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Roper resonance and the baryon spectrum
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We present a method for calculating the baryon spectrum in the cloudy-bag model in which the
masses of the baryons are identical to the poles of the S matrix in the complex energy plane. In par-
ticular, we demonstrate that the width for the decay of these resonances by pion emission is depen-
dent on whether the calculations are carried out on the real energy axis or at the resonance poles,
the latter being consistent with the scattering experiments that determine these widths. Results for
X*(1440}are presented.

I. INTRODUCTION

Quarks and gluons are well established as being the
constituents of nuclei and their dynamics are described
by quantum chromodynamics (QCD). As a result, one
would like to describe nuclei using these constituents as a
starting point, but the complexity of the QCD equations
renders this a very difFicult problem. Consequently the
nuclear physicist has relied on phenomenological models
which try to emulate QCD by incorporating its most im-
portant properties.

Bag models' have been used quite successfully to
achieve this goal. They picture the quarks in the hadron
as being confined to a static volume, the bag. The impor-
tant QCD properties of asymptotic freedom and infrared
slavery are included by neglecting the quark interaction
via the exchange of gluons to lowest order and by impos-
ing appropriate boundary conditions at the bag surface.
The earliest of these models was the MIT bag model
which was covariant and based on a field-theoretic La-
grangian. Its main shortcoming was its failure to satisfy
chiral symmetry, which is one of the fundamental sym-
metries of QCD. The restoration of chiral symmetry has
been achieved by coupling a pion field to the bag. The
first chirally symmetric bag was proposed by Chodos and
Thorn, and this was followed by the chiral bag model of
Brown and Rho. There have been other chiral bag mod-
els since the Brown-Rho model. One that has been exten-
sively used for m-N scattering is the cloudy-bag model
(CBM) of Theberge, Thomas, and Miller. Although our
formalism does not depend on any particular model, we
used the CBM with pseudosocalar coupling of the pion
field to the quarks at the bag surface' to obtain some nu-
merical results.

It has become a standard practice to test any model of
QCD by calculating the baryon spectrum. Considering
the fact that many of the states in the baryon spectrum
are observed as resonances in meson-nucleon scattering,
i.e., they correspond to poles of the corresponding S ma-
trix in the complex energy plane, it is surprising that the
calculation of the baryon spectrum is often carried out as
a bound-state problem. In fact, some of these models cal-
culate the mass and width of the states using difFerent La-

grangians, when these quantities are nothing more than
the real and imaginary parts of the energy at which the S
matrix has a pole. Here we will show how we can calcu-
late the baryon spectrum as an eigenvalue problem for a
complex Hamiltonian, with the imaginary part of the
Hamiltonian giving the mechanism for the decay of the
state by meson emission. Although the derivation of our
final result can be achieved in a covariant manner by the
classification of diagrams according to their irreducibili-
ty, we have chosen to use Feshbach projection opera-
tors' to demonstrate how the coupling between the
different channels gives the mass shift and width of the
states in the spectrum. Furthermore we show that the
complex eigenvalues resulting from the diagonalization of
the complex Hamiltonian are the positions of the poles of
the S matrix for meson-nucleon scattering. This formula-
tion is presented in Sec. II.

To demonstrate our formalism we have considered the
Roper resonance, i.e., N*(1440), within the framework of
CBM as a radial excitation of the nucleon. The motiva-
tion for this choice is twofold. (i) This model has been
used to calculate the ~-X phase shift in this channel, al-
ways resulting in a resonance with a width that is sub-
stantially smaller than experiment. "' On the other
hand, the determination of the mass and width of this
resonance, in the CBM and in the spirit of mass spectrum
calculation, gives rise to good agreement between theory
and experiment. ' This suggests an inconsistency be-
tween the two methods, since both approaches are based
on the same CBM Lagrangian. (ii) It has been suggested
that the recent phase-shift analysis in the energy region
of the Roper resonance can be interpreted in terms of two
poles in the complex energy plane. ' ' This implies that
the Roper resonance might be two overlapping reso-
nances. The bag model predicts two states corresponding
to the [56] (spatially symmetric) and the [70] (spatially
mixed symmetry) representation of SU(6). By including
both of these states, we will see how the mixing between
the two states leads to two physical resonances in the P&&

channel, and how the two poles affect the phase shifts.
We will also be able to give the relative contribution of
the two states to each of the two resonances. This is par-
ticularly important since many of the phase-shift calcula-
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tions" ' ' have included the [56] representation only.
In Sec. III, we present our results for the resonate. ces in

the P» channel. Here we find that by calculating the
baryon states as a complex eigenvalue problem we get a
width that is in agreement with the calculated phase shift
for the same Lagrangian, and that width is much smaller
than what one would get by first calculating the mass of
the baryon as a bound-state problem, and then calculat-
ing the width. This discrepancy between the two
methods raises a question regarding the accuracy of any
calculation of the baryon spectrum which gives the mass
of the baryon as the eigenvalue of a real Hamiltonian.
Furthermore we find that the mixing between the [56]
and [70] representation, in general, leads to two reso-
nance poles, the narrower of the two being mainly the
[56] representation. This narrow resonance leads to a
bump in the phase shift which is the result of a small loop
in the Argand plot. Finally, in Sec. IV we present some
concluding remarks.

II. FORMULATION OF THE PROBLEM

In this section we demonstrate, using Feshbach projec-
tion operators, ' that the problem of determining the ex-
cited baryon spectrum is identical to the evaluation of the
position of the poles in the pion-nucleon amplitude in the
energy region of the resonance corresponding to a state in
the baryon spectrum. In particular we demonstrate that
the problem of calculating the baryon spectrum reduces
to the determination of the eigenvalues of a complex ma-
trix, the real part of the eigenvalue being the mass of the
baryon, while the imaginary part is the width.

For the present analysis we consider Hamiltonians
I

similar in structure to the CBM Hamiltonian, which are
of the form

(2.1)

+H.c.], (2.2)

where a and P label the baryon states, i.e., a,P
=N, A, R, . . . , while p' and p label the corresponding
momenta. The pions isospin and momentum are given by
p and k, respectively. Because our baryons are not static,
the ~BB form factor f is a function of the baryon and
pion momenta. The equation we need to solve for the
baryon spectrum or for pion-nucleon scattering is of the
form

(2.3)

Because of the form of the interaction Hamiltonian Hz,
the states with n pions are coupled to the states of (n —1)
and (n + 1) pions. Since we are considering pion-nucleon
scattering, and because of the coupling between states of
different pions, we divide our Hilbert space into three
subspaces: (1) P-space which has one baryon and zero
pions; (2) Q, -space which has one baryon and one pion;
and (3) Qz-space which has one baryon and n pions,
n ~2. These are, respectively, characterized by the pro-
jection operators

where Ho is the kinetic energy of the baryon, B(B
=N, b, R, . . .), and the pion, while H; has the coupling
of the meson to the baryon and is of the form

H& = g f dp'dp dk[f (p, k)a t (p')a&(p)b„(k)
aj6lP

P=g fdplap)(ap (2.4a)

Q, =g fdpdkl pa, pk)(ap pkl
a,p

fdpdk, dk„lap, p,k„.. . , p„k„)(ap,p,k„.. . , p„k„l

(2.4b)

(2.4c)

Application of these operators to Eq. (2.3), allows us to
write three coupled equations of the form

(E Hpp)PQ=Hpg —Q, Q,

(E Hg g )Q, Q=Hg pPQ+—Hg g Q~g,

(E Hg g )Qqf=Hg g Q)—t/t,

(2.5a)

(2.5b)

(2.5c)

(E Hpp )Pf =kg Q i 1/i

(E—&g g )Q, /=Kg pPQ,

(2.6a)

(2.6b)

where

where Hz~=PHP, etc. By eliminating the subspace of
n ~ 2 pions, we can rewrite the above equations as

1
&g g (E)=Hg g +Hg g Hg g

Qpgp

=s(k)+ co(k)+ U,~ . (2.7)

Here U,z is an effective interaction which includes the
contribution of two or more pions in every intermediate
state. The above result follows from the fact that
(H& & ) =s(k)+co(k), where s(k)=Qk +m and

co(k)=Qk +m . Note that here the baryon a is taken
to be nonstatic.

To simplify our notation we replace, from this point
on, Q, by Q. By solving Eq. (2.6a) and substituting into
Eq. (2.6b) we obtain
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1E—&gg H—gp Hpg QQ=0E+—Hpp
(2.8)

whose solution is of the form

Qf=dg+Go&fg . (2.9)

In this last expression, Pg is a plane wave for the pion-
baryon system, Gp is the free propagator

Go(&+ ) = 1

E+ —
HQQ

—im6(E —Hgg ),
QQ

(2.10)

1T=rg+(rgGO+ 1 )Hgp + Hpg( 1+Gong )
Z —&pp

and T is the amplitude for pion-baryon scattering. In Eq.
(2.10), P stands for the principal-value integral. The
effective interaction in the Q-space, i.e., Eq. (2.8), is now
the sum of two interactions; one gives the contribution
due to the coupling to channels with two or more pions,

The second contribution is due to the coupling to
the zero pion channel, i.e., the P channel. Making use of
the two-potential theory, ' we can write the amplitude
for pion-baryon scattering as 1+

Q HQP + (p) HPQ Q (2.15)

and

nucleon S matrix in the complex energy plane, which is
what we expect. Here we note that in Eq. (2.14) the ener-

gy E is a nonlinear parameter that we need to determine
self-consistently, and in this way determine the position
of the S-matrix pole. Thus if we consider Eq. (2.14) as a
set of homogeneous equations, then E is determined by
the requirement that the determinant of the coefficients is
zero. This value of E has to be determined separately for
every pole in the S matrix.

Now, since Hzz is the Hamiltonian describing a baryon
in the absence of coupling to the pion, its expectation
value will be the bare mass of the baryon, m ' '. This may
incude any contribution from gluon exchange since that
is not included in our starting Hamiltonian. The extra
term in Eq. (2.14) includes the contribution due to the in-
teraction with the pion, and is thus a correction to the
bare baryon mass which is termed the self-energy X(E).
Hence we can rewrite Eqs. (2.11) and (2.14) as

(2.11) [Z —m"' —X(Z+)]Pq=o, (2.16)

(E—&gg )gg =0 . (2.12)

where u,sag =tgPg, i.e., rg is the amplitude due to the
coupling to the Hilbert space of two or more pions, i.e,
the Q2 channel, and results from a solution of

with

1r(Z) =kg Hgp,
gg

(2.17)

In Eq. (2.11) the effective Hamiltonian &pp is given by

1
&pa =Hpp+Kpg + Hgp .E+ —&gg

(2.13)

Hence by eliminating the spaces of zero pions (P-space)
and two or more pions (Qz-space), we have reformulated
the equations as a scattering problem for the pion-
nucleon system.

It is interesting to observe that had we instead elim-
inated the Q &- and the Q2-space in favor of the P-space,
then the following equation results:

1E Hpp HJ,g
— Hgp P—Q=O .E gg

(2.14)

This eigenvalue problem will give us the baryon spectrum
and since it includes the contribution from that part of
the Hilbert space with one or more pions, the resultant
baryon spectrum includes the meson correction to the
baryon masses. This also has the effect of making the ei-
genvalues complex, which in effect gives the baryons a
width for decay via meson emission. Comparing Eqs.
(2.11) and (2.14) we observe that the operator that gives
us the mass spectrum, including meson corrections, is
present in the denominator of the second term on the
right-hand side of Eq. (2.11). This implies that the values
for the baryon masses correspond to poles of the pion-

where &gg is a complex and energy-dependent operator
defined in the m-8 Hilbert space and includes the cou-
pling to two or more pion intermediate states. In writing
Eq. (2.15) we have made use of the fact that the distortion
operator (1+Gotg) acting on a plane-wave pion-nucleon
wave function Pg gives the scattering wave function Pg.
In this way we have established a one-to-one correspon-
dence between the baryon spectrum, and the resonances
observed in pion-nucleon scattering. In particular, the
width of the resonance is the imaginary part of the ener-
gy E at which Eq. (2.16) is satisfied, while the baryon
mass is the real part of this energy E. In the event that
the Hilbert space of three-quark states admits more than
one baryon with the same quantum number, then Eq.
(2.16) becomes a matrix equation whose dimension is
identical to the number of such states. This is, for exam-
ple, the case in the P&& channel where we have the nu-
cleon, and possibly the two states, corresponding to radi-
ally exciting one of the quarks in the baryon. These two
states correspond to the [56] and the [70] representations
of SU(6) (Ref. 13). Thus the problem of calculating the
baryon spectrum has been reduced to a search for the
solution of a nonlinear eigenvalue equation to be solved
in the appropriate Reimann sheet of the complex energy
plane. The equivalent ~-S scattering problem is a solu-
tion of Eq. (2.8), which corresponds to scattering by the
potential V given by
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1V H—gI, Hpg +v,s,E+ —Hpp
(2.18)

which is the sum of two contributions. The first term is
the result of coupling to the zero-pion Hilbert space, i.e.,
P-space, while the second term is the result of coupling to
states with two or more pions, i.e., Q2-space.

The above procedure for calculating X(E) is
guaranteed to satisfy two-body unitarity, and to that ex-
tent includes all decay modes involving single-pion final
states, e.g., ~X and ~4. To include the decay to two-pion
final states, e.g. , mmX and pN, we need to satisfy three-
body unitarity. In that case the result for X(E) has been
derived using the classification of diagrams according to
their irreducibility, and the final result involves the solu-
tion of the mS-~aÃ equations, ' which are three-body-
type equations.

A common procedure for calculatirig the baryon spec-
trum' involves linearizing the problem by taking E in
X(E) to be real, e.g., the bare mass m' ', and then calcu-
lating the eigenvalue of the real part of X(E). This gives
the mass of the baryon including pionic corrections. To
get the width of that baryon we then make use of the
resultant eigenvectors in conjunction with "Fermi's gold-
en rule. " To illustrate this we consider the case when
v,&=0, i.e., no coupling to the two-or-more-pion Hilbert
space. We now can write the self-energy for real E as

X(E+ ) =HI g Kgp i mHpg5—(E—Hgg )HgpE —Hgg

l—:am ——r,
2

(2.19a)

(2.19b)

where the definition of I above is identical to Fermi's
golden rule. In this way we have replaced a complex ei-
gerivalue problem in the complex energy plane by a real
eigenvalue problem on the real axis. The success of such
an approximation depends to a large extent on the varia-
tion with energy of X(E) as we move from the real axis to
the position of the pole in the complex energy plane.
This sensitivity is particularly important if X(E) is a ma-
trix with large complex o6'-diagonal elements. To see
how this energy variation depends on the details of our
model we need to explicitly write the real and imaginary
parts of the self-energy for the case when v,ff=0. To
make sure we are on the correct energy plane we need to
deform our contour of integration in the k plane as the
energy acquires a negative imaginary part: i.e.,
E~E„iEI (see Fig.—1). The integral along the contour
can now be written as an integral along the real axis, plus
the residue at the pole in the complex k plane corre-
sponding to E —e(k) —co(k)=0. This means that the
self-energy is given by

X(E„iEI)—

FIG. 1. The contour of integration in the k plane when the
energy has a negative imaginary part.

where E(k) =s(k)+co(k), the reduced mass p is given by

s(k)co(k)
s(k)+co(k)

and ko is determined by the condition that

E(ko) =E~ iEI . —

In Eq. (2.20), u(k) is the radial part of the coupling be-
tween the P-space and Q-space; i.e., H~&. We now ob-
serve that in the limit as EI—+0, the imaginary part of the
integrand in Eq. (2.20) has a 5 function that leads to a
cancellation of half the contribution from the residue, the
second term on the right-hand side of Eq. (2.20). On the
other hand, for finite EI, the imaginary part of the in-
tegrand has a Lorentzian distribution peaked about the
momentum corresponding to the position of the pole, i.e.,
Re[ko]. This implies that the imaginary part of the in-
tegral in Eq. (2.20), for a given value of ko, will depend
on the range of the form factor u (k), and thus the radius
of the bag. In particular, for a small bag radius, u (k) is
long range in momentum space and the integral is large.
On the other hand, when the radius of the bag is small,
the overlap between the form factor and Lorentzian is
small, and the imaginary part of the integral is small.

To illustrate this we consider vr-X scattering in the P33
channel, where the diagram that contributes most to the
5 width is shown in Fig. 2. The contribution to the
width comes from two sources; one is the imaginary part
of the integral in Eq. (2.20) and the other is the imaginary
part arising from the residue. As one ventures into the
complex plane, it is obvious that the imaginary part of
the integral is always positive, while numerical studies
have shown that the residue always has a negative imagi-
nary part. Thus the two will cancel each other and the
width then is determined by the relative magnitudes of
these two terms.

k= J dk k [E E(k)+iE ]-[E„E(k)]+EI—
2~ikon(ko)—[u (ko)] (2.20)

FIG. 2. The diagram that is included in the calculation of
X(E) fOr the P33 channel.
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To examine the sensitivity of our result to the bag ra-
dius, we present in Fig. 3 the imaginary part of X(E) as a
function of the imaginary part of the energy for three
different bag radii: R=0.8, 1.0, and 1.2 fm. Here we
take f ~& =2f z~ and f z& =0 08. .It is clear from Fig.
3 that as the bag radius is reduced there is more cancella-
tion between the integral and the residue, and this cancel-
lation increases as one moves into the complex plane.
This suggests that the width we calculate on the real en-
ergy axis may have little resemblence to how far the pole
of the S matrix is from the real axis. This is particularly
the case for baryon resonances where the total widths are
large. More important is the fact that the ~-N amplitude,
the experimentally observed quantity, reflects the result
of the complex eigenvalue problem, i.e., the S-matrix
pole, and not the result of the width as calculated on the
real axis, i.e., Fermi's golden rule.

III. RESULTS

Having established the equivalence between the m-N
scattering problem, Eq. (2.8), and the calculation of the
baryon spectrum as an eigenvalue in the complex energy
plane, Eq. (2.16), we proceed in this section to apply our
formulation to the J=—,', T= —,

' states in ~-N scattering.
The motivation for our choice of this channel is the fact
that the m-N scattering calculation based on the CBM in-
variably predicts a very narrow N*(1440) resonance. "
On the other hand, analyses based on calculating the
mass and width of this resonance tend to give a width
that is consistent with experiment. ' Taking into con-
sideration the result we presented in Fig. 3 for the
b, (1230), this apparent discrepancy between the two cal-
culations may be due to the fact that the baryon mass has
been calculated as a bound-state problem on the real en-
ergy axis. The other motivation for examining the Roper
resonance, is the question of the existence of two possible
Roper resonances very close to each other. ' The model
we consider admits two such states based on the [56] and
[70] representation of SU(6).

The basic full model we consider for m-N scattering in-

—20—

volves taking the Q i-space to include B=N, b„[56],and
[70]. This means that Eq. (2.8) could have as many as
four coupled equations to solve. On the other hand, for
our P-space, Eq. (2.16) can have as many as three equa-
tions with B =N, [56], and [70]. Finally, we have neglect-
ed the contribution of the Qz-space by taking U,s to be
zero. The interaction Hamiltonian, in the present calcu-
lations, is taken from the CBM with pseudoscalar surface
coupling. This means our Hamiltonian has three param-
eters. (i) The bare mass of the nucleon, mg', which is ad-
justed so that the dressed mass as predicted by Eq. (2.16)
is the physical nucleon mass m&=940 MeV. (ii) For the
Roper resonance we take the bare mass of the two states,
the [56] and the [70), to be the same. This bare mass m~~o'

is then adjusted so that the real part of the energy of the
lower resonance is 1440 MeV. (iii) The coupling of the
pion to the quark is taken so that f =93 MeV. Finally,
we take the bag radius to be 1.0 fm.

In calculating the baryon spectrum using Eq. (2.16), we
first observe that the matrix M(E)—:m' '+X(E) is in
general complex and energy dependent, and for the equa-
tion to have a solution the determinant of [E—M(E)]
must be zero. This reduces the problem of finding the
poles of the S matrix in the complex E plane, to finding
those energies for which det[E —M(E) ]=0. If this ener-
gy is real and less than (m +m~), then the position of
the pole gives the nucleon mass, m&. On the other hand,
energies for which Re(E))(m +mz) and can be ap-
proached from the real axis by taking the imaginary part
of the energy to be less than zero correspond to reso-
nances. In this case we expect two such resonances due
to the fact that we have included radial excitation corre-
sponding to the two representations of SU(6). The solu-
tion of Eq. (2.16) at the poles of the S matrix give us the
components of the wave function of the resonances in
terms of the N, [56], and [70] representations.

To begin with, we want to investigate the effect of cal-
culating resonant poles when the energy is restricted to
the real axis when one ventures into the complex energy
plane. We initially look at the mixing between the [56]
and [70] representations, and so truncate the P-space to
include only these two states, while the Q, -space has
these as well as the nucleon and the delta. We also re-
strict our analysis to the case of v,&=0. For this model
we find the bare Roper mass, the only parameter in this
case, to be m~ '= 1557 MeV, and the two resonance poles
are at

E, =(1440—16.5i ) MeV,

E~=(1526—65, 1i) MeV .
(3.1)

I

-80 —40
Im (E)

FIG. 3. The variation in the ImX(E) as a function of ImE,
keeping ReE constant for three different bag radii R. The solid
curve is for R=1.0 fm, the dashed line is for R=1.2 fm, while
the dotted line is for R =0.8 fm.

Here we note that lower-energy resonance has its main
contribution from the [56] representation and has a rela-
tively narrow width, while the second resonance, with
main contribution from the [70] representation has a
width that is comparable to experiment. This suggests
that if we need to include the Roper as a radial excitation
of a three-quark state, then it is essential that the [70]
representation be also included, which has not always
been the case."' '

More interesting is the observation that these results
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are in conAict with the work of Umland et al. ' who car-
ry out their calculation on the real axis using the same
Lagrangian, the only difference between the two calcula-
tions being the absence of gluon exchange in our calcula-
tions, which they show to be small. To examine the ori-
gin of this difference we follow their procedure and diag-
onalize the real part of M(E) by writing it as U D(E)U,
where D(E) is a diagonal matrix that gives the mass of
the baryons. In this case we find that

1421 0
0 1536 (3.2)

We now use the matrix U, for E =mz '= 1557 MeV, to
calculate the width of the two states as the diagonal ele-
ments of

U Im[M(E) ]U =
—52 9

—54 (3.3)

Although this procedure gives baryon masses that are in
reasonable agreement with the position of the poles of the
S matrix, the resultant widths do not agree [compare Eq.
(3.1) with Eqs. (3.2) and (3.3)]. The situation does not im-
prove if we consider the eigenvalues of the complex ma-
trix M (E) which are given by

1421 —52i
0 1536—54i (3.4)

1440—16.5i

1513—46i (3.5)

for E =mz '=1557 MeV. It is interesting to note that on
the real axis, the matrix which exactly diagonalizes
Re[M(E)] also approximately diagonalizes Im[M(E)].
The above results suggests that the calculation of baryon
resonance widths as a real or complex eigenvalue prob-
lem on the real axis can give the wrong results if the
widths are large, which is the case for most of the reso-
nances observed in m.-N scattering. This is mainly due to
the fact that the X(E) changes as we move from the real
energy axis into the complex plane. This situation is
similar to that of the 6 resonance considered in the last
section. More interesting is the fact that the procedure of
diagonalizing the Re[M(E)) also is not valid at the S-
matrix pole even though it was a good approximation on
the real axis. This is predominantly due to the fact that
the imaginary nondiagonal elements of M(E) become
large. To illustrate this we consider first the eigenvalues
of M (E) for E=(1440-16.5i), which is the position of the
lower energy resonance. These are given by

1435 0
0 1519 (3.6)

while

—18 22
U Im[M(E) ]U = (3.7)

By comparing Eq. (3.5) with Eqs. (3.6) and (3.7), we ob-
serve that the matrix U which diagonalizes the
Re[M(E)] does not diagonalize the Im[M(E)]. Thus we
may conclude that the source of the discrepancy between
our results and those of Umland et a/. ' is the fact that
they diagonalize a real matrix on the real energy axis,
while we determine the poles of the S matrix. Finally, we
note that in calculating the position of the S-matrix poles
we are in fact determining two energies for which Eq.
(2.16) has a solution, and these two solutions do not come
from the diagonalization of a single matrix.

We now turn to ~-N scattering in the P~& channel to
see the correspondence between the resonance poles as
calculated using Eq. (2.16) and the phase shifts. To get a
more realistic description of n-1V scattering in this chan-
nel, we need to extend our P-space to include the nu-
cleon. This will give us the low-energy negative phase
shifts that experiment predicts. We now have three pa-
rameters: the bare nucleon mass m& ', the bare Roper
mass mz ', and the bare coupling constant. The bare
masses are adjusted so that Eq. (2.16) gives the physical
nucleon mass of 940 MeV and the mass of the lower-
energy Roper at 1440 MeV. The coupling constants are
determined by the CBM.

In Table I we present the values of the bare masses and
the position of the S-matrix poles as determined by Eq.
(2.16). Also included are the results of the position of the
poles if we exclude from our P-space either the [56] or
[70] representation. The surprising effect of including the
nucleon is the reduction in the width of both Roper reso-
nances. This is particularly the case with the resonance
dominated by the [56] representation. A careful exam-
ination of Eq. (2.16) reveals that the reason for the reduc-
tion in width of the Roper is predominantly due to the
stronger coupling between the nucleon and the [56] and
[70] states, and can be attributed to the fact that
f„zz)f~zz. In particular, the imaginary part of this
coupling is large since there is no energy denominator to
suppress this term. As a result the coupling between the
nucleon and [56] is stronger than the coupling between
the [56] and [70].

Since in this case one of the poles is close to the real
energy axis, we can compare the result of the pole search
with the results of taking the eigenvalues of the matrix
M(E) for E= 1440. This gives

Here we find that diagonalizing M(E) at one pole gives
the mass and width of that resonance, but not the posi-
tion of the higher-energy resonance. Although we have
two eigenvalues for M (E), only one of them is a solution
to Eq. (2.16). This is a result of the fact that M(E) is en-
ergy dependent. On the other hand, the eigenvalues of
the Re[M(E)] are given by

794.7 —205.Oi

0
0

1440.6—3.3i

1480.5 —38.8i

(3.8)

with the bare masses as given in Table I. This clearly
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TABLE I. The position of the S-matrix poles for different choices of channels in the P an-d Q, -

spaces.

Truncation

P:N, [56],[70]
Q, :N, 6,[56],[70]

P:N, [56]

Q, :N, 6,[56]
P:N, [70]
Qi.N, b, [70]

Bare masses

m"'= 1092
m~ '=1524

m~(' ——1087
m„"'——1517
m"' ——1073
m~(0] = 1496

Poles

(940,0)
{1440,—2.8)
(1473,—51.3)

(940,0)
(1440,—7.4)

{940,0)
(1440,—33.3)

suggests that for the narrow resonances, i.e., widths of
the order of a few MeV's, the approximation of calculat-
ing the eigenvalues ofI(E) on the real energy axis is val-
id, but for the wider resonances, such as the higher-mass
Roper resonance, this approximation can fail.

We now turn to the phase shifts for this model. In Fig.
4 we present the P» phase shift as a function of the
center-of-mass energy E, . Also included in the figure
are the experimental phase shifts of Amdt et al. ' As ex-
pected the phase shifts are small and negative at low en-
ergies, and they go through m/2 at an energy correspond-
ing to the wider of the two Roper resonances. The effect
of the narrow resonance at 1440 MeV is to produce a
small bump in the phase shifts at this energy. To exam-
ine in more detail the bump in the phase shifts, we show,
in Fig. S, a magnified plot of the phase shifts, in the ener-

gy region of the resonance, which shows it smooth behav-
ior. A similar behavior is found in the inelasticity g, see
Figs. 6 and 7, in that the narrow resonance produces a
sharp minimum observed under magnification in Fig. 7,
while the higher mass resonance gives a broad dip in q.
This small bump in the phase shifts gives an interesting
signature when the Argand diagram is examined. In Fig.
8 we present a plot of the Im[f] versus the Re[f], where

f is the m.-X amplitude calculated in this model. Here we

find that this narrow Roper resonance gives a small in-

dent in the Argand diagram (see the magnified Argand
plot in Fig. 9). As the width of this narrow resonance in-

creases, this indent in the Argand diagram develops into
a loop. On the other hand, the wider resonance corre-
sponds to a change in the sign of Re[ f].

In comparing our results with experiment in Figs. 4—9,
we have demonstrated that on a qualitative level we have
agreement with experiment to the extent that any con-
clusion drawn on the method of calculating the baryon
resonances will hold in a more complete calculation. To
get a better agreement with experiment we need to in-

clude more physics by including the cross diagram and
possibly the contact diagram that results from the
cloudy-bag model with volume coupling. Since the Rop-
er is above the threshold for pion production, we need to
include this threshold as well. These additional contribu-
tions have been shown to improve the agreement between
theory and experiment. ' However, as yet no calcula-
tions, including all these contributions, have been carried
out to determine the position of the S-matrix poles in the
complex energy plane. This is partly due to the complex-
ity of any such analysis.
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FIG. 4. The ~-N phase shifts in the P» channel. The P-
space includes the N, [56], and [70]. The Q, -space has N, 6,
[56], and [70]. The experimental data, solid triangles, are from
Ref. 14.

FIG. 5. The P» phase shift in the region of the lower-energy
Roper resonance (i.e., at 1440 MeV). This is a magnification of
Fig. 4.
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FIG. 6. The inelasicity g for ~-N scattering in the P» chan-
nel. The model is the same as that used to calculate the phase
shifts in Fig. 4. The experimental data, solid triangles, are from
Ref. 14.
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FIG. 9. The magnification of the Argand diagram in Fig. 8.
The energy covered is identical to the energies considered in

Fig. 5, i.e., between 1.42 and 1.46 GeV.

IV. CONCLUSIONS
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FIG. 7. A magnification of Fig. 6 to show the narrow dip due

to the resonance at 1440 MeV.
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FIG. 8. The Argand diagram for the P» amplitude. Includ-
ed also are the amplitudes from the phase-shift analysis of
Amdt et al. {Ref. 14).

The resonances observed in ~-N scattering, with
widths of the order of 100 MeV, have in recent years be-
come the testing ground of quark models such as the
chiral bag model. In the present analysis we have exam-
ined two methods of calculating the masses and widths of
these baryon states. The first involved the solution of a
complex eigenvalue problem in the complex energy plane.
This procedure determines the position of the poles of the
S matrix in the complex energy plane, and to that extent
reAects the experimentally measured m-N amplitude.
This procedure gives both the mass and width of a
baryon resonance as the real and imaginary parts of the
energy at which the S matrix has a pole. The second ap-
proach, often used for this problem is to consider the
determination of the mass as a real eigenvalue problem
on the real energy axis, i.e., a bound-state problem, and
then use the resultant eigenstates to calculate the widths
using Fermi's golden rule.

Taking as our basic Lagrangian that of the cloudy-bag
model, we have shown that the second approach de-
scribed above gives a poor approximation to the width if
the S-matrix pole is far from the real energy axis. In par-
ticular, for the Roper resonance, we have found by taking
both the [56] and [70] representations of SU(6) as a basis,
that the coupling between these states is such that the
second approach gives both resonances to have compara-
ble width as previously reported by Umland et al. ' On
the other hand, a determination of the S-matrix poles
gives one resonance a substantially smaller width than
the second method, indicating the failure of the Fermi's
golden rule for these resonances. Furthermore, this nar-
rower resonance is mainly the [56] representation, sug-
gesting that the [70] representation needs to be included
in ~-N scattering calculation, which has not been the
case."' ' In addition, if we include the coupling of the
[56] and [70] to the bare nucleon as a (ls, &2) config-
uration, we find that both resonances are substantially re-
duced in width. This is the result of the strong coupling
between the bare nucleon and the [56] and [70] states, as
is a consequence of the fact that f &z)f zz, where
R= [56] or [70]. These narrow resonances lead to small
indents in the Argand diagram which are not observed in
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the present phase-shift analysis. This suggests that either
the present bag model gives a poor description of the
Roper, e.g., the ratio of f~~R to f~~N is not, given
correctly by this simple bag model, or that there are oth-
er mechanisms not included that will give additional
width. At this stage we know that the crossed and con-
tact terms give additional attraction, and in fact their in-
clusion leads to good agreement between the bag model
with volume coupling and experiment. ' Finally, the

present analysis resolved the apparent discrepancy be-
tween the calculation of the m-X scattering phase
shift"' and baryon spectroscopy' for the same La-
grangian.
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