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Quark content of the nucleon in QCD: Perturbative and nonperturbative aspects
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We elaborate on two proposed model distribution amplitudes for the nucleon, based on perturba-
tive light-cone QCD supplemented by QCD sum rules. The novel nonperturbative features of these
amplitudes are discussed in detail. Reasonable predictions- for the Dirac form factor of the proton
and the neutron are obtained, paying particular attention to the treatment of the e6'ective coupling
constant a, (Q ) and the scale parameter AQcn In addition, the stability properties of the sum rules
for the moments of these model distribution amplitudes are analyzed. The range of values of the pa-
rameters entering the sum rules is estimated. Relying on expectation values of longitudinal-
momentum fractions instead of moments, a heuristic interpretation of the physical content of the
model distribution amplitudes is attempted.

I. INTRODUCTION

One of the most challenging and fundamental ques-
tions of subnuclear physics is the understanding of the
bound-state dynamics of the hadrons in terms of their
quark and gluon degrees of freedom within quantum
chromodynamics (QCD). In the last few years, the appli-
cation of perturbative QCD to various' high-
momentum-transfer exclusive processes involving had-
rons has focused particular interest. The basic feature of
such a process is the property of factorization'
which allows the separation of short- and long-distance
effects" via a Wilson' operator-product expansion
(OPE). Using the Brodsky-Lepage scheme' (see also
Refs. 2 and 10), it is possible to express the hadronic am-
plitude as the convolution of a hard-scattering part
TH(x;, y;, Q ) calculable within perturbative QCD, and a
wave-function part 4(x, , Q ) which contains the (nonper-
turbative) binding effects of the hadron's constituents.

TH corresponds to the coefficient function in the OPE
and controls the scattering of the valence quarks from the
initial to the final directions. The distribution ampli-
tude' (modulo logarithmic corrections)

k2 (Q2
&b(x, , g )=f [d ki]lb(x;, ki;) (1.1)

with

n n 82k
[d k ]—= 16 5' ' gk, .

16~

is the probability amplitude at some resolution scale Q
for finding the valence quarks carrying light-cone frac-
tions of the hadron's momentum, x, =k,.+ /p +

=(k +k ); /(p +p ), integrated over transverse mo-
menta ki;(Q = —

q where p"=(p+,p, pi) is the
momentum of the hadron. It is assumed that at large Q,
i.e., asymptotically, the hard-scattering amplitude dom-
inates over the soft contributions, ' although the transi-
tion scale is still controversial. '

Recalling the OPE, C&(x;, Q ) represents the nonvan-

ishing hadronic matrix elements of the lowest-twist
operators with respect to the (unknown) QCD physical
vacuum. Until recently, ' ' it was not possible to go
beyond perturbative QCD and calculate realistic distribu-
tion amplitudes rigorously. ' The situation improved
considerably after the development of QCD sum rules in-
itiated in 1979 by Shifman, Vainshtein, and Zakharov'
(SVZ). Referring to their work, the nontrivial structure
of the QCD physical vacuum manifests itself through
field condensates, i.e., nonvanishing vacuum expectation
values such as (A~qq~A) and (A~G„',G„',~Q), where
G„' is the gluon field tensor, q and q denote (light) quark
fields, and 0 stands for the physical vacuum of QCD.
The condensates are of nonperturbative nature in the
sense that they retain finite values once the divergent
terms obtained in perturbation theory are removed by re-
normalization. ' Their "standard" values, extracted
from current algebra and instanton calculus, are'

(
~s 6 =1.2X 10 GeV

(Qa, uu )'=(Qct, dd)'=1. 8X10 GeV
(1.2)

The crucial step in the evaluation of model distribution
amplitudes for hadrons was done by Chernyak, Zhitnit-
sky, and Zhitnitsky ' (CZ). Using as a theoretical basis
the eigenfunctions of the evolution equation, they recon-
structed a nucleon distribution amplitude from its lowest
moments, which they estimated by means of QCD sum
rules. The main results of their analysis are (i) a pro-
nounced flavor asymmetry of the nucleon distribution
amplitude that is predicted. to persist up to tremendously
large momentum transfers and (ii) the correct sign and
seemingly correct absolute values of the proton and neu-
tron magnetic form factors. A recent reanalysis by King
and Sachrajda' (KS) essentially confirms these findings,
though the range of the moment sum rules is shifted.

Concerning the determination of the nucleon distribu-
tion amplitude via its moments, it is well known (from
the classical theory of moments ') that a finite set of (ac-
tually lowest-order) moments cannot provide a unique
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solution. Nevertheless, one might perhaps naively expect
that the range of moment values allowed by QCD sum
rules is strongly limited, rendering the variation of possi-
ble distribution amplitudes small. This however is not
the case, as pointed out in Ref. 22. The reason can be
traced to several uncertainties entering the calculation of
higher moments. ' While the lowest moments can be
computed independently using, e.g., uncorrected vertex
functions or lattice gauge theory, ' the calculation of
the higher-order moments has still not been accom-
plished. As a result, there is actually an infinite number
of possible distribution amplitudes satisfying the CZ
sum-rule constraints, but differing dramatically in their
shapes and form-factor predictions. This variation is
inherent in the construction technique of the nucleon
distribution amplitude and has to be distinguished from
other uncertainties due to the choice of AQcD and the
value of the "proton decay constant" f~.

In Refs. 15 and 22 an alternative nucleon distribution
amplitude was proposed by Gari and the present author
(denoted GS in the following), selected to yield at some
fixed reference momentum the lowest possible value of
the ratio ~F", /F~i ~. (F~i and F", are the Dirac, i.e.,
helicity-conserving, form factors of the proton and the
neutron, respectively. ) While the CZ model uses for the
representation of the nucleon distribution amplitude only
the lowest-order Appell polynomials, ' our model takes
into account all Appell polynomials corresponding to a
total of two derivatives in the interpolating operators
used in the sum rules. Then the functional form of the
nucleon distribution amplitude is strongly restricted and
the form-factor predictions are in good agreement with
the new high-Q GQ data, favoring the possibility that
F", =0 in the whole Q range. ' In contrast, the CZ
(KS) model predicts a large ~F",

~
(compared to F~i ), while

the values predicted for F~& are comparable in size in all
three models.

More recently, ' another promising possibility to select
an optimal nucleon distribution amplitude was proposed,
based on the relation 2V'2GgP =3GQ+5GM, which is
effectivel a correlation between G~ and the N-6 transi-

t+tion form factor GgP . It was found that the CZ nucleon
distribution amplitude corresponds to a large

~ G~ ~
(com-

pared to GQ), and a small GgP, whereas the GS nucleon
distribution amplitude gives a small ~GM ~

and a GgP of
the same order as GQ. A better separation of the electric
(Gg ) from the magnetic (G~) form factor of the neutron,
appearing to be feasible if Gz is big at high Q (Ref. 32),
would help to verify the validity of these predictions.

Since the accuracy of the available form-factor data
cannot exclude/favor one of the optional models [CZ
(Ref. 5), GS (Ref. 15), KS (Ref. 16)], it would be desirable
to have some other guide for selecting an optimal nucleon
distribution amplitude. It is one of the major purposes of
this paper to provide a more precise understanding of the
reliability of a given distribution amplitude, by investigat-
ing the stability properties of the sum rules for its mo-
ments.

The remainder of the paper is organized as follows. In
Sec. II we sketch the general formalism for calculating

form factors in perturbative QCD' in connection with
the sum-rule technique for the evaluation of the quark
distribution amplitudes for the nucleon. Section III is
devoted to a systematic and detailed discussion of the nu-
cleon distribution amplitude represented as a decomposi-
tion in terms of Appell polynomials. The specific features
of the GS and the CZ quark distribution amplitudes are
figured out and the corresponding proton and neutron
Dirac form factors are calculated.

Section IV contains the stability analysis of the mo-
rnent sum rules. We utilize the Wilson coe%cients com-
puted by CZ to minimize the disparity in the sum rule
for each moment using the nucleon residue (coupling) as
input and regarding the nucleon mass and the duality in-
terval (i.e., the continuum threshold) as tunable parame-
ters to be determined from the optimal agreement of each
sum rule. Two saturation models are considered. First,
saturation of the phenomenological side of the sum rules
by the lowest resonance (the nucleon) and second, satura-
tion by taking into account a second "effective reso-
nance" with mass M~ = 1.5 GeV. In the second case the
residues of the "effective resonance" are also estimated.
In performing this analysis we follow similar lines as Ioffe
and Belyaev in their determination of baryon and
baryon-resonance masses from QCD sum rules.

In Sec. V we consider expectation values of
longitudinal-momentum fractions and comment on the
(heuristic) physical picture emerging from proposed nu-
cleon distribution amplitudes raising objections against
the popular probabilistic interpretation of moments (see,
e.g. , Refs. 5, 16, and 30). Finally Sec. VI gives a sum-
mary of our basic results and outlines the conclusions.
This paper is partly an elaboration of results presented in
Refs. 15 and 22.

II. THEORETICAL CONSIDERATIONS

A. Perturbative aspects

where
3 3

(2.1)

[dx]=5 1 —g x, + dx,

and

Q„=min, (x,.Q ),
with analogous definitions for [dy] and Q~. TH is a
three-particle irreducible amplitude in the nucleon chan-
nels and represents the sum of all Born diagrams contrib-
uting to the process y*+3q ~3q, where the nucleon is
replaced by three collinear (massless) valence quarks.

The function @ (4& ) is the distribution amplitude for
finding three valence quarks in the incoming (outgoing)

In perturbative light-cone QCD the magnetic form fac-
tor of the nucleon can be written in the factorized form'

GN(g2)

= J [dx]j [dy]4 (y;, Q )TH(x, ,y, , g)N(x, , g„),
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nucleon which are collinear up to a scale Q „(Q«). The

Q variation of the nucleon distribution amplitude is
weak and can be computed via the evolution equation. '

The general solution of this equation is

e(x, , Q2)=x, x~x3 g a„4„(x,)[ln(Q /Amoco)]
n=0

(2.2)

where y„are the anomalous dimensions of multiplica-
tively renormalizable three-quark operators with n

derivatives interpolating between the nucleon and the
I

vacuum, and the functions 4„(x;) are the corresponding
eigensolutions constituting a complete, orthogonal poly-
nomial basis (Appell polynomials ). The one-loop
values of y„and the Appell polynomials corresponding
to a total of zero, one, and two derivatives in the interpo-
lating operators are listed in Ref. 1 (see also Refs. 26, 35,
and 36}. The essential nonperturbative input in Eq. (2.2)
are the coeKcients a„. Their determination will be treat-
ed in conjunction with the sum-rule technique in the next
section.

Inserting solution (2.2) in Eq. (2.1), the nucleon mag-
netic form factor at large Q takes the form

GM(Q )~[a,(Q )/Q ] g b„[ln(Q /A&cD)] " [1+O(a,(Q ),m /Q )],
n, m =0

(2.3)

where the coe%cients b„are determ'ined from the value
of the nucleon distribution amplitude 4(x;, Qo ) at the in-
itial point of evolution, denoted by Qo, and m /Q
stands for power-suppressed mass corrections. For
asymptotically large Q, the form factor given in (2.3) is
effectively dominated by the three-quark operator with
the least number of derivatives. The corresponding
lowest anomalous dimension for SU(3), and three fiavors
is yo=2/27. Furthermore, G~'"'=F~&'"'(Q )+F$'"'(Q )

becomes asymptotically (Q p m ) identical with the
helicity-conserving part F~&'"', because the helicity-
changing (Pauli) form factor F~2(n) is power suppressed. '

Thus the asymptotic form of GQ"', predicted by pertur-
bative QCD, is

4„(x;}=120x&xzx3 (2.5}

In order to extrapolate from the asymptotic to the
intermediate/low Q regime where the nonperturbative
features of QCD become significant, detailed knowledge
of the explicit structure of the amplitude @(x;,Q ) is
needed.

B. Nonperturbative aspects

On the other hand, N(x;, Q ) becomes asymptotically
totally symmetric under particle exchange, tending to the
fiavor-spin structure assumed in the SU(6}-symmetric
quark model. According to Eq. (2.2), the asymptotic
form of the nucleon distribution amplitude is'

Gg(n)(Q2) FP(n)(Q2}

~ [a (Q )/Q ][In(Q /AgcD)] (2.4)

To proceed, consider the gauge-invariant (path-
dependent) matrix element of three quark operators in
Euclidean space:

(
Z3

F exp ig J A„(g)))dt()„u (z, )
Z, (r, )

a Z3 b

Pexp —igf d„(ze')dr@'„ee(zz) dz(zz) p)e'',
z, (r, )

(2.6)

where a, b, c and a, P, y are, respectively, color and spin labels, and A„(x)=+8,A„'(x)t' are the Lie-algebra-valued
gluon fields [t being the generators of SU(3)]. The path-ordering prescription F controls the expansion of the exponen-
tial integrals containing noncommuting variables: The integrations have to be performed along the path I ) (I 2) lead-
ing from point z, (z2) to point z3 (Ref. 37).

We are interested in the evaluation of the above matrix element for a hard exclusive process where the virtual photon
carries a large transverse momentum qi = —

q =Q p a(). Since the exchange of large q) in the hard-scattering ampli-
tude TH occurs when the relative separation of the quark constituents approaches the light cone, we have
(z, —z ) =(z); —z). ) —+O(1/Q ), where z„,~z, n„(.i =1,2, 3) and n„ is the lightlike vector (n =0) (Ref. 1). Thus the
leading- (lowest-)twist part can be projected out in (2.6) by the lightlike vector n„employing the light-cone gauge
n A = A t=0. By virtue of this gauge, the exponential factors in (2.6) reduce to unity, and the path-dependent matrix
element simplifies to a trilocal, twist-three quantity ' depending on three functions of positive parity V, A, and T (Ref.
39):

(O~u (z) )ut)(z2)d«(z3)ip )e f~[(PC) t)(y5N)«V(z p)+(IfyqC) pN«A '(z p) (o~ p C) t)(y„yqN)«T(z p)]

If =ppyy&g«I v= 2[y) zyp] . . (2.7)
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Here ~p) is the proton state with momentum p, N
denotes the proton spinor, and C is the charge-
conjugation matrix. The "proton decay constant" f~
(Refs. 5 and 33) is a dimensional quantity determining the
value of the nucleon distribution amplitude at the origin.

In order to obtain the relation between the nucleon dis-
tribution amplitude 4&, defined in (1.1), and the trilocal
matrix element (2.7), we have to Fourier transform the
amplitudes V, A, and T according to

1
V(z;.p) = J [dx]exp i —$ x;(z;.p) V(x,. )

0 i=1
(2.8)

(analogously for A and T). The variables conjugate to
the light-cone positions of the quark operators in (2.7) are
co11inear momentum fractions, i.e., the longitudinal mo-
menta x; with 0 ~ x; ~ 1, +3,x, = 1 in the frame with

p3 ~ co. Accordingly, the scalar functions V(x; ), A (x; ),
and T(x, ) are distribution amplitudes controlling the
longitudinal-momentum distributions of the valence
quarks in the nucleon at fixed scale Q . They form, how-
ever, a redundant system, since they are interrelated by
symmetries. Indeed, in the limit of strict collinear sym-
metry, combination of spin and Aavor leads to the sym-
metry properties

V(1,2, 3)= V(2, 1,3),
A (1,2, 3)= —A (2, 1,3),
T(1,2, 3)=T(2, 1,3) .

(2.9)

On the other hand, the total isospin —,
' of the three-quark

bound system requires

2T(1,2, 3)= V(1,3, 2) —A (1,3,2)

pressed in terms of one mixed-symmetry amplitude, e.g.,

4&z(x;)= V(x;)—A (x;) . (2.11)

In the asymptotic limit (Q ~~ ), A becomes negligi-
ble (because of the Pauli principle) and V and T become
totally symmetric under particle exchange so that
4&~V—+4„, and T—+4„, where @„is given by Eq.
(2.5). The (weak) dependence of C&~ at finite Q manifests
itself only via the factor

a(Q ) " ln(Q /A )

a, (p ) ln(p /A&cD)

where y„are the anomalous dimensions mentioned previ-
ously, and the momentum scale p marks the normaliza-
tion point. Since the three quarks in the process
y*+3q —+3q have difFerent virtualities (1/ki, )
—(1/x;Q ), there are different normalization scales to be
matched and consequently the choice of p is ambiguous.
However, on the basis of the extremely weak scale depen-
dence of 4&, it is sufFicient to use an average normaliza-
tion point p, whose value is determined by the charac=
teristic virtuality of the constituents in the process (we re-
turn to this point in Sec. III). Thus the rate at which
@~(x;,Q ) approaches its asymptotic form depends
strongly on its initial value C&~(x;,p ).

It is clear that the main point of concern is a realistic
approximation for C&z(x, , p, ). Since this has been dis-
cussed elsewhere, ' we only sketch the conceptual
essentials relevant to the present investigation. One con-
siders correlation functions of the general form

i Jd x e'q (Q~T[O ' ' ' (x)[J ~

' (0)] I ~Q)8 ~

+ V(2, 3, 1)—A (2, 3, 1) . (2.10)
(2.13)

Hence, the nucleon distribution amplitude may be ex-
(nl n2n3)where 0 ' ' ' typifies operators such as

(2.14)V ' ' ' (0)=[(iz„D„) 'u(0)]'CZ[(iz, D ) 'u(0)] [(iz D ) '[y,d(0)] I'e' ',
z =0, D„=B„igA„'A;—/2, wi,th similar definitions for A r

' ' ' and T ' ' ' . Their matrix elements
(n]n2lg3) 2(Q~O& ' ' ' ~p) at fixed reference momentum p give the moments of the distribution amplitudes introduced in Eq.

(2.7): for instance,

(Q~V l 2 3 (0)~p) —f (z, )
I 2 3 N V 1 2 3 (2.15)

(n l n2n3) (nl n2n3)and analogous expressions for A ' ' ' and T
The current J, (0) in (2.13) is an auxiliary local operator with isospin —, chosen to ensure dominance of the proton in

the correlator. "' Chernyak and Zhitnitsky use the current

J~ ' (0)=[(iz„D„) 'u (0)]'C/u (0)[[lsd(0)] I'e' ',
(n& )

whose matrix element (Q~J ' (0)~p ) is related to a mixture of moments:

(2.16)

(2.17)

This correlator is essentially a two-point function composed of two local nucleon currents with extra derivatives.
To determine the moments of the nucleon distribution amplitude, the following correlators are evaluated in the

spacelike region q (0 by employing the Fock-Schwinger gauge x„A„=O (Ref. 42):
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and

I "'"'"'
(q, z)=i fd'x e""(Q~TIO

"' ' ' (x)[J".'(0)]tI ~Q)S

Z g( )
]+n3+n3+ n[n3 3]( 2)

K ' ' ' (q, z)=i f d x e"' (Q~TI T ' ' ' (x)[J'r '(0)] I ~Q)z'rr

(2.18)

(2.19)

[n]n&n3] (n&n2n3) (n&n2n3) (nl n2n3 )
Here 0 stands for one of the operators @]v,Vr, and A, specified above. The operator

Tr
" refers to the distribution amplitude T(x; ), which is related to the nucleon distribution amplitude 413]v(x; ) by

2T(1,2, 3)=4I3]v(1,3,2)+N]v(2, 3, 1).
The corresponding Borel-improved' moment sum rules (M denotes the Borel parameter) are

[ II ] 113 II
3 ] [ II [ 113 11 3 ]

a,
4(f le( —'4e ~+T ' ')@ ' ' ' e» ( —M /M )= M [1—((+T/)e ]+ () G ())N 2 N exp

48vr pv

(n l n2n3 )

and

+
2 &Qi+a, uuiQ)

3 mM

(n&n&n3) (n)n2n3)

12(fel T ' 'eep( Mf]/M )=— M [1—()+H)e ]+ . () G, (I)
80m 48~

(n l n2n3 )

+
2 &Q~+a, uu ~Q)

3 mM

(2.20)

(2.21)

( n ) n p
n 3 ) 2 ( n I n p n 3 )

where H=s ' ' ' //M, s ' ' ' being the appropriate
duality interval for every moment, and MN is the nucleon
mass.

In Sec. IV we will treat Eq. (2.20) in more detail.
Here, we only wish to make some clarifying remarks.
The above sum rules include three types of contributions
which are represented diagrarnatically in Fig. 1. The
zeroth-order term of the operator expansion (d =0) is the
perturbative contribution with Wilson coefficients

(n l n2n3 ) (nfn2n3)
P, ' ' ' and a, ' ' ' [diagram (a) of Fig. 1]. The next
nonvanishing contributions have dimensionality d =4
[diagrams of type (b) in Fig. 1] and represent nonpertur-
bative corrections proportional to the ~luon condensate

(Q~G„~Q) (coefficients Pz
' ' ' and az ' ' ' ). The di-

agrams of type (c) (d =5) and type (d) (d =6) give non-
perturbative corrections proportional to the four-quark
condensate (Q~uu ~Q), where the factorization hy-
pothesis is used. ' Their contributions are incorporated

(n
$ npn3 ) (n&n2n3)

in the coefficients p3
' ' ' and as ' ' ' . Note that the

tree quark diagrams give zero contribution to the leading
twist correlators considered above. For example, the
first term of the operator expansion with dimensionality
d =3, proportional to the quark condensate (Q~uu ~Q),
gives zero contribution to twist three. It is also worth(njnpn3)(nl n2n3)
noting that the coefficients p] ' ' ' and ai ' ' ' calcu-
lated by CZ coincide with those of KS. ' On the con-
trary, there are severe discrepancies between the results
published by these groups concerning the Wilson
coefficients for the nonperturbative corrections.

III. RKSUI.TS

A. Quark distribution amplitudes for the nucleon

We now proceed to evaluate the quark distribution am-
plitudes V, 3, and T. In terms of these functions, the
helicity-conserving color. -singlet proton Fock state to
leading twist (twist three) is written' '

d=0
(a)

dul
(b)

(c)

d=s
td)

FICx. 1. Examples of diagrams contributing to the sum rules
considered by CZ (Ref. 5). A cross ( X ) attached to a quark
(gluon) line indicates that the quark (gluon) goes into the corre-
sponding condensate.
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lp") =constX J [dx]I 1 [V(x;)—A(x;)]lu t(x, )u i(X2)df(X3))

+ —,'[V(x, )+ A (x, )]lu (x, )u (X2)d (x, )) —T(x;)lu (x, )u (X2)d (x, )) I . (3.1)

2 = 2
@nuclean(xi & p ) @as(Xi )+uaupert(Xi r p (3.2)

at a fixed-momentum scale p together with the boundary
condition

(3.3)lim N„„„„„(x;,p ) =@„(x;) .
p —+ oo2

C

On the theoretical basis of the evolution equation, ' we
express the solution for 4„,„~„t(x;,(M ) as an expansion in
terms of Appell polynomials (these constitute an or-
thogonal polynomial set on the triangle):

5

e„.„„„(x,),= y B.l„e„(x,)+~e .
n=0

(3.4)

The momentum p is taken to be the characteristic nor-
malization scale (to be specified later), and the I tp„(x, ) I

are the first six Appell polynomials. Having found the
coefFicients B„at the point p, their evolution to some ar-
bitrary momentum Q is controlled by the anomalous di-
mensions y„, according to

a (Q')
8„(Q') =8„()Lt')

a, (p')
(3.5)

The significant feature of our ansatz is that, truncating

The corresponding neutron Fock state is obtained from
(3.1) by interchanging u and d, with an overall change of
sign.

To determine the nucleon distribution amplitude we
make the ansatz

(7l 1Pl253)1 Pl
1 tl2 n3

[dX]X 1 X2 X 3 tI&)1r(x; )
0

(3.6)

with similar definitions for V, A, and T. Inserting expan-
sion (3.4) into Eq. (3.6), one easily obtains the moments in
terms of the six expansion coefficients B„(n=0, . . . , 5).
Actually it is more convenient to express the moments of
N& in terms of the moments of 4'„:

the (infinite) Appell polynomial series according to (3.4),
the solution for 4

p t incorporates properly all
second-order (bilinear) polynomials @3, 4I&4, and tI33. This
treatment ensures that the functional representation of
the nucleon distribution amplitude and the associated
sum rules for its moments both correspond to matrix ele-
ments of interpolating operators with the same total of
derivatives in the OPE.

We would like to stress, however, that the truncation
of the Appell polynomial series to some fixed order n

does not automatically imply or require an ordering of
the expansion coefFicients 8„. This is not a trivial point
in view of statements that a large coeKcient B5 may in-
dicate the necessity to incorporate higher-order terms in
the Appell polynomial decomposition rejecting in turn a
reduced reliability of the nucleon distribution amplitude
in question. In fact, we shall show below that the struc-
ture of 4&&Gs is not specifically dominated by one, but
rather by a cooperative combination of all second-order
Appell polynomials, whereas the structure of +&&cz is
practically insensitive to the inclusion of these contribu-
tions.

For a given scale p, the moments of N& are defined by

@(n)n2n3)(nt n2n3)r(ni 1 n2n3)(nt nzn3+1)~r(n/n2+n3)(ni n2n3))
0 as 1~ as as as

(n)+2, n2'n3 n1'n2'n3+2) nl+1, n2'n3+ n1'n2+1'n3 ni'n2'"3
)as as as as

(ni+2n2, n3) , (ni, n2, n3+2) (ni+1, n2, n3) (ni, n2, n3 ))
4~ 3 as 3 as as as

g &4
n1+2, n2'+3 14 &1'&2'&3+2) n1+1,&2'n3+ n1'n2+ 'n3 &1' 2'&3

3 as as as as (3.7)

The results for the amplitudes N&, V, and T together with the sum-rule constraints are displayed in Tables I, II, and

III, respectively.
The explicit expressions for the distribution amplitudes as functions of the coefficients B„according to (3.4) are

Cr)1r(x, ) =ass(x, )[(B()+82—583 —583)+(8,+84)x, +( —382+783+783)X2
—(81+84)x3+(483+1483)x)X3+ (883 —484+ —',483 )x 1 +(883+ 484+ '483 )x 3 ], (3.&)

V(x;) =tx&„(x, )[(8()+82—583 —585 )+—,'(81 —382+ 1183+84+2185)(x, +x2)
—(81+84)X3—(483 + 1485 )x ix2+ —,'(1283 484 —2883 )(x 1+x—2 )

+ —,
' (2483+484+ 1485 )x 3 ], (3.9)
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TABLE III. Moments of the nucleon distribution amplitude T(x;) in terms of the expansion
coe%cients B„.The sum-rule constraints of CZ are also shown.

0)n2n, 3 T
( n

]
n

2
t1

3 ) ri ] n
2

n
3 )

T(SR)

000
100
010
001
200
020
002
110
101
011

Bp

21 (7Bp +B2 )

21 7Bp +B2 )

2, (7Bp —2B2)

756 108Bp + 27B2+9B3 B5 )

756(108Bp+27B2+9B3—B5)

126 ( 18Bo 9B2 +B3 +B5 )

756 72Bp+ 18B2 6B3 + 4B5 )

756 72Bp 9B2 3B3 3B5 )

756 (72Bo 9B2—3B3—3B5 )

1

0.40—0.50
0.40—0.50
0.05 —0. 16
0.22 —0.28
0.22 —0.28
0.02 —0.06
0.09—0. 13

0.04—0.08
0.04—0.08

Q F", (Q )= —,', [4ircz, (Q )] f~~ I"

with

I"= "
( 17 496B + 2376B —1944B2

—18 360B 3 + 104B4
—870B 5

—13 608BoB i
—17 496BOB~

9720BpB3 +3240BpB4 6480BpB5 9072B ]B~ 23 760B )B3 936B]B4+3780B ]B5

—19440B2B3+2376B~B4+540B2B~+4968B3Bq+7020B3B5 492B4B5—) .

(3.15)

(3.16)

d eN P=1
p

(3.17)

the other coefficients can be determined by inverting the
(n

1 ft2Pl3)
equations for the moments NN' ' ' using as input the
sum-rule constraints (Table I). One observes that the
simultaneous consistency of the sum rules for the linear
moments requires B, '" =5.05, B

&

'" =3.79, B2
"=2.55,

and B2'"=1.83. While the sum-rule constraints suffice
to keep the variation of the allowed valnes for B, and B2
small, a complete analysis shows that they are not
stringent enough to limit the variation in sign and magni-
tude of the higher-order coefficients B3, B4, and B5. This
variation is exemplified in Table IV by two admissible
nucleon distribution amplitudes (examples 1 and 2) in
comparison with the model distribution amplitudes of CZ
and GS (Ref. 45). Extending this discussion to the Dirac
form factors FJ] and F"„ the situation is quite analogous
because of the sensitivity of Ii' [Eq. (3.14)] and I" [Eq.
(3.16)] to the signs and magnitudes of the coefficients B„.
(Cancellations of this type were found also for the transi-
tion form factor Gg~ —see Refs. 7 and 31.)

Strictly speaking, expressions (3.12), (3.13), and (3.15) are
not quite right because the Q evolution of the form fac-
tors is governed not only by the momentum dependence
of u„but also by the Q variation of the coefficients B„.
However, their inAuence on the evolution is a minor
effect [see Eq. (3.5)] and can be ignored in a first approxi-
mation. [Note that Q logarithmic corrections due to
anomalous dimensions have also not been introduced ex-
plicitly in the sum rules (2.20) and (2.21) (Ref. 5).]

Except for the coefficient Bp which is fixed upon the
normalization condition

TABLE IV. Coefficients B„ofthe Appell polynomial expan-
sion for four different nucleon distribution amplitudes specified
in the text.

Bp
Bl
B2
B3
B4
B5

Example 1

1.0
3.9
1.9
1.3
9.0
1.8

Example 2

1.0
4.0
2.0
1.95

—5.0
2.0

CZ

1.0
4.305
1.925
2.247

—3.465
0.013

1.0
4.105
2.06

—4.72
5.0
9.3

Turn now to the model distribution amplitudes of CZ
(Ref. 5) and GS (Refs. 15 and 22). Their physical content
may become more transparent by illustration (Fig. 2). It
is worth noting that there are substantial discrepancies
between our graphical representation of the CZ ampli-
tudes and that given in Ref. 5. Even allowing for
different scales, the sharp peaks found there cannot be
reproduced. In particular, our graphical representation
effects the existence of negative domains in the CZ distri-
bution amplitudes, domains which have been disregarded
in the figures of Ref. 5. We emphasize this last point as a
warning in case of attempting to extract any but the most
qualitative conclusions from the graphics of Ref. 5 (cf.
Sec. V).

In order to make the foregoing statements more pre-
cise, the top-elevation pattern of the quark distribution
amplitudes on the Mandelstam plane spanned by x&, x2,
and x3 with the constraint x, +xz+x3=1 is also ex-
posed (Fig. 3). One notices that the maximum of Vos
coincides exactly with that of @„atx, =

—,'. Since asymp-
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totically 4&~ V~4„, the GS model favors the possibil-
ity that the nonperturbative effects become significant
predominantly near the edges of phase space, whereas the
central region (x, = —,

'
) is positive and practically

unaffected by such effects. This should be contrasted to
the reversed possibility offered by the CZ model (Figs. 2
and 3).

The differences between the two sets of model distribu-
tion amplitudes become more pronounced if one com-
pares instead of the full amplitudes their nonperturbative
parts (Fig. 4). Then one observes that the nonperturba-
tive parts of the GS amplitudes have mainly convex con-
tours, while the CZ counterparts are rather concave with
"spikes" at the corners of phase space.
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FICi. 2. Quark distribution amplitudes for the nucleon as
three-dimensional surfaces over the plane spanned by x&, x2,
and x3=1—x& —x2 for two different models: GS amplitudes
(left column); CZ amplitudes (right column). For comparison,
the asymptotic solution is also shown. Note that for each figure
the optimal perspective is chosen.

FIG. 3. Top-elevation pattern of the quark distribution am-
plitudes on the Mandelstam plane (equilateral triangle) for the
variables x&, x2, and x3=1 x& x2 ~ The left column shows
the GS model, the right one the CZ model. Only the main max-
ima (+) and main minima (B) are indicated. In each plot the
black dot marks the central point (x

&
=x2 =x3 =

3 ) of the trian-

gle where @„has its maximal value.
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quarks within the nucleon. Furthermore, it follows from
Fig. 5 that the contours of 4& are not particularly sensi-
tive to the separate incorporation of %5, even with an ex-
pansion coefficient B& as large as B5 =9.3 (see Table
IV). The same is (almost) true also for the amplitude

The graph in the bottom right corner of Fig. 5
shows a spurious amplitude N&, in which the coefficient
B5 is taken to be nonzero and equal to B5 =9.3. Al-
though the profile of the original amplitude is distorted,
its main characteristics are conserved.

The point of this exercise is that, relying in ansatz (3.4)
exclusively on the zeroth- and first-order Appell polyno-
mials 40, 4„and 42, the sum-rule constraints actually
force the nucleon distribution amplitude to have the
functional form of N& . Conversely, the inclusion of the
second-order Appell polynomials 43, C&4, and 4s in (3.4)
favors a nucleon distribution amplitude with the struc-
ture of N& .

B. Dirac form factors of the nucleon

The results obtained in the preceding subsection are
now applied to the evaluation of the nucleon form factor.
The calculation of the helicity-conserving (Dirac) form
factors Fti and F"„according to Eqs. (3.13)—(3.16), yields
two expressions which are represented graphically in Fig.
6 (proton) and Fig. 7 (neutron). These results have been
obtained analytically under the assumption that the x,y
dependence of the e6'ective coupling constant can be ig-
nored. The individual contributions to I [Eq. (3.14)] and
I" [Eq. (3.16)] of the diagrams of Ref. S are given in Table
V.

In the case of the GS model, the dominant contribu-
tions come from diagrams 9 and 10 with gluon virtuali-
ties Q (1—x, )(1—y, ) and Q xzy2. Substituting the
longitudinal momenta at the position of the main max-
imum of the amplitude Tos (see Fig. 3), the averaged
coupling strength is

a, (Q )=[a,(Q X0.332)a, (Q X0.18)]'~ . (3.18)

In the case of the Cz model, diagram 1 dominates with
gluon virtualities Q (1—x, )(1—y, ) and Q x3y3. Then it
follows

1.5

)+F {0 }

= 180 @~V

SLAG 86

~~ 1.0

49
CL g
C9

C3
0.5

Z{1}

Z{2}

GS{2)
GS{&}

20 30 40

0 [Gev /c2]

crucial way on the choice of the scale parameter AQcD.
A small value AQcD 100 Me V is sometimes pre-
ferred' ' because the smaller the scale parameter AQcD
the larger the distances for which the small-coupling ex-
pansion is valid. The value we have chosen, however, is
more appropriate for form-factor calculations. In a re-
cent publication we showed that the lng dependence
predicted by perturbative QCD can be directly tested
looking at the plot versus Q of the magnetic form factor
GQ, which for Q ~~, i.e., asymptotically, becomes in-
distinguishable from the Dirac form factor I'~&. The best
fit to the GQ data yielded for three Ilavors A&cD=180
MeV corresponding to (y /data) =0.263. (This semi-
phenomenological fit is also displayed in Fig. 6.)

FIG. 6. Predictions for the proton Dirac form factor extract-
ed from the GS and CZ models in comparison with the semi-
phenomenological fit of Ref. 46 and the existing GQ data (Ref.
47). The asymptotic prediction [GQ(~ )] of perturbative QCD
(Ref. 1) is also shown. The curves labeled (1) and (2) are
specified in the text.

a, (g')=[a, (g' —,')a, (g' —,', )]' ', (3.19) 08-
where the coordinates in phase space of the main max-
imum of the amplitudes @z are used (see Fig. 3).

In both cases the nominal value of Q is large, but the
actual value in the argument of cz, is rescaled down to the
intermediate or even low-Q region because the appropri-
ate gluon virtualities have to be used. The model predic-
tions for F~& and Fi are labeled (1) and are presented, re-
spectively, in Figs. 6 and 7. An improved treatment uses
instead of a single average value cT„ for every contribut-
ing diagram to I~ (I") the respective coupling strength
with the appropriate virtualities to obtain the curves
marked (2) in Figs. 6 and 7 (A&cD=180 MeV). Note that
for the neutron only the theoretical predictions are
shown because there is no experimental data in the high-
Q region.

It is clear that the form-factor predictions depend in a

~Q6-
~O

CO

c Q4-

C/
l

Q2 .

10 20

CZ {1)
CZ {2)

GS{2)
GS {1)

30 40
Q' [Gev'/c&]

FIG. 7. Predictions for the neutron Dirac form factor ex-
tracted from the GS and CZ models by applying two different
treatments for a, ( Q ), as explained in the text.
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TABLE V. Individual contributions to the proton and the neutron Dirac form factors calculated
with the model distribution amplitudes of GS and CZ. An average value cT, outside the integrals in Eq.
(3.12) is assumed. The index i enumerates the diagrams given in Table I of Ref. 5.

1

2
3
4
5
6
7
8
9

10
11
12
13
14

~i /GS

19 108.52
0

18 849.60
413.41

3980.72
0

—32 031.30
0

58 279.99
58 279.99

0
—491.01
—663.05
—491.01

ftIi /GS

—9554.26
0

—9424.80
—206.70

—1990.36
0

64 062.60
0

—29.140.0
—29.140.0

0
982.03

1326.11
982.03

Ii/cz

139309.65
0

—93 753.33
1209.03

—45 253.08
0

—3282.07
0

62 243.27
62 243.27

0
1851.97

—1474.08
1851.97

Ii /cz

—65.654.83
0

46 876.67
—604.52

22 626.54
0

6564.14
0

—31 121.64
—31 121.64

0
—3703.94

2984.17
—3703.94

Using instead of AQcD 100 MeV this scale in the
one-loop expression for the coupling strength

a (Q )= (Q »AqcD)
Ppln( Q /AocD )

(3.20)

with Pp=9 (for three fiavors), the model predictions of
CZ for F~i are shifted far away from the data (Fig. 6). In
this context we remark that the theoretical predictions
for F~i in Fig. 6 should not be compared with the full GQ
data, but rather with the curve for Q F~i. The reason is
that the helicity-changing part of the magnetic form fac-
tor, i.e., the Pauli form factor F~z, is not necessarily equal
to zero at moderate momenta, say, below 10 GeV (Refs.
28 and 46).

Some other form factors calculated with the two mod-
els at fixed momentum Q =20 GeV and using the
same value of the effective coupling constant, cT, =0.3,
are supplied in Table VI. Allowing, however, for rescaled
arguments in K„ in accordance with the gluon virtualities
appropriate for each model, the deceptive coincidence be-
tween F»~s and F~/cz in Table VI is removed, and one
finds Q F~i&Gs =0.78 GeV, Q F~»cz =1.58 GeV for
AqcD= 180 MeV or Q F~itas =0.61 GeV, Q F~i/cz
=0.89 GeV for AQCD 100 MeV.

Another important point is that the fitted curve Q Fii

2 = 4~a, (Q )=
2 2 2Ppln[(Q +4m )/AocD]

(3.21)

Here mg is a dynamical or effective gluon mass with
numerical values in the range 500+200 MeV (Ref. 50).

Technically, m is an infrared (IR) cutoff serving (im-
plicitly) to regularize one of the gluon propagators
becoming soft (compared to the photon momentum)
along the boudaries of phase space, where some x; is very
small. It is clear that such a nonzero gluon mass will
"freeze" the value of the effective coupling constant for
Q~~4m . The regulator role of m is more obvious
when Eq. (3.21) is rewritten in the form '

in Fig. 6 scales much better than all theoretical predic-
tions. This is because the Q evolution of the calculated
form factors is mainly due to the effective coupling con-
stant given by (3.20). In order to improve the scaling be-
havior of the form factors, one has to treat a, (Q ) in a
more accurate way. Such an attempt at treating a, inside
the integrals in (3.12) was recently reported by Ji, Sill,
and Lombard-Nelsen (JSLN). Owing to the fact that
Eq. (3.20) becomes infinite at the end points of integra-
tion, they try to take account of the end-point contribu-
tions having recourse to a modified expression for a„
proposed by Cornwall:

2 = 4~
as(Q )=

2 2 2Ppln[(Q +AAqcD)/AqcD]
(3.22)

Form factors Distribution amplitudes
(Gev ) Example 1 Example 2 CZ

g 4Fi
g4Fn
g'g~

0.29
—0.124

0.45
0.04

0.68
—0.335

1.06
—0.03

0.89( 1.17) 0.89
—0.43( —0.57 )

—0.086
1.36 1.00
0.01 0.72

TABLE VI. Form-factor predictions extracted from four
different nucleon distribution amplitudes specified in the text.
The numbers in parentheses are the values given by CZ (Ref. 5).
All values refer to g =20 CxeV, a, =0.3, and

~ f~~ =5.2X10
GeV~.

where now A, is a purely phenomenological parameter rul-
ing the "freezing" of the effective coupling constant at
low Q . In fact, for values Q XAQcD the coupling con-
stant ceases to increase and Aattens out. Since a dynami-
cally generated mass is not a constant but vanishes at
large momentum (see Ref. 50 and references cited
therein), the IR-regularized expressions (3.21) and (3.22)
transform for large Q into the conventional one.

Physically, the IR regularization of a, (Q ) means a
sharp separation of short- from long-distance dynamics,
which in turn implements that the long-range forces be-
come saturated at some scale m '. Note, however, that
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a consistent treatment of the end-point region of phase
space, where perturbation theory breaks down and non-
leading contributions are important, should saturate the
momentum transfer carried by the gluons not only impli-
citly in a, (Q ) but also explicitly in the gluon propaga-
tors, using the same IR cutoff. This has not been done in
the JSLN analysis. Rather they treat m~ as an indepen;
dent fit parameter that is adjusted to provide optimal
agreement between the data and selected models for nu-
cleon distribution amplitudes.

Using AQCD= 100 MeV, they find I =0.3 GeV [CZ,
GS (Ref. 52) models], and mg=0. 6 GeV (KS model).
Although these results are consistent with the estimates
of Cornwall, and those of Cornwall and Soni and the
scaling behavior of the form factors is considerably im-
proved, several comments are in order. First, according
to Cornwall, m and AQCD are intimately interrelated
by the consistency relation ms /AQCD = 1.5 —2.0 (or
VA, =3—4). The JSLN analysis clearly violates this con-
dition, yielding ms

' '/AQCD 5.5 and ms /AQCD
=7.7. Second, provided the consistency relation is
correct, either the value AQCD 100 MeV is inconsistent-
ly low when gluon-mass effects are included (Cornwall
considers AQcD=300 Mev to be the appropriate value
for I =500 MeV) or the effective gluon mass is overes-
timated in all three models. Finally, one should take care
that the introduction of an additional IR cutoff is compa-
tible with the choice of the normalization point po in the
OPE (Ref. 54), for this is the scale where the effective
coupling constant is normalized to unity, signalizing the
breakdown of perturbative QCD (Ref. 55). Choosing
AQ&D=180 MeV, the normalization point is po=0. 36
GeV, whereas SVZ (Ref. 18) prefer to use AQcD 100
MeV corresponding to go=0. 2 GeV. These values have
to be contrasted with the scales following from Ref. 30
where the IR cutoff sets on at Q =4m yielding to the
normalization scales: 1.1 GeV (CZ, GS models) and 1.5
GeV (KS model).

The preceding discussion shows that the Cornwall pa-
rametrization of the effective coupling constant should be
treated very carefully. Its straightforward application,
without matching the intrinsic scales of the formalism,
provides merely regularized form factors whose scaling
behavior is improved because the Q domain, where per-
turbative QCD is applicable, is artificially extended to-
ward lower values.

IV. STABILITY ANALYSIS OF THE MOMENT
SUM RULES

We pass on now to the more demanding problem of
performing a stability analysis of the moment sum rules.
The equation to be treated with respect to its stability is
(2.20). The spectral density is parametrized in standard
form using the narrow-resonance approximation: '

( 11 ] Il 2 ll 3 )

+0(s —s ' ' '
) „ s . (4.1)

640m"

(n]n2n3)The quantity r ' ' ' is called the "residue" ' and it is
a measure for the transition amplitude of the proton (neu-
tron) into the quark current in question. For every mo-
ment of N&, the residue is given by

&
"("2"3 —

~f ~2@
"("2"3

(
( @(100)+T(100))
2 (4.2)

In (4.1) the proton contribution to the imaginary part of
the correlator is shown explicitly, while the 0 function
stands for the continuum. Considering the nucleon dis-
tribution amplitude 4& as known, the stability analysis of

(1l I 7lg123 )
the sum rule for each moment N&' ' ' can be treated
along the lines developed by Ioffe and Belyaev for the
determination of baryon and baryon-resonance masses
(see also Ref. 56).

The intersection of the curves corresponding to the
left- and the right-hand sides of Eq. (2.20) for a given mo-
ment determines a balance point of the sum rule with
respect to the Borel parameter M (M resembles the
momentum scale Q ). In order to ensure stability of the
sum rule (i.e., to make its validity locally insensitive to the
choice of M), not a single point of reconciliation is
desired, but a whole stability region where the two sides
of the sum rule (almost) coincide. This is not trivial, ow-
ing to the fact that the phenomenological part of the sum
rule is saturated by the first resonances while its theoreti-
cal part takes into account a truncated Wilson expansion
(in our case the twist-three contributions).

It is clear that optimization of the stability properties
amounts to a balance of the sum rule in the greatest pos-
sible (continuous) interval of the Borel parameter. Then,
the truncated contributions on both of its sides are dom-
inated by the lowest-order terms and the sum rule itself
becomes stationary under small variations of M. In gen-
eral, not the whole M region determined this way is phys-
ically meaningful. The balance of the sum rule should be
considered in a restricted M interval where, on the one
hand the nonperturbative corrections do not exceed some
desired level of magnitude, and on the other hand the
contribution of the model continuum is moderate. The
first condition restricts the permissible M values from
below; the second one limits the M interval from above.
Adopting the terminology of Ioffe and Belyaev, this inter-
val will be designated by the symbol Q. (Note however
that we refer to the parameter M instead of M .)

The restrictions imposed in our stability analysis are (i)
the nonperturbative corrections are allowed to contribute
to the sum rule together no more than 40%%uo of the pertur-
bative term and (ii) the contribution of the continuum to
the sum rule is less than 40% of the perturbative term.

Let us now be more specific. Two possibilities for the
spectral density are considered. (i) The phenomenologi-
cal part of the sum rule is saturated by the lowest reso-
nance in the channel with the given quantum numbers,
i.e., the nucleon (one-resonance model). Higher states are
taken into account implicitly in a model continuum
[second term on the right-hand side (RHS) of (4.1)] start-

nlrl253
ing at s ' ' '. The sum rule for each moment is then
reconciled according to the conditions just described, re-
garding the nucleon residue as known. The optimal
values of the nucleon mass M& and the duality interval
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(1l
1 1l21l3 )

s ' ' ' are those which minimize the disparity between
the two sides of the sum rule in the largest stability inter-
val. (ii) In addition to the nucleon, an "efFective reso-

(1l I 1l21l3 )nance" with mass M~ =1.5 GeV and residue rz ' ' ' is
taken into account explicitly in the spectral density (two-
resonance model). In this case, the left-hand side (LHS)
of (2.20) reads

(4.3)

and the RHS of (4.1) receives an additional contribution
equal to r~ ' ' ' 5(s —M~ ). The corresponding sum
rules are fitted in the same M interval as before using as
inputs the nucleon mass and the nucleon residue found in
(i). Optimal stability is now achieved for continuum

(1l I 1l21l3)
thresholds s&

' ' ' equal to or slightly larger than those
of the one-resonance model. In addition, the range of

( 1l I 1l2 1l3 )
residues rz ' ' ' of the "effective resonance" for each

sum rule is also determined. Note that for both cases
~f&~=5.2X10 GeV and the condensates have the
values given in (1.2).

The results for both saturation cases are compiled in
Table VII (GS model) and Table VIII (CZ model). The
graphical representations versus M of Eq. (2.20) evalu-
ated for the moments of the model distribution ampli-
tudes are shown in Figs. 8—10.

In discussing these results we first remark that they are
correct modulo logarithmic corrections due to the anom-
alous dimensions of the involved operators. This is be-
cause in general each sum rule is reconciled at a different
momentum scale. Ignoring this shift in scales in favor of
an average normalization point, our analysis yields
p=1. 1 GeV for both nucleon distribution amplitudes.
From examining Fig. 8 in conjunction with Tables VII
and VIII it is obvious that, at the level of the linear mo-
ments, both considered models have stability properties
which resemble one another. It is worth noting that the
stability intervals exceed the region fL where our imposed

30 30

25 25 . 25 ~
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11 1 2 1 3 1C M 1.1 1.2 1.3 1.4 M 1.1 1.2 1 3 1 t, M 1.1 12 1.3 14 M
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FIG. 8. Plots versus M of the sum rules for the linear moments of the nucleon distribution amplitudes 4z and 4z
saturating the phenomenological side (denoted by a solid line) by one resonance (nucleon) and two resonances (nucleon + "effective
resonance" with Mz =1.5 GeV). The theoretical side of the sum rules is represented by a dashed line, and the interval 0 is marked
by arrows. The optimal values of the nucleon mass and the duality intervals are also shown.
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conditions are satisfied. The two models are
differentiated by analyzing the stability properties of the
sum rules for the bilinear moments. Here the stability
criterion provides a useful tool to check the reliability of
the model distribution amplitudes in terms of their mo-
ments. For example, we find that the agreement of the
sum rule for the moment 4&"' is only marginal, al-
though both models give moment values within the range
estimated by CZ. Thus we conclude that this sum rule
should not be taken very seriously in the determination of
nucleon distribution amplitudes. It is also important to
appreciate that the tiny value of the moment 4&&os,
which is by an order of magnitude smaller than needed to
match its sum rule, is in fact a prediction of the GS mod-
el, since it is an unavoidable consequence of minimizing
the ratio ~F", /F~& ~.

Summarizing the results of this section the following
points are worth emphasizing. (i) Comparison shows that

()le I12n3)the mean values s ' ' ' given by Cz (Ref. 5) for the du-
ality intervals are for most of the sum rules systematically
smaller than the optimal values obtained in this work. (ii)
Averaging over all values obtained for the nucleon mass
in optimizing the stability of the sum rule for each mo-
ment, one finds very reasonable results: M ~ =1.0+0,9
GeV and M z =1.02+024 GeV. (iii) The characteristic
momentum scale where most of the sum rules can be
reconciled is M & 1.1 GeV for both considered models of
nucleon distribution amplitudes. This scale represents an
optimal choice for the renormalization point, since for
such momenta the nucleon can still be viewed as an "ele-
mentary" particle. For smaller M values, nonperturba-
tive operators occurring with inverse powers of M con-
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FIG. 9. Plots versus M of the sum rules for the bilinear moments (one n; =2) of the amplitudes @a~s and @c~z The designations are
the same as in Fig. 8.
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tribute increasingly large corrections, while for
M &) 1.21 GeV contamination due to higher resonances
cannot be disregarded. For twist three, the dominant
contributions to the sum rules at low momenta are due
to the four-quark condensate. Bearing this fact in mind,
one should be very cautious when attempting to combine
the sum-rule results ' ' with Cornwall's framework
where the nonperturbative structure of the QCD vacuum
is mainly attributed to the gluon condensate (gluon-
vortex formation ).

V. ON THE PROBABII.ISTIC INTERPRETATION
OF THE NUCLEON DISTRIBUTION AMPLITUDE pN

As discussed in Sec. III, the nucleon distribution am-
2

plitude @~(x,,p )-f" [d k~]li(x;, k~;), which specifies
the longitudinal-momentum distributions of the valence
quarks collinear up to the scale p, has for both con-
sidered models a complex structure with positive and
negative domains (Fig. 2). Thus, despite the fact that
&b~(x;,p ) is normalized to unity [Eq. (3.17)], it is not a
(probability) density because it is not a non-negative dis-
tribution. For this reason, the bona fide probabilistic in-

terpretation of the moments of this amplitude, although
popular ' ' and perhaps tentative, it is, in fact,
mathematically incorrect.

Intending to interpret the information contained in
C&z(x, ,p ) in a probabilistic way, we recall that the quark
probability distribution is given by'

2 ( 2

q(x; p')- f [d'kg]lq(x, ,k„)l' (5.1)

with the normalization condition

f [dx]q(x;,p') =P„, (5.2)

where P3q is the probability for finding three valence
quarks in the nucleon. Unfortunately, the Fock-state
wave functions g(x;, k~;), which potentially describe all
hadronic matrix elements, cannot be computed from first
principles. Thus, one has to resort either to some phe-
nomenological ansatz for ll(x, , k~; ) or having recourse to
4&(x;,p ) make some plausible assumptions concerning
Eq. (5.1).

In this paper we follow the second option and consider
expectation values of the longitudinal-momentum frac-
tions with respect to the density l4&z(x, ,p )l:
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(5.4)

Of course, the density iC&)v(x;, )I ) i is not directly related
to the quark probability distribution q(x;, )tj ), since the
last one contains the square of the Fock-state wave func-
tion g(x, ,kt; ) before, not after, integrating over the
transverse rnomenta. Nevertheless, i @)v(x;,)M ) i

is a
mathematically reasonable density and thus expectation
values according to (5.3) provide a measure for the parti-
tion of the longitudinal momentum of the proton (neu-
tron) among the valence quarks. In addition, these ex-
pectation values have the physical virtue of depending on
the same reference momentum as the corresponding mo-
ments [Eq. (3.6)]. Since no additional assumptions are
made, this recipe ensures that the physical content of the
moments electively translates into that of the expectation
values.

The results for the (normalized) expectation values of
the longitudinal-momentum fractions x; with respect to

and +& are given in Table IX. By comparing these
results with those obtained for the moments (Tables VII
and VIII), one realizes that the strong asymmetry indicat-
ed by the moments is considerably reduced. In fact, the
main effect of taking expectation values (x i

'x z'x 3' ) in-
(nIn2n3)

stead of moments 4z ' ' ' is a IeUeling of the
longitudinal-momentum fractions carried by the quarks.

Concerning the CZ distribution amplitude, the physi-
cal picture emerging from expectation values is, in princi-
ple, the same as that already suggested on the basis of
the corresponding moments. We find (x, ) =3(x2(3) ),
and (x, ) =7(x j(3) ) while the differences between the
joint expectation values (x,xz), (x,x3), (x2x3), and
the corresponding moments are negligible (compare
Tables VIII and IX). We may summarize all that by the
statement that the CZ distribution amplitude is indeed
dominated by one up quark having the same helicity as
the proton and carrying nearly 60%%uo of its longitudinal
momentum; the remaining two quarks sharing almost
equal fractions of longitudinal momentum.

TABLE IX. Normalized expectation values of the
longitudinal-momentum-fractions x; with respect to the densi-
ties i4

~
and i&0

n] pl2n3

000
100
010
001
200
020
002
110
101
011

ij ] jjp tj
3(X] Xp X3 )Gs

1.0
0.373
0.211
0.416
0.167
0.059
0.193
0.068
0.138
0.084

tj ] fj
p

lj
3(X] X2 X3 )(7

1.0
0.591
0.201
0.209
0.370
0.052
0.058
0.110
0.112
0.040

(xi'x2'xj') =~ ' J [dx]~@)v(x,, )M )~ x, 'x, 'x, '

(5.3)

with normalization

The crucial distinction between moments and expecta-
tion values shows up in the case of the GS distribution
amplitude. As seen in Sec. IV, the values of the linear
moments of 4& almost coincide with those of 4z .
Trusting to the probabilistic interpretation of moments,
one would tend to draw the same conclusions for the GS
amplitude as for the CZ one. On the other hand, we have
shown in Sec. III that these amplitudes have fundamen-
tally difFerent structures. Taking expectation values in-
stead of moments, we find (x, ) = (x3 ) =2(x2 ), i.e., an
equipartition of longitudinal momentum between the first
up quark and the down quark within the proton. Re-
markably, the expectation value (x3 ) which corresponds
to the extremely small value 4&its=0. 008 turns out to
be of the same order of magnitude as (x, ), while (x2 )
is nearly three times smaller. As estimates for the joint
expectation values, we obtain (X,X j ) =2(x,x2 )

(101) (110)=2ix2x3r in agreement with 4&amos=2@&ios and in
contrast to @)viGs» i@IviGsi (compare Tables VII and
IX). Thus, under our simplifying assumptions, the quark
combination ut(xi)dt(x3) [or u t(xi)u t(x2); remember
Eq. (2.10)] seems to carry most of the proton's longitudi-
nal momentum. On the other hand, the joint expectation
values obtained in the case of the CZ model are
(xix2 ) (xix3 ) =3(x2x3 ) suggesting that the quark
combinations u t(x, )u ~(x2) and u t(x) )d t(x3) share al-
most equal fractions of longitudinal momentum. [This
partition of x favors dominance of u t(x) ) in the proton,
as said above. ]

Combining these results, we claim that the GS distri-
bution amplitude may be viewed as indicating the ex-
istence of a diquark cluster within the proton having spin
one with helicity parallel to the proton's helicity and car-
rying almost 80% of its longitudinal momentum.

VI. SUMMARY AND CONCLUSIONS

In this paper we have elaborated on the quark content
of the nucleon using perturbative light-cone QCD' sup-
plemented by QCD sum rules. ' ' Based on the formal-
ism described in Sec. II, we have outlined in Sec. III the
arguments underlying the model distribution amplitude

proposed in Refs. 15 and 22. The determination of
the expansion coefficients B„ in the Appell polynomial
decomposition of the nucleon distribution amplitude has
been treated in detail. We have found that relying in an-
satz (3.4) solely on the first three Appell polynomials
40, 41,42, the nucleon distribution amplitude is forced
by the moment sum rules to have the structure of N~ .
Conversely, relative dominance of the second-order Ap-
pell polynomials C&3, 44, 4~ in (3.4) leads rather to the
structure of N& .

Both proposed ' model distribution amplitudes,
shown in Fig. 2, though, in fact, rudimentary, do incor-
porate genuine nonperturbative contributions, which are
indispensable for a realistic description of the nucleon.
Indeed, using these amplitudes we have calculated the
proton Dirac form factor in reasonable agreement with
the data (see Fig. 6) although this agreement depends in a
crucial way on the treatment of the efFective coupling
constant a, ( Q ) and the choice of the scale parameter
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AQCD In the case of the neutron, however, the form-
factor predictions made by the two models are diametri-
cally difFerent. While the CZ model predicts sizable
values for F

&
in the intermediate Q region, the GS mod-

el requires an almost vanishing F", in the whole Q range
(see Table VI and Fig. 7). High-precision data at inter-
mediate Q values will surely help to differentiate the two
models. Closing Sec. III we have shown that attempts
to combine sum-rule results with Cornwall's parametriza-
tion of the efFective coupling constant should be treated
very carefully.

Trying to understand the quality of the model distribu-
tion amplitudes 4& and 4& from a more theoretical
viewpoint, we have performed in Sec. VI a stability
analysis of the moment sum rules, relying on the Wilson
coefficients calculated by CZ (Ref. 5). This analysis pro-
vides the possibility to estimate the range of the residues
of the "effective resonance" (Tables VII and VIII) and
can serve as a guide in modeling distribution amplitudes,
since it reveals the trends along which optimized values
of the expansion coefficients B„can be obtained.

Finally, in Sec. V we have raised objections against the
popular ' ' probabilistic interpretation of moments and
have suggested instead to consider expectation values of
the longitudinal-momentum fractions x; with respect to

the density ~C&z(x;,p )~ (Table IX). According to the
physical picture emerging from this (simplifying) treat-
ment, the CZ distribution amplitude is dominated by an
up quark with the same helicity as the proton. On the
other hand, the GS distribution amplitude is rather com-
patible with the idea of a diquark cluster within the pro-
ton. Testable consequences of this picture will be con-
sidered elsewhere.

Rote added. After completion of the present investiga-
tion I received a paper by Carlson and Poor which deals
with expectation values of longitudinal-momentum frac-
tions relying on the assumption that in lb(x;, kt;) the
transverse-momentum dependence and the dependence
on the longitudinal-momentum fractions factorize. This
is an interesting attempt, but it is not obvious how the in-
trinsic dependence of the amplitude @z(x;,p ) on the
normalization scale p can be accounted for in their
framework.
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