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Corrections to Higgs-boson-mass sum rules from the sfermion sector
of a supersymmetric model
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We consider the minimal supersymmetric extension of the standard model, and compute the
corrections to Higgs-boson-mass sum rules that are possibly sensitive to the large mass of the sfer-
mion sector and/or to large trilinear Higgs-boson —sfermion —sfermion Yukawa couplings. We
demonstrate that when the parameters are chosen so that corrections to the electroweak p are
within experimental limits, large corrections to the mass sum rules arise only in certain extreme re-
gions of parameter space, corresponding to very large ratios for squark masses.

In two previous papers we have explored corrections to
Higgs-boson-mass sum rules of the minimal supersym-
metric extension of the standard model' (MSSM). In
the first paper, we demonstrated that the sum rules pre-
dicted at the tree level are screened against large one-loop
corrections that derive from the Higgsino-gaugino sector
and which grow quadratically with the possibly large
mass scale of this sector. The leading dependence is loga-
rithmic, generally implying quite small corrections to the
mass sum rules from this source. In the second paper, we
gave a general proof that this screening will take place for
one-loop corrections from any heavy sector, so long as
there are no large trilinear Yukawa couplings. However,
we noted there that the sfermion sector gives rise to
Higgs-boson —sfermion —sfermion trilinear couplings that
could, in principle, be large, thereby leading to possibly
large corrections to the natural relations (such as the
Higgs-boson-mass sum rules) predicted by supersym-
metry (SUSY). However, at the same time we noted that
large trilinear couplings of this type will also impact oth-
er natural predictions of the standard model (SM), in par-
ticular leading to corrections to the tree-level prediction
of
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where the first terms appearing in Eq. (4) are the bilinear
mass-squared terms, and the second terms are the crucial
trilinear terms describing the interaction of the two
Higgs fields with the squark fields. The Q field is the
spin-0 partner of the usual left-handed doublet field,
while the U and D are the fields of the spin-0 partners of
the right-handed quarks. In more conventional notation,

The sfermion sector is incorporated using the MSSM for-
malism developed in Ref. 4. We review a portion of the
notation used there, using the squark sector as an exam-
ple. The masses and interactions of the squarks are
determined by the I'- and D-term superpotential contri-
butions and by the most general soft-supersymmetry-
breaking potential involving the squark fields:
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restricts the magnitude of the trilinear Higgs-
boson —sfermion —sfermion couplings to such an extent
that large corrections to the Higgs-boson-mass sum rules
are not possible. In this paper, we explore this issue
quantitatively.

We have computed the corrections to the simplest of
the mass sum rules, namely,

2 = 2 2mw=m + —~
using the formalism and approach described in Ref. 1.

In particular, it is possible that the very strong experi-
mental limit

U, D M UD
2 (6)

In Eq. (6) we neglect all terms proportional to quark
masses and other SUSY parameters (in particular we
drop terms involving the p parameters of SUSY, see Ref.
4). Note, in particular, that A„d cannot increase without
bound when M&, MU, and MD are fixed, without violat-

(See Ref. 4 for details; note, however, that we use here a
slightly different notation for the trilinear coupling —we
have replaced m6m A by A .) An important point to
note regarding the squark sector mass eigenstates is that
the trilinear 2 terms cause mixing between the left-
handed and right-handed eigenstates according to mass
matrices of the form

Mg
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ing the requirement of a positive-definite determinant for
these mass-squared matrices.

In our calculations of the corrections to the squared
masses entering into Eq. (3), we have retained only the
leading corrections from each type of diagram. By "lead-
ing" we mean those terms which grow most rapidly with
the A and M parameters. (This is the same approxima-
tion used above in the squark mass matrix. ) In the case
of the Higgs-boson mass-squared corrections, the two
basic diagram types are (a) diagrams with two trilinear
Higgs-boson —squark —squark vertices, yielding leading
corrections proportional to 3 /mii and (b) diagrams
with a quartic Higgs-boson —Higgs-boson-squark—
squark vertex, resulting in leading terms proportional to
M . For the 8'mass squared both types of diagram yield
leading corrections proportional to M . We have exam-
ined other terms and found that they are always
suppressed compared to those we keep when A »m~
and M »m~. In considering the corrections to the
Higgs-boson-mass sum rule of Eq. (3), it is useful to
define the ratio

2 2m + —m

M —3" M +A5p= M—
m 2A M —A

n (12)

and for AR we find

AR = — (cotf3+tanP) 2"
m~

, M M+3
lng2 M2 g2

—5p; (13)

the first term comes from the difference of the Higgs-
boson mass-squared corrections. It is useful to note that
for 3 =Mwe have

and 3 are large compared to m~. It is convenient to first
define the coefficient

=1.9X103(x
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where we have used o. = 37 and sin 0~ =0.225. The fac-
tor of 3 in g is the color factor appropriate for a single
family of squarks. In general, one must sum over all
squarks and sleptons. For 5p we find the expression

The expressions for Am +, Am o, and Am~ appear in

the Appendix. We have employed dimensional regulari-
zation. For the leading correction terms that we focus
on, all terms in 1/e cancel in the mass sum rule. Indeed,
the leading correction to Am~ is finite, while the 1/e
terms in the leading corrections to Am + and bm o are
the same. Thus, even though it is most convenient to ex-
press the results using the renormalization scale po, the
correction to the sum rule does not have any dependence
on po. Of course, in Veltman's renormalization scheme
the expression for Am~ leads immediately to a result for
5p:

Am~
5p=

m~
(9)

since Amz=0 for the graphs we consider. We have
checked that our expression for 5p in the Appendix
agrees in the unmixed eigenstate limit with the expres-
sions in the literature. (See, for example, Ref. 6.)

In order to gain some intuition regarding the behavior
of the corrections to p and to the Higgs-boson mass-
squared sum rules, as a function of the A and M parame-
ters, we give results in the special case where we take

M~ =MD =Mg =—M, (10)

[Note that in this special case the contributions from the
class (b) quartic vertex diagrams are precisely zero in our
leading approximation. ] We consider the limit where M

At the tree level R =1. To the extent that one-loop
corrections are small, we can write the one-loop correc-
tion to R in the form

m'+ —~m'o —~m~

5p=gM /m~ (14)

In this case, we may rewrite the result for AR using the
expression for 5p. From Eq. (15) we find, for 3 «M,

16~sin 0~
(tanP+cotP) 5p —5p4a

= —387(tanP+cotP) 5p —5p . (16)

(Note that corrections to R are generally negative. ) From
this equation, we see that if 5p=0. 01 then the first term
is dominant. For example, at tanP = 1.2, we find
AR = —0. 17. The small-A expansion makes clear an im-
portant general feature. Requiring a small value for 5p,
for example, 5p =0.01, amounts to fixing a value for A at
fixed M:

1/2

= 1.67 (17)

Then, M scales as A, and 3 becomes ~0.5M once
M ~ 10m~ ( A ~ Smii, ). We also note that in the limit of
A «M, the squark mass-squared matrix of Eq. (6) makes
it clear that the squark eigenstates are approximately
pure L and R, with squared masses increasing as M
(and, thus, as A at fixed 5p). More generally, we shall
find that these same scaling systematics are preserved,

whereas AR clearly becomes logarithmically infinite in
this limit. From Eqs. (11) and (14) we note that once
M ~2.5m~ in the 3 =M case, 5p exceeds 0.01 in clear
disagreement with the experimental bound of Eq. (2).
Thus, for large M, an expansion in the limit of 3 &(M is
roost relevant, for which we find

2W4op=i), bR = —i) ~ (tanj3+cotP) —5p .
3mwM 3M mw
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but that by allowing for substantial deviations from the
parameter equalities of our special case, Eq. (10), we can
find corners of parameter space where restricting 5p to lie
below 1% does not so strongly limit hR.

With these features in mind, we can turn to a numeri-
cal examination of the size of 6p and of AR, as a function
of the five parameters 3„, Ad, M&, MU, and MD. We
begin by graphically illustrating the above special case of
equal parameters, Eq. (10). In Fig. 1 we plot contours of
constant 6p and constant AR in the two-dimensional 3
and M parameter space. One sees immediately that re-
stricting 6p to lie below some value limits the size of AR
corrections. For instance, the 5p=1% contour clearly
always falls between the 10% and 30% contours of hR.

We next illustrate the behavior of 5p for more general
parameter choices. In Fig. 2 we illustrate results for the
parameter configuration of MU =MD =M& =1 TeV as a
function of A„and Ad. Note that corrections to both 5p
and AR grow rapidly as the general magnitude of A„and
Ad increases. This is as expected since these 3 parame-
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FIG. 1. We plot contours of (a) constant 6p and (b) constant
hR, as a function of A and M for the special case of Eq. (10).
Percentage values of corrections corresponding to the various
curves are indicated.
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FIG. 2. We consider the parameter configuration of fixed

M& =MU =MD = 1 TeV and show contours as a function of 2„
and Ad. In (a) we plot contours of fixed 6p, in (b) we plot con-
tours of fixed AR; and in (c) we plot AR as we move along the
1% contour of 5p in the parameter A„.
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ters characterize the strength of the Higgs-boson —q —q
trilinear couplings that evade the screening theorem.
However, from Fig. 2(c) we see that when 5p=0. 01 the
corrections to bR are limited to ~ 17%, and are even
smaller over a substantial range of A„.

In Fig. 3 we show results for the parameter
configuration of fixed A„=Ad=0. 5 TeV and M&=1
TeV, varying M~ and MD. From Figs. 3(a) and 3(b) we
observe that the 5p and AR corrections decrease as the
scale of MU and MD increases. This, of course, agrees
with the screening theorem of Ref. 2. Again we may ex-
amine the behavior of AR as we follow along the
5p=0. 01 contour. We see that AR has a maximum at
MU -MD which is roughly 5p & 17%.

There are two common features of the configurations
discussed in Figs. 2 and 3 that are noteworthy. First, we
point out that the maximum 5p is achieved at the sym-
metric point corresponding to our special case limit of
Eq. (10). Second, in moving along the 5p= lto contour,
the ratios of squark masses never become large. This, it
turns out, is why AR is never particularly large. We shall
see that the largest AR values are obtained at fixed 6p for
configurations where large squark mass ratios emerge.

To illustrate a case in which very large AR values are
possible, we show in Fig. 4 results for the parameter
configuration of fixed 2„=Ad =0.5 TeV as a function of
MQ and MU=MD. As far as we have been able to deter-
mine, this is the parameter configuration leading to the
largest AR values while keeping 6p at 1%. From Figs.
4(a) and 4(b) we observe a pattern similar to that of Figs.
3(a) and 3(b). We see that for fixed A„= Ad, the 6p and
AR corrections decrease as the scale of M& and MU =MD
increases, in agreement with the screening theorem. As
we follow along the 6p=0. 01 contour, AR varies sub-
stantially, lying below 20% in absolute magnitude when
M& and MU =MD are similar in magnitude, but becom-
ing quite large when M& is either small [implying that
MU=MD is large, see Fig. 4(a)] or very large (implying
that MU=MD is small). However, we emphasize that it
is actually the size relative to 3„(Ad )/mii, that matters
[just as in Eq. (15), for the special case] and not the abso-
lute magnitude, the entire behavior scales as a function of
the common value of A„and Ad.

The scaling features are illustrated in Fig. 5. There we
compare results for b,R and squark masses for (i)
3„=3„=1 TeV with the results for (ii) A„=Ad=0. 5
TeV, as we move along the 5p= l%%uo contour keeping
MU=Mi, and varying M&, as in Fig. 4(c). In this com-
parison between cases (i) and (ii), we have plotted case (ii)
results after scaling M& by a factor of 4 and [in Fig. 5(b)]
squark masses by a factor of 4. In these plots we have re-
quired that squark masses be heavier than 800 GeV [200
GeV] in cases (i) [(ii)], respectively, so that we are clearly
in the domain of validity of the approximation in which
we retain only the "leading" terms in 6p and AR de-
scribed earlier. Regarding AR, it is apparent that when
we double the value of 3„=Ad, the curves nearly match
if we quadruple M&. At corresponding points on the hR
curve, we see from Fig. 5(b) that the required squark
masses are also quadrupled (as is MU=Mi, ). Thus, we
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FIG. 3. We consider the parameter configuration of fixed
A„= Ad =0.5 TeV and M& =1 TeV, and show contours as a
function of MU and MD. En (a) we plot contours of fixed 6p, in
(b) we plot contours of fixed AR; and in (c) we plot hR as we
move along the l%%ui contour of 6p in the parameter MU.
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have the same type of scaling behavior found in the
"small-A" limit of the 3„=Ad = 3 and M& =MU
=MD=M case discussed analytically earlier, see Eqs.
(15)—(17). The reason that we get such large values for
hR in the present asymmetric case is that a large ratio
between M& and MU=MD leads to large ratios for the
physical squark masses, as is evident from Fig. 5(b). b.R
is much more sensitive to such large ratios than is 5p.
This is because 5p is primarily sensitive to large mass
splitting between up- and down-squark mass eigenstates,
whereas hR is sensitive also to large mass splitting be-
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FIG. 4. We consider the parameter configuration of fixed
A„= Aq =0.5 TeV and show contours as a function of M& and
MU=MD. In (a) we plot contours of fixed 6p; in (b) we plot
contours of fixed hR; and in (c) we plot hR as we move along
the l%%uo contour of 6p in the parameter M&.
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case (i) as a function of M&, while the dotted curve gives hR for
case (ii) as a function of 4M&. In (b) we plot m values. (1
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tween mass eigenstates of a given I3. By constraining
MU=MD we have guaranteed that the up and down
squarks have the same mass eigenstates, thereby guaran-
teeing that 6p will be small. In any case, we see that the
squark mass scale need not be numerically small in order
to get large b,R when 5p (

l%%uo (Ref. 7).
In summary, we have computed the leading one-loop

corrections, arising from squark loops, to the simplest of
the Higgs-boson-mass sum rules of the minimal super-
symmetric model. The corrections that we compute are
leading in the sense that they are the dominant correc-
tions when the 3 and M parameters of the soft
supersymmetry-breaking potential, specifying the size of
Higgs-boson —squark —squark trilinear couplings and the
size of bilinear soft masses squared are large compared to
mw, quark masses, and the superpotential parameter p of
the MSSM. These leading contributions are finite and
well defined. We find that the sum-rule corrections from
the squark sector (and, of course, the slepton sector as
well) could be quite large, even if we constrain 5p to be
less than 1%. Such large corrections do, however, arise
only when the Higgs-boson —sfermion —sfermion cou-
plings are allowed to become substantially larger than the
mw mass scale, in agreement with the general screening
theorem arguments of Ref. 2. The corrections can be-
come very large, without violating 6p ~ 1%, if the up-
and down-squark Yukawa couplings are similar in magni-
tude (so that the up- and down-squark eigenstate masses
are approximately the same) but such as to yield a large
mass splitting between the heavier (approximately degen-
erate) up- and down-squark eigenstates and the lighter
(approximately degenerate) up- and down-squark eigen-
states.
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APPENDIX: EXPRESSIONS FOR LEADING
CORRECTIONS TO MASS SHIFTS

c„d—=cosO„d s„d =—sin8„d, (A 1)

where O„d are the angles that arise in diagonalizing the
u- and d-squark mass matrices of Eq. (6). At the same
time we obtain the mass eigenstates u1 2 and d, 2, where

91 =Cu QL +Su Qg, Q2 = Su SlL +Cu Qg (A2)

with a similar expression for the d's. The masses of these
states are denoted by m's with an appropriate subscript.
In terms of these quantities we have

In this appendix, we give expressions for Am +
—b,m„o and for Am~ deriving from a single (up-down)

family of squark loops, that are valid in the limit where
the squark masses are much larger than mw and the
Higgs-boson masses themselves. The contributing one-
loop diagrams are of two types: (a) those containing two
three-point vertices (Higgs-boson —q —q or W-q-q), and (b)
those containing one four-point vertex (Higgs-
boson —Higgs-boson —q —q or 8'-W-q-q). In the notation
of Ref. 1 the former diagrams are termed bl diagrams
while the latter are called b2 diagrams. As mentioned in
the text, the correction hm w is finite on its own, whereas
the 1/e corrections to hm + and b, m„o cancel in the
difference b, (m + —m „0) that enters into the sum rule of
Eq. (3). As a result, we are guaranteed that all depen-
dence on the renormalization scale po also cancels. The
most convenient form of the final expressions appears
below. It will be helpful to define the shorthand notation

2 ~(m~+ m„o)lb' 2 g&~+(m„, md, mH+ )
—2&"„',(m„,m„,m„, ) —2X"„',(md, md, m„, )

mw 1 2 1 2
W

[(c„sdtanpAd+s„cdcotpA„) F(m, md )+(cucdtanpAd susdcotp—A„) F(m, md )
1 1 1 2

+( —s„sdtanpAd+c„cdcotpA„) F(m„,md )

+ ( s„cdtan p A d
—

cu sd cotp A „)—F( m, md )

where

—cot pA„F(m„,m„)—tan pAdF(md, md )], (A3)

(A5)

m1+m2 m22 2 2

F(m„mz)—: ln —ln(m, m2) . (A4)
m m m1 2 1

Note that the squared masses appearing in the last logarithm of Eq. (A4) are in general each divided by p,o. However,
as mentioned earlier, the dependence on po cancels in the full expression, and we have chosen to drop this scale (or
equivalently, choose it to be 1 in appropriate units). For the b 2 diagrams we obtain

1 2 2 = 36(m2~ —m20)~b2= g [X 2i(m ) —X„o(m )]
mw m w q,. =u, , d, ,i =1,2

2 cos2
(c m lnm +s m lnm —c m- lnm —s m lnm ).4 u u| u u u2 u d di . j d

mw
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Finally, for Am ~ we find (see Ref. 1 for diagram notation)

5m
+II"'(m„,md, m ~)+

mw mw ij q,.
=

Q, , d,-, i = 1,2
(m )

2mw

2m md
c„m +s„m +cdmd +sdmd —c„cd2 2 2 2 2 2 2 2 2 2

1 2 1 m m-
Q1

2
Q1

ln
md

1

m 2

91
2m m-

2 2 1 2
CQsd 2 2

1n
2m md mdQ1 2

2m' md mQ
2 2 2 1 "2

s„cd 1n
m md md92 1

2m md
2 2 "2 '2

sQsd 2 2m —m-
Q2

m 2

Q2
1n

md
2

(A6)
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