +4m,

7m~ao=, ao=—
32~F „

m~

16' (10)

which are roughly borne out experimentally. However,
loop diagrams arising from L' ' produce effects of higher
order, O(p, m p, m"), and contain divergences. These
infinites can be eliminated by being absorbed into renor-
malizing phenomenological chiral couplings of order 4.
The most general such Lagrangian has been given by
Gasser and Leutwyler:

The last piece of L' ' is simply the free photon Lagrang-
1an.

Even at this level the theory has predictive power —the
tree-level evaluation of L' ' yields [at O(p, m )] the fa-
miliar Weinberg scattering lengths for ~-m scattering,

L' '=Li[Tr(D UD"U )] +Lz(TrD„UD, U ) +L3Tr(D„UD"U ) +L4Tr(D„UD"Ut)Trm(U+U )

+L~TrD„UD" U mU + Um+L6[Trm(U+ U )] +L7[Trm(U —U )] +L8Tr(mUmU+mU mU )

iL9Tr(F„+—"UD Ut+F +"U D "U)+L,OTr(F„„UF"' U )+L»TrF„F""+L,2Trm

Here F„,F„are external field-strength tensors defined
via

where y is Euler's constant, e=d —4 represents the
dimensionality, and

FL ~ =g FL ii —r)g I- ii —i [FL & FL ii
]pv p v p p v

FI., R yP P P

and the covariant derivative is defined as

(12)
r, =—„, r, =

—,'„r,=o, r, =-,',
r =-'„r =—„~„r,=o, r, =

—,', ,S Y8~ 6 &4& ~ (15)

D =8„—i[V ] i [A„ I . — (13)

r.
L,"(p, ) =L, + —+ln4~+ 1 —y p

l 2

327T
(14)

The coefficients L„.. . , L,2 are arbitrary and unphysical
(bare) inasmuch as they can be used to absorb divergent
loop contributions from the lowest-order chiral Lagrang-
ian L ' '. The physical (renormalized) couplings are
found to be Swzw= f d x e'~"' Tr(L;LqLkL.

+ fd x A„J"+fd"xe" ~B„A & Tp

with

(16)

are constants chosen to cancel the divergences.
In addition to the above terms, the effect of the anoma-

ly must be included. This is contained in the Wess-
Zumino-Witten action at order E (Ref. 10):
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L„=B„UU~, R„=U B„U,
J"=e" ~Tr(QL L L&+QR R R&), . (17)

T13=Tr(Q L&+Q R&+ ,'QU—QU L13+ ,'QU—QUR&) .

F exPt

= 1.22+0.01

provides the size of L 5:

(24)

7T ~& e v~~
+ + + 0 + + +

K+~m e+v„K+~m. p+v„, K ~m e+v, ,

Ep~m- p+v„, etc. ,

(18)

and have shown that such reactions are completely deter-
mined in terms of only three of the fourth-order con-
stants: L5,L9,L ]p For example, the charged-pion elec-
tromagnetic form factor is calculated as

& ( ) — 1+q L9—
2 2 F2 32~2F2

We have given the gauge dependence only for the U(1)
photon field. The full non-Abelian anomaly is much
more complicated and is not needed for our purposes.
The first term in Eq. (16) in this action is written as the
integral of a five-dimensional space, whose four-
dimensional boundary is our usual space-time. Even
though the physics is determined entirely by the four-
dimensional boundary, this construction gives a remark-
ably simple form for the anomaly. The one-loop renor-
malization of the anomaly action has recently been car-
ried out. " Although there is no modification at all to the
coefficients given above, there exist induced new terms at
order E . Such terms are themselves purely four dimen-
sional in character and do not modify the anomalous
Ward identities. Since we are in this paper working to
order E we will not consider them further.

Gasser and Leutwyler have analyzed an entire set of
electroweak reactions involving pions and kaons,

L5(p=m„)=(2.2+0.5) X 10 (25)

The fact that such chiral coefficients are small,
L,"-10,is satisfying and is consistent with the theoret-
ical observation that chiral perturbation theory
represents an expansion in momentum with a parameter
A, which sets the scale of said expansion, given by'

A-4+F —1 GeV . (26)

That is, coefficients of terms in L' ', L' ', L' ', etc.,
should be of order

c' 'c' 'c' ' . —1 A A (27)

which is consistent with, e.g. ,

0.015 1

F m (1100 MeV)
(28)

It is this feature which guarantees the success of chiral
perturbation theory at low energies: s (&A . In fact, the
analysis made by Gasser and Leutwyler successfully re-
lated all the reactions quoted in Eq. (18) in terms of the
three parameters L5, L9, L",p, and the physical particle
masses.

Thus far our discussion has constituted a brief review
of the Gasser-Leutwyler procedure. The remainder of
our paper will involve analysis of previous theoretical at-
tempts to calculate the chiral parameters in chirally sym-
metric models. We shall first focus our discussion on cer-
tain higher-order properties of the pion, and then provide
a more general overview.

] mg
2

+—ln
p

The experimental value of the pion charge radius'

(19)

III. PHENOMENOLOGICAL UPDATE

(r )'" '=0 439+0 030 fm (20)

can then be used in order to produce an empirical value
for the chiral parameter L9.

L9(p=m„)=(6.9+0.2) X10 (21)

Similarly the experimental value for the axial structure
constant hz in radiative pion decay, n+ ~e+v, y (Ref.
13),

+(p )I&™~ (p ))=f (q')(p, +p, )„, (29)

Before discussing specific theoretical models, we will
first describe the analysis of various pionic properties-
the electromagnetic form factor, radiative weak decay,
and the polarizability —using the e6'ective Lagrangian
framework, and compare the predictions of chiral sym-
metry with experiment.

The electromagnetic form factor, defined as

h~" '=(8.7+0.2) X10 MeV

determines L &p

(22) is characterized in terms of the form factor f (q ) which
to lowest order is written in the (on-shell) form

L", (pa= m)=( —5.2+0.3)X10 (23) f (q )=1+—,'(r )q + . (30)

and the measured SU(3) breaking in the pion, kaon decay
constants

Radiative pion beta decay, ~+~e+v, y, is described by
the weak electromagnetic m.atrix element'
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M„,(qp)= f d x e'~ "(O~T[V™(x)J","(0)]~sr+(p))

=V2F„(p —q),(2p —q)„2 2 (1+ 61 (r )q )+&2F„(p—q),q„6t(r )"(p —q)' —m'

—&2F g .+h~[(p q)—„q. g—(p q—) q]+hvep. .@ q r~—(g,.q' q,—q. ) . (31)

Here the first piece is the pion pole contribution, while h z, r~, and h z are so-called direct or structure-dependent from
factors associated with axial-vector and polar-vector compounds of the weak current. We have retained terms propor-
tional to q which vanish for physical photons in order to include also ~ ~e+v, e+e, which has recently been mea-
sured at SIN (Ref. 17). Ordinarily such structure dependence is difficult to measure, being dwarfed by inner brems-
strahlung. However, in this case the nonradiative ~+~e v, process is strongly helicity suppressed' allowing experi-
mental access to the direct emission terms. The pion polarizability is given in terms of the Compton-scattering ampli-
tude

A„(p„q, ,q2)= f d x e ' (rr+(p2)~T[V' (x)V™(0)]~1r+(p,))

(P 1 q2 P 1 )Tp(P2 P2+q 1 ) Tp(P 1 ql P 1 )T (P2~P2+q2 )

(p, —
q2 ) —m (p, —q, ) —m „

+ gpv+ 3 ~ r tr )(q lgpv 'qlpqlv+q2gpv 'q2pq2v)+2Vrr(ql q2gpv qlv'q2p )+ (32)

where

T„(p,p )=(p +p, )„(1+-,'(r„')q2)

+q„—,'
&

' )(p', —p', ) (33)

(r ) ~'" "=(0.44+0.01)fm (Ref. 12),
expt

h~
=0.46+0.02 (Ref. 21),

is the pion electromagnetic vertex. Connection with the
polarizability is made by use of the nonrelativistic expan-
sion

Amp(yn~ym)=e, E2
.— [1—

—,'(r )(q, +q2)]

expt

=2.3+0.6 (Ref. 17),
V

aE+I3~~'""'=(l.4+3. 1)X 10 fm (Ref. 22),

aE ~'"~'=(6.8+1.4) X 10 fm (Ref. 23),

(38)

+ CO IC02A~

+e, Xq, e2X (34)

with which to compare the theoretical analysis. It is also
important to note that these viue experimental quantities
are predicted in terms of just two of the chiral 'parameters
L9 and Llo.

Here a is the fine-structure constant while aE, pM are the
electric and magnetic pion polarizabilities, respectively,
defined such that

12L9 h~(r ) ~' e'=, =32m (L ~ +Lr )F

f d x H;„, o- 2t(aEE +pMB )—. (35)

hv
=32m L" a +P '""=0 (39)

Comparison with Eq. (32) immediately reveals the
chiral-symmetry requirement

~

theo (L r +L r4aI F
CX

&E
m~

(36)

That aE must be the negative of p~ is also clear from the
effective-Lagrangian framework, wherein the lowest-
order chiral contribution must have the form

L,fr-e F,F" Tr(QUQU ) o-(E B) . —(37)

Before discussing predictions for these basic pion prop-
erties, we note that experimental values exist for each,

The effects of pion loops have been worked out for these
processes in Ref. 7. We do not include these in our
analysis for two reasons. (1) When regularized as in
Gasser and Leutwyler's work, the corrections induced by
loops in these processes are found to be small. In particu-
lar they are smaller both than the experimental uncer-
tainty and than the magnitude of the tree-level
coefficients L9, L Io. A corollary of this is that the scale
dependence is not important either. (2) The theories
which we are exploring yield predictions for the tree-level
coefficients. Given these comments made in case (1) we
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feel that the use of the coefFicients at the tree level is most
illuminating.

Before discussing specific theoretical models for L9,
L&0, we first examine the relationships between these ex-
perimental parameters which follow strictly from chiral
symmetry. One of these —the reason for the vanishing of

aE+P~ in chiral theories —has already been noted. The
correction between r„lb~, (r ) and between az,
h~/hz required in chiral theories can also easily be
shown to be results of current-algebra —PCAC (partial
conservation of axial-vector current) limits. We have,
e.g. )

(p q) M—„(p,q)= 1 d x e'~ ~'"(O~T[B"A (x)V„' (0)]~a+(p)) —(O~A„(0)~m+(p))

v'2F—p +v'2F m T (p —q,p)17 P 7f 7T P
( )P P, (40)

which yields

r„=v'2F„,'&r') —. (41)

expt

=2.8 X 10 fm
8~2m F2 h v

(49)

Also

lim A „(p„q„q~ )
p& 0

[M„,(q„p, )+M „(qz,p, )) (42)
2F

which requires

This disturbing discrepancy represents a serious violation
of the chiral prediction and we urge an experimental
effort to remeasure the polarizability. Indeed the ex-
istence of such a large violation would suggest a
significant breaking of chiral symmetry required by the
validity of QCD. Incidentally, loops are of no help here.
Inclusion of final-state mm and KE effects in yymm yield

v'ZF.
(43)

a
Smm F

The predictions quoted in Eq. (39) then follow from the
use of the SU(2) relation

1

4v'2~ F (44)

which relates the vector structure constant in radiative
pion decay to the ~ ~yy amplitude given by the anoma-
ly. The strictures where

1

m (4~F )

m3
2 t

1 K F
2 t

2m

2m~
(50)

(45)

then must arise in any chirally invariant theory. Previous
chiral evaluations which independently calculate hz and
the polarizability or r~ and the charge radius are redun-
dant.

On the experimental side, besides the requirement
az = —P~ which is well satisfied, we note that'

expt

Note that, in the limit of small t,

2m —+ —1—
m

+ I ~ ~

12m

t =(q, +q~)

is the momentum transfer and, for x & 0,
I/2 i2

xF(x)= —4 arcsinh
4

(51)

(52)

=2.3+0.6 (46)
so that

is in good agreement with
expt

2877

3
=2.6 .

However, '

a'"~'=(6. 8+1.4) X 10 fm

is more than a factor of 2 larger than

(47)

(48)

a~ — —+ 0
8am F hy&~0

(54)

consistent with the current-algebra —PCAC constraint.
Higher-order contributions are proportional to
t/(4vrF ) «1 and yield more complex angular depen-
dence not seen in the data.

Having examined the experimental state of relations
between pionic properties required by chiral syrnrnetry,
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we are prepared to touch base with previous calculations
of the absolute size of such effects, which is done in the
next section. We shall proceed by relating the various
theories to the corresponding low-energy parameters L,,

'"'.
This shows that many of the model calculations of indivi-
dual reactions are redundant, being merely the recalcula-
tion of the same low-energy parameter in different reac-
tions and allows us to understand in a simple fashion the
classes of predictions which appear in the literature. In
addition we can compare the results with the phenome-
nological analysis of the previous section in order to
select the most realistic of these theoretical models.

IV. PREDICTIONS AT ORDER E' '

L=—'trB XB"X + trX X— (trX X)p 4 16

where

(55)

Many theoretical attempts have been made to calculate
properties of the pseudoscalar rnesons which arise at or-
der E' ', such as the direct radiative pion decay, the pion
charge radius, and polarizability which were discussed in
the previous section. DifFerent procedures, each of which
claims to follow from chiral symmetry, are found to yield
quite different predictions, and it is a confusing matter to
understand how results of these various "chiral" calcula-
tional schemes, e.g., (i) chiral quark model, (ii) chiral field
theory, (iii) current-algebra sum rules, (iv) effective La-
grangian, (v) o model, (vi) vector dominance, (vii) leading
nonanalytic corrections (chiral logs), etc. , are interrelat-
ed. Nevertheless, that is our goal in this work.

As emphasized above, all chiral-symmetric models, re-
gardless of their origin must agree at O(L' '), i.e., order

p, m, since the form of L' ' is required in order to
reproduce the free pseudoscalar Lagrangian. However,
alternative models can have very different results at
O(L ' ') and these differences can be exploited in order to
choose between such models. A simple example is the fa-
miliar linear o. model, which can be written in the form

m, =&2@ . (60)

Identifying I =v we see that the form of L' ' is as re-
quired. At an energy scale E &&m„such that creation of
s particles is not permitted, the scalars still affect the
theory through virtual processes. To lowest order, this
arises from the linear coupling

L;„,=—(TrB„UB"U )s

which yields, due to the scalar-exchange diagram, a con-
tribution to L' ',

g2
(Tra Va~V')'.

4m'
S

(62)

(r') = 3 a
4 2F2 ~ E ~M

8 2 F2

In such a model then L& is nonvanishing but. there is no
contribution to L2 or L3, and this pattern, were it to be
confirmed experimentally, would act as a confirmation of
this particular theoretical picture. The linear o model
also predicts, however, L9=L&o=0 at the tree level in
contradiction to the expermental results of Eq. (38). Of
course, our presentation here is simplified. A realistic
discussion requires also the inclusion of pion and scalar
loop effects and one can also rule out the full o. model's
predictions for L&,L2,L3, from the amplitudes in mm.

scattering. ' However, the main point which we wish to
make is that any such chirally symmetric model can be
completely characterized in terms of its order-4 chiral ex-
pansion coefficients —the predicted values of these
coefficients provide a complete and accurate representa-
tion of the predictions of the theory.

The theories applied to various rare pion transitions
can be characterized in the following five basic groups.

(i) Chiral quark model. In this approach one considers
the pion to be a simple qq bound state and evaluates its
properties in a simple single quark loop approximation.
Calculations have yielded

X=o+iw m

The vacuum state is
' 1/2

(56)
h~=hv= 1

4~'&2F.

(63)

and defining

. 1
X =(u +s)exp i rm =(—u +s) U

v

(57)

(58)

(ii) Chiral baryon field theory. In this model one takes
the pion as a fundamental field which is coupled to the
nucleon in a chirally invariant fashion. Calculations in
this case have given

2 2

we determine

L =
—,'(u+s) TrB„UB"U + —,'(B„sB"s—2p s )

3 h~=hv=
gg 4m &2F

(64)

A vs s3 ~ 4

4
(59)

The theory then contains massless pions described by the
nonlinear representation U together with scalar mesons
of mass

(iii) Linear o model. In this approach, as outlined
above, one considers the pion to be grouped together
with a heavier scalar meson, the o., in a chirally invariant
fashion. Here we consider the meson sector alone. Often
the linear o. model is used with fermion fields in addition,
but we do not study this case. Calculations then yield
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2

(r')= ln
16m F m

11
6

tions of order m lnm over those of order m in the ex-
pansion in the energy and/or mass. This leads to

(65)
CX

—1

24m m F 12~2v'2F
(r'„)=

2 2—1 m 1 mz
ln +—ln

p2 2 p2
(67)

(iv) Current-algebra —vector dominance: In this picture
one uses current-algebra —PCAC techniques to yield ex-
act sum rules, which are then approximated using a
vector —axial-vector dominance assumption. Calculations
have found, in this approach,

6 a
+E ~M

m m mz

h„=&2F, hi, =m„4n &2F„

(v) Leading nonanalytic corrections. Here one keeps
only the nonanalytic terms, such as m lnm or s 1ns,
which are found when calculating meson loops. The
motivation for this is the formal dominance of correc-

a~ = —pM =0, h~ =0 .

There are additional models but these are sufficient to
make our point;.

Analysis of the first two models is easiest to perform
within the framework of effective-Lagrangian techniques
which have been widely used recently in order to attempt
to understand the restrictions which QCD places on
effective low-energy field theories. We shall outline here
the approach due to Balog, ' but other workers have ob-
tained identical results. We consider the state obtained
from the vacuum by means of a local chiral transforma-
tion on the quark fields and interpret the energy
difference between this state and the vacuum as the low-
energy effective action. In this way we find

exp[i&(4)] =
4 . 1 1

DqDqexp i d xq exp i A, @y5 %exp i X 4y5 q
L

fDq Dqexp i f d x q7q
(68a)

where

. 1 . 17 =& i g(1+—y —) —i —g(1 —y )
2 5 2 . 5

and

(68b)

L„,R„=V„+A„ (68c)

represent external fiavor gauge fields. Performing the functional integration using a heat kernal expansion ' (and keep-
ing up to the a2 coefficient) one finds

L' '=L,„, „„+ Tr[ 4(D„UD"U —
) +2D„U D, UD„U D, U+4(D„D„U )(D,D, U)+4U L„UR„,

384m

+8(R„,D„U D„U+L„,D„UD U )]+ (69)

N,

48m

1

2
for Ã

16m

(70)

Examination of Eq. (67) suggests that integrating out the
quark fields corresponds directly to the simple chiral-
quark-model calculations performed in earlier times.

where X, is the number of colors, L»,~»~ is the anoma-
lous piece of the Lagrangian as given by Witten, and the
remaining O(E' ') terms can be put into the form given
in Eq. (11)with the identification '

8L i =4L2 = 2L3 =L9 = 2L ]o

This identification is further secured by noting that

hq
=32vr (L9+L,o) =1,

V

12L9(r'll F2
3

4' F

(71)

as given by direct calculation in such models. We ob-
serve that the predicted charge radius, (r )'"' =0.33
fm, is somewhat too small and the ratio h~/hz some-
what too large in this chiral quark model.

Some derivations of Eq. (69) claim that gluonic effects
have also been taken into account in these coeKcients.
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We would like to devote a rather technical aside on why
this is not the case. This paragraph is intended mainly
for theorists who have experience with the heat-kernel
expansion. Consider first the functional integral over the
fermion variables, prior to the gluonic integration. This
result has been calculated in terms of a set of operators of
increasing dimensions. These operators can contain
gluon and/or chiral fields. Schematically one might give
examples of terms in the expansion in the following
manner:

8',s(F„,U)=a, +azF„'g'"'+a3(TrD„UD" Ut)2

+a4I'„'g'""[Tr(D UD" Ut)] +

Wept

(a) (b) (c)

unity and an SU(2) charge matrix

FIG. 2. Schematic picture of some contributions to the
effective action obtained after integrating over the gluon fieMs.
(a) is a free quark loop which yields the results obtained from
the a2 coefficient in the heat-kernal expansion. (b), (c), (d) are
gluonic corrections to this.

(72)
1 0
0 0 (74)

The a3 and a2 terms are of a dimension (i.e., dim=4) that
they could be found in the heat-kernel expansion in the
a2 coefficient. The a3 term is of the form given in Eq.
(69). In contrast the a4 term has dimension=8 and could
only appear in the a4 coefficient, which is not included
because it is beyond present calculational capabilities.
The a4 operator is given pictorially in Fig. 1(c), involving
two gluons plus the chiral field, while the az operator is
shown in Fig. 1(b). Yet higher-order operators with more
gluon fields are also pictured. Next consider the func-
tional integral over the gluonic degrees of freedom. This
removes the gluonic operators and we are left with an ex-
pansion in the chiral field

W,s( U) =P, +P~[Tr(B„UBi'Ut)] + (73)

(b) (c) (d)

FIG. 1. Schematic picture of some of the contributions to the
full fermion determinant obtained by integrating out the quark
fields coupled to gluons and to a background chiral field. The
X indicates a factor of a chiral field in the resulting action,
while a wavy line indicates a factor of a gluon field.

Now the coefficient p2 will contain the effect of a3 and
also that of a4. Pictorially these give the gluonic correc-
tions pictured in Fig. 2. The result in Eq. (69) is obtained
from only the free quark loop Fig. 2(a), as the gluonic
portions were contained in the part of the expression
which was not calculated. For the anomaly we have the
Adler-Bardeen theorem to guarantee that gluonic correc-
tions do not modify the result. However, no such
theorem applies to the remaining portion of the effective
Lagrangian. In QCD we really need to include the full
set of gluonic diagrams. This explanation makes clear
why the sophisticated heat-kernel evaluation of Balog
and others yields the same coefficients as the simple
chiral quark model: They both represent simply a free
quark loop calculation.

An identical procedure to that given in Eq. (69) can be
used to yield the results of chiral baryon field-theory cal-
culations. In this case, however, N, must be set equal to

is employed. Also we include the axial-vector coupling
constant g„. We find then

2

8Li =4L2 = —2L3 =L9 = —2Lio=
48m.

(75)

Likewise the coefficient preceding L»,m»~ is smaller than
in the chiral quark model by a factor of g~/3. It is
perhaps surprising then that the ~ ~yy decay ampli-
tude is essentially the same in the chiral field theory and
chiral quark models. This results obtains, however, be-
cause the value of

N, Trl, 3Q (76)

to which the amplitude is proportional, is equal to unity
in both models. The same "miracle" does not occur in
evaluation of the polarizability and axial radiative decay
since these results involve

N, Tr4&[Q, 4] or N, Tr[Q, C&][Q,@] (77)

which agrees with the results of the model calculations.
It has often been asserted that the agreement between
chiral quark model and chiral field theory calculations
cited above is "accidental. " This seems clearly to be the
case since the chiral coefficients L, L2, L, 3, which deter-
mine m-m scattering, for example, differ by a factor 3. We
observe that the predicted pion charge radius is much too
small. The ratio h„/hv is in good agreement with the
level measured experimentally. However, this must be
regarded as accidental.

The basic structure of the o. model has been quoted
above. At tree level only the o.-pole diagram contributes,
while loop effects have been evaluated by Gasser and
Leutwyler. We observe that the structure in this case is
completely ruled out by experiment. Indeed the charge
radius is too small. Also the axial-vector to vector struc-
ture constant h & and the pion polarizability aE are found

which differ by a factor of X, . Thus, we predict, in such
a model,

327T' gg 4L9
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to have the wrong sign.
In the model which we label as vector dominance, one

integrates out the effects of the vector and axial-vector
mesons, in a similar fashion to that performed for the
scalar meson in Eq. (62) producing an effective chiral La-
grangian of the form Eq. (11)but now with~6'33

F =F +F
The charge radius then becomes

Mv F

(81)

(82)

I vF
L] = 2L2 = 6L3 =6+

mv

(79)

while h ~ /h v is given by
2 F2

hz /hv=32n (r )+
12 4M

F2

4Mv
(83)

FvGv F~
, L

2M2 ' 10
v

Fv
4Mv'

These expressions may not appear familiar in this form.
However, vector dominance demands FvGv=F so that
the charge radius assumes its expected form,

Fv = 150 MeV

while F~ is given by the Weinberg sum rule

(80)

Here Gv=60 MeV is the pm. m coupling while Fv, F~ are
the constants of proportionality between vector, axial-
vector currents, and the corresponding meson fields. We
find

(r ) = =0 39fm6

Mv
(84)

in good agreement with its experimentally measured
value. Also, by use of current-algebra —PCAC we can re-
late h„ to the difference of vector and axial-vector two-
point functions:

lim M„(q,p)=&2F„q„q &2F g„—+(&2F ,'(r ) —h—~)(q„q„g„q)—p~0 7T P v

Jd x e'~ (Ol 'T[ 2V&( x) V„( 0)
—&„+(x)& (0)ll0) . (85)

Use of vector —axial-vector dominance for the vacuum ex-
pectation value gives

lim M„(q,p) = Fv g„
—&2 z

I

Using the approximate result Fv/F =2 we find

h„=&2F
mg

or

(90)

qpqv
&pv

mg

2 1
FA'pqv 2 ~

~

q
—m„

We find then from the coefficients of

(86)

hq F„
=8m

m~~
(91)

which, for an axial meson with the reasonable mass value
m ~

—1260 MeV yields

(i) g„,: Fv F„=F„, —

which is the Weinberg sum rule, and of
F2

2mv
(ii) q„q: h~ =&2F —,'(r )—

2 2m~ F

(87)

(88)

h„=&2F 2
2mv

Fv
F mv

1
2mg

1
2mg

(89)

which corresponds to the result given in Eq. (83) and is a
sum rule first given by Das, Mathur, and Okubo. Using
the vector-dominance approximation and the Weinberg
sum rule we find then

theo

=0.43
hv

(92)

in good agreement with experiment.
Finally we include an approximation based on the loop

structure of chiral perturbation theory. In an expansion
in the energy, a term of order m lnm /p or q lnm„/p
is technically larger than one of order m or q, if p is
chosen at some fixed hadronic scale, i.e., p-m or 1

GeV. Such terms arise when meson loop effects are cal-
culated. An approximation which is widely used is to
keep only these nonanalytic contributions and to disre-
gard all of the polynomical terms. This is effectively the
same as setting L; =0. How well does this work in prac-
tice? A typical example is the pion charge radius, where
chiral logs would predict
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TABLE I. Tabulated are various O(L' ') properties of the pion as predicted in various chiral models
and as measured experimentally. Note that only the vector-dominance picture is uniformly successful.

Chiral Vector
Quark loop field theory dominance Linear cr' Chiral logs Expt

(r ) (fm~)

h~(m '
)

h„/hv
&~ /'h v

aE+pM (10 fm )

aE (10 fm )

0.33
0.026
1

1.9
0
6.1

0.17
0.033
0.41
1.0
0
2.5

0.39
0.026
0.43
2.3
0
2.6

0.05
0.026'

—0.33'
0.3
0

—2.0

0.12
0.026
0
0.7
0
0

0.44+0.01
0 029+0.019

0.46+0.02
2.3+0.6
1.4+3.1

6.8+1.4
'In the linear o. model, we have used m =0.7 GeV and have used Eq. (44) for h& even though the
anomaly is strictly not present in the mesonic sector of the o. model.

2 2—1 m 1 m&
ln +—ln

16772/'2 p2 2 p2

0. 12 fm2, p=1 GeV,

0.06 frn, p= —,
' GeV,

(93)

which is very much smaller than the experimental result.
From our previous discussion it is clear that this must fail
for r~/hi, also. In the case of h„/hi, and aE, the
leading-log approximation predicts

Ag Oy AE 0 (94)

again in conAict with the data. It should also be men-
tioned that the leading nonanalytic corrections to m~
scattering have been studied and are also in disagree-
ment with the data, being too small and not effective in
the right channels. Overall we conclude that the leading
nonanalytic term approximation has very little in corn-
mon with the real world. Rather the reverse seems true;
i.e., the tree-level coefFicients L,. are dominant and the
effects of chiral logs are small.

Our results for chiral calculations of pionic properties
are summarized in Table I. It is clear that only the
vector —axial-vector dominance picture gives overall a sa-
tisfactory representation of experimental results (with the
exception of the pion polarizability which urgently needs
to be remeasured, as noted above). This point is made
even more vividly by comparing the calculated chiral ex-
pansion parameters with values determined empirically
by Gasser and Leutwyler. Strictly speaking, this compar-
ison is somewhat ambiguous since the empirically deter-
mined values are not fundamental constants but rather
are determined at a given mass scale p, because of the
renorrnalization-point dependence arising from pion loop
corrections. Nevertheless, as noted above, the scale

dependence and residual effects from loops are not large
and one can use the overall agreement as a gauge of how
well a given theoretical picture is able to represent experi-
mental reality. A summary is given in Table II. We ob-
serve that both the chiral quark model and vector domi-
nance give an approximate picture of experimental reali-
ty. However, the vector-dominance calculation is in
much better agreement with the results of pion radiative
decay and the pion charge radius, as already noted.
Chiral field theory predictions are consistently a factor of
3 too small, associated with the lack of color degrees of
freedom, while the linear 0 model or chiral logs simply
do not provide an adequate representation of nature.

V. CONCLUSION

We have noted that higher-order effects in models pos-
sessing chiral symmetry can be expressed in terms of a
small number of phenomenological parameters
L &, . . . , L &0. In particular we examined a range of pion
interactions, involving the charge radius, radiative decay,
and polarizability, and found that all could be understood
in terms of only L9 and L,o, requiring a relationship be-
tween some of these experimental quantities in chiral
theories. At the present time a discrepancy exists be-
tween the measured and predicted pion polarizability,
and remeasurement of aE is strongly suggested. Such
chiral parameters also offer a concise and useful way to
characterize theoretical calculations of high-order chiral
effects. In particular, we noted that previous quark loop
calculations can be characterized by the use of a recently
calculated effective chiral Lagrangian. A similar La-
grangian is found to represent previous calculations in
so-called chiral field theory. The former is found to offer
a semiquantitative but hardly precise description of ex-

TABLE II. Listed are values of the chiral expansion parameters L; as calculated in various chiral
models and as measured experimentally. All should be multiplied by a factor of 10 '. Note that only
the vector-domance picture is uniformly successful.

L3
L, +
L2
L9
Llo

Quark loop

—0.8

1.6
6.3

—3.2

Chiral field theory

—0.4

0.8
3.3

—1.7

Vector dominance

—2.1

+2.1

7.3
—5.8

Linear 0.

—0.5

1.5
0.9

—2.0

Empirical

—2.3+0.5
2.0+0.5
6.9+0.2

—5.2+0.3
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perimental results, while the latter is too small by a factor
of 3. Satisfactory agreement is found, however, in a pic-
ture based upon vector dominance.

Very often the linear o. model or the leading nonana-
lytic approximation are used to study some consequences
of chiral symmetry. This is tempting because they offer
simple and easily manageable theories. However, it is
clear from the comparison with data that they bear little
relation to reality. They are not a good representation of
low-energy QCD, and consequences derived from them
are suspect.

The pattern found here agrees well with the results of
an analysis of m~ scattering. There also, the vector-
meson picture provides an excellent description of the
low-energy constants involved, in that case L, and L2.
The scale dependence and effects of loops are greater in
that analysis, but the comparison was made to a tree-level
fit to the data. The chiral quark model predicts both L&
and L2 too small, with the ratio L

& /Lz differing by a fac-
tor of 2 from the fit. In analogy with the work of the
present paper, the chiral field theory model results would
be a factor of 3 below those of the quark loop. It is
perhaps not a surprise that vector-dominance calcula-

tions of the low-energy constants work so well. After all,
vector dominance has long been a successful phenomeno-
logical tool, even if its fundamental origin is not com-
pletely clear. What is interesting about recent works on
the origins of effective Lagrangians is that they extend
vector-dominance ideas to the rigorous techniques of
chiral symmetry.

Further tests of this picture are also suggested. Indeed
for any of the higher-order properties of the pion dis-
cussed above, there exist corresponding parameters
describing the structure of the charged kaon, and only
some of these have been measured. The polarizability of
the neutral pion and kaon are also predicted unambigu-
ously in chiral models in terms of (finite) meson loop con-
tributions. Also worthy of study is a more direct connec-
tion of the vector-dominance —chiral-Lagrangian union
with QCD.
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